
Unrestricted, open-ended, speech-based interaction
between humans and machines requires vocabulary
and semantics as broad as human knowledge, mech-

anisms for resolving ambiguity and reference to the physical
environment, and intricate rules for turn-taking based on a
rich model of the situation, social roles, prior context, histo-
ry, and culture. The practical alternative to such complexity
is to design more narrowly focused dialogue agents based on
task-specific constraints: the vocabulary and semantics of an
agent that gives directions (Bohus, Saw, and Horvitz 2014),
the resolution of reference against a small set of physically
available objects (Smith, Chao, and Thomaz 2015), the turn-
taking rules of a tutor and student (Swartout et al. 2013), the
conversational simplicity of search (Bellegarda 2014). Task
constraints provide the interaction with structure and pre-
dictability, creating a kind of pact between human and non-
human conversational partners. The more you (human) lim-
it your behavior to what I (agent) expect, and the better I
have anticipated what you want to do, the more successful
the interaction will be. When the underlying assumptions of
commonality of purpose and content break down, the inter-
action does as well. A great deal of the art of interaction
design lies in minimizing what is, from the agent’s point of
view, out-of-task behavior, both by anticipating natural in-
task communication and by providing cues to lead partici-
pants down the predicted paths. 

Anticipation and cueing are particularly important in
designing interactions for young children, a population that
is limited in its ability to understand and adapt to the bounds
of a system when things go awry. We design for children in
the age range of 4 to 10 years old — participants with func-
tional language competence but enormous variability in all
aspects of language behavior. Most speech and natural lan-
guage research that focuses on this population has pedagogy
(Ogan et al. 2012; Gordon and Breazeal 2015) or therapy
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n When the goal is entertainment,
designing language-based interactions
between characters and small groups of
young children is a balancing act. On
the one hand, an autonomous character
should support the freedom of expres-
sion and natural behaviors of children
having fun. On the other hand, an
autonomous character is only capable
of supporting the activity it’s designed
for and the behavior it anticipates. In
the last five years we have watched this
tension between freedom and constraint
play out in hundreds of small groups in
a variety of activities. Using two of the
activities as examples, we chart the ups
and downs of turn-taking and other
language behaviors along the Fun
Curve. 



(Vannini et al. 2011) as an overarching goal. In con-
trast, we are interested in language-based character
interactions (LBCI) that entertain. Such activities
should be novel enough to engage children across
the age range, but accessible enough to demand little
instruction. They can be brief, but they should be
fun. Within these loose criteria, we are free to explore
the design space, limited only by imagination, the
technologies we can compose or create, and, of
course, our ability to predict and channel the lan-
guage behavior of our young participants. The two
case studies presented here might, at first glance,
seem to represent very different points in that design
space, but they are highly related with respect to the
turn-taking problems and challenges they expose. 

Case Study 1: Robo Fashion World
Robo Fashion World (RFW) is an animated game in
which children dress up an on-screen fashion model
by calling out the names of visually available cloth-
ing items and silly accessories. Figure 1 shows a typi-
cal moment during play. Edith, an animated robot

character, hosts the game; children participate side
by side in small groups of two to four players, which
might or might not include adults. As explained
briefly by Edith, there are two main game actions:
effecting a change to the model by naming one of the
clothing items or accessories on the board, and
requesting a picture of the increasingly crazily clad
model to be printed and taken home afterward. The
majority of the interaction consists of 20 choice
cycles during each of which a valid reference to a
board item is made, the model changes, and a
replacement item appears. 

Between 2011 and 2013, the LBCI Group ran three
data collections that included RFW, with a total of 177
children, 8 adults and 3 experimenters playing across
60 sessions. To collect natural data to test and develop
the technologies needed for an autonomous version
of the game, a human performed all of Edith’s lan-
guage understanding tasks using a Wizard-of-Oz
design (Kelley 1984). The interface allowed the wizard
to signal a clear request for a board item or picture, an
unclear utterance that was nevertheless directed to
Edith, a long silence, or multiple people speaking at
the same time. The resulting corpus contains 9597
utterances, of which 9039 (94 percent) were spoken by
children. Although there were some systematic differ-
ences in the participants across the years (for example,
adults joined the children primarily in 2011), the
behavioral characteristics discussed here hold
throughout. Additional details about the data collec-
tions, data labeling, and participants’ behavior can be
found in  the paper by Lehman (2014). 

Turn-Taking in Robo Fashion World
The fundamental rule of turn-taking in adult conver-
sation is “no gap, no overlap” (Saks, Schegloff, and
Jefferson 1974), an injunction to take one’s own turn
in a timely manner and avoid speaking over others.
Even if such rules were desirable in nonconversa-
tional settings like RFW, it would be unwise to expect
that young children would have mastered them
(Ervin-Tripp 1979). The wizards who performed all of
Edith’s language processing defined an implicit turn-
taking policy by deciding whether and when to make
a selection at the interface. That decision was based
on a normative understanding of group dynamics
during play and the general instruction that the
game should both move along effectively and be fun.
For Edith to act as an autonomous host in RFW she
must also implement a turn-taking policy, preferably
one with the same goals. Doing so requires overcom-
ing the effects of two complex out-of-task phenome-
na: participants’ side talk and overlapping speech. 

Whenever there are two or more human partici-
pants in a character interaction, there is the possibil-
ity of side talk between them and addressee identifi-
cation becomes part of the turn-taking problem. If
the vocabulary in the side talk is distinct from the
vocabulary of the gameplay — which Edith must
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Figure 1. A Small Group Playing and a 
Screenshot of the Animated Game Robo Fashion World.
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understand in any event — the addressee problem
can be solved by assuming that in-task language is
always directed to the character and out-of-task lan-
guage is not. Unfortunately, as table 1 shows, our cor-
pus does not admit the simple solution; neither the
presence nor the absence of task vocabulary accu-
rately predicts addressee. 

It is not especially problematic that 22 percent of
the utterances addressed to Edith do not contain
anticipated task words: less than a fifth of those utter-
ances (2 percent of the entire corpus) are actual item
requests that use unexpected vocabulary (for exam-
ple, “the king hat” rather than “crown”). The remain-
der are either evaluative statements (“that’s my
favorite”), partial phrases without actionable mean-
ing, or unintelligible. On the other hand, the 22 per-
cent of between-player utterances that do contain
task words is not so easy to dismiss. Those utterances
are either side conversations about naming (“what’s
that?” “a mermaid tail”) or negotiations about the
next action (“the fairy wings?” “no, the bat wings”).
If Edith were to assume that she is the addressee
based on vocabulary alone, she would take the turn
in these instances, despite the child’s intent. An
inability to distinguish between true item requests
and side conversations about items will make Edith
seem at best incompetent, at worst malevolent.

Of course, distinguishing addressee does not have
to be a function of vocabulary alone. Working with
data from an early version of RFW called Mix-and-
Match, we were able to classify utterances as either to-
character or not-to-character with almost 80 percent
accuracy when we included multimodal features like
head turn, pointing gestures, and volume in a time-
and group-based support vector machine model
(Hajishirzi, Lehman, and Hodgins 2012). Mix-and-
Match was designed with adult and child players
standing side by side to force a detectable head turn,
in service of the eye contact that typically precedes
speech. RFW preserved this design element in part
because head turn was an important feature in the
addressee identification model. As adults were
phased out of RFW, however, that environmental
engineering became less successful because children
find the game board to be a strong situational attrac-
tor (Bakx, Turnhout, and Terken 2003); unlike adults,
they tend to stay visually focused on the board even
when talking to other players. Without strong verbal
or nonverbal signifiers for addressee, the problem of
reliably distinguishing side talk from task talk
remains, and Edith’s ability to act as the child intends
is compromised.

The second challenging language behavior that is
ubiquitous across sessions is overlapping speech. This
problem shows up in two forms: overlap between a
player and Edith, and players overlapping with each
other. The children speak over Edith constantly,
probably as an inadvertent consequence of the need
to make the game easy to understand. Edith’s behav-

ior in the choice cycle is purposefully formulaic: she
displays idling behavior until the wizard selects an
item, then acknowledges the choice to the players
(“that’s genius!”), turns her back to them as she push-
es the red button, names the item and watches the
model change, then faces the players to release the
turn with or without additional comment or gesture.
Nothing Edith says during this sequence is critical to
the successful execution of the child’s request — after
the first few cycles, players don’t need to hear her to
know what is going to happen, so there is no practi-
cal consequence to talking over her. Because the wiz-
ard is shut out from any additional interface actions
until Edith is finished, she appears to simply ignore
everything that is said once she has taken the floor. 

Ignoring the players’ speech is a viable strategy for
an autonomous RFW host only if the character takes
the floor at appropriate times. Judging the right
moment is made more difficult by overlapping
speech among the players. Because the wizard was
instructed to keep the game moving and fun, Edith
rarely expressed that there were “too many voices”
and the participants, themselves, were left to self-
organize their turn-taking during the requesting por-
tion of the choice cycle. The lack of formal structure
affected sessions unevenly. Some groups organized
their turn-taking with a simple round robin and had
as little as 10 percent of their utterances overlap,
while others were boisterously chaotic and had more
than 80 percent of their utterances all or partially
obscured. Not surprisingly, chaos correlated strongly
to group size, but almost all groups had some chaot-
ic moments. Figure 2 shows the variability as experi-
enced by individuals. 

As in the case of addressee identification, our goal
is not just to describe the language behavior elicited
by the wizard’s actions but also to replace the wizard’s
turn-taking behavior with an autonomous capabili-
ty. To that end we explored the performance of three
turn-taking models with respect to a subset of the
data (Leite et al. 2013). The Baseline Model followed
a rule to wait until the end of the first request in the
choice cycle, respecting the first speaker’s turn
boundary but potentially interrupting other players.
The Wizard Model was a support vector machine that
made take/wait decisions based on the wizard’s actu-

Table 1. Cued or Expected Task Vocabulary Does Not Predict Addressee. 

More than 20 percent of utterances meant for Edith do not contain expect-
ed task words while more than 20 percent of utterances between players do.

Addressee With Task Words Without Task Words 

 %corpus (%addressee) %corpus (%addressee) 

Edith 53% (78%) 15% (22%) 

Another player 7% (22%) 25% (78%) 



al performance at the interface and the same kind of
hand-labeled, multimodal features that were useful
for addressee identification. A potential problem
with the wizard’s data was that it reflected the fea-
tures that existed at the moment he eventually took
the turn, rather than the features that existed at the
moment he formed the intent to take it — a variable
delay that might be significant in a chaotic environ-
ment. In order to control for the variable delay, the
Annotator Model was based on data collected from a
set of coders given videotape of the game board and
players. Each video segment started at the beginning
of a choice cycle and stopped at either an end-of-
utterance or within-utterance moment, at which
point the coders indicated whether or not Edith
should take the turn. 

The three models differed on which turn-taking
decision to make about 40 percent of the time. A new
set of coders was asked to judge a sample of 1000
decisions where one of the models differed from the
others. In general, the judges preferred decisions by
the Wizard and Annotator Models. In particular, they
preferred decisions that demonstrated aggressive
interrupting by the character, thereby minimizing
stretches of interplayer overlap and keeping the game
moving with rapid changes to the visual display. In
other words, the judges voted to have Edith add her
voice to the din. 

Knowing to take the turn as soon as a valid request

has been made is not the same as being able to recog-
nize when that event has occurred. The general prob-
lem of separating multiple excited utterances into
speech content that can be recognized accurately is
unsolved for adults, and undoubtedly made more
complicated by the increased variability of pronunci-
ation in young children. Thus while overlapping
speech is not, in and of itself, out-of-task behavior, its
significant presence has the same deleterious effect of
breaking the pact between the human and nonhu-
man conversational partners. You (human) may be
producing the language I (agent) expect, but I am
unable to produce a meaningful action in return. 

Problems in the Large
On the surface, the language understanding task for
RFW seems quite tractable: there are only two mean-
ingful actions the character must respond to and the
in-task vocabulary for specifying those actions is fair-
ly small and visually cued. Side talk that contains
expected in-task vocabulary complicates the possibil-
ity of autonomous performance, however. The better
speech processing is at accurately picking out in-task
vocabulary, the more likely that the character will act
on a misinterpretation of a clarification dialogue
between players. 

The children’s natural turn-taking behavior, while
easy to anticipate, is still more problematic. When we
watch children play RFW, it is clear that most of them
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Figure 2. Quantifying Boisterous Play. 

Almost 60 percent of the children (105/177) had at least 40 percent of their utterances overlapped by another speaker. While
there are promising new results in sound separation for two voices (Tu et al. 2015), current off-the-shelf speech recognizers
do poorly with overlapping speech, even with adult voices. Children’s voices are typically harder to recognize, even with-
out overlap.
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are having fun, and it is particularly clear in the
groups that are the least orderly in their turn-taking.
Even occasional use of Edith’s “too many voices”
response had a sobering, albeit temporary, effect on
spirited game play. A pilot study that attempted to
use a hierarchy of proxemic, gestural, and verbal cues
to make turn-taking less chaotic (but still fun) looked
promising (Andrist, Leite, and Lehman 2013), but in
the subsequent, larger data collection, the modified
game showed no appreciable effect on overlap. 

Obviously there are design decisions we could
make — single child interaction, push-to-talk inter-
faces, and others — that would constrain away the
effects of side talk and overlapping speech complete-
ly. Instead, we choose to try to tame them. 

Case Study 2: Mole Madness
Mole Madness (MM) is a two-dimensional side-
scrolling platform game, a scene from which appears
in figure 3. One player controls the mole’s horizontal
movement with the keyword go, while the other
player controls vertical movement with the keyword
jump. Without speech, the character gradually slows,
falls to the ground and spins in place. The mole’s
environment contains objects that are typical for this
type of game: walls arranged as barriers to go over or
between, items that increase health (cabbages, car-
rots, tomatoes) or decrease health (cactuses, birds,
bees), and a special object (star) that boosts the char-
acter’s speed. Although players are not given any spe-
cific instruction other than to move the mole
through the world to the flag at the end of each lev-
el, the health bar in the upper left corner of the
screen updates as the various kinds of objects are
touched. Whether through convention or visual
affordance, players seem to adopt maximizing speed
and/or health as a goal.

We created MM in reaction to the problems in
RFW. Where RFW has at least two players, MM has
exactly two, the minimum number required to pro-
duce speech overlap. Where RFW has 20 or more
potentially confusable words and phrases that are
meaningful in every choice cycle, MM has exactly
two phonemically distinct task words, the maximum
necessary to provide each player with uniquely rec-
ognizable speech. Where RFW’s Edith might add her
voice to the acoustic confusion, MM’s mole takes its
turn through silent action. And where RFW has no
disincentive for noncharacter-directed conversation,
MM is fast-paced, with an obvious visual conse-
quence when task talk is supplanted by side talk. In
short, an autonomous RFW entails solving hard ver-
sions of hard problems, while an autonomous MM
entails solving the same problems in their easiest
forms — a degenerate point in the same part of the
design space for LBCI. 

Turn-Taking in Mole Madness
Like RFW, our understanding of Mole Madness has
grown through multiple data collections over time.
Between 2013 and 2015, the LBCI group had 182 chil-
dren play MM in pairs under a variety of conditions
(most of the children also played MM one on one
with a robot co-player, but our remarks here focus on
the child-child games). In the early pilot games (34
pairs), children used Wii controllers in conjunction
with go and jump to move the character. In the next
two data collections, 45 pairs of children used only
their voices, with the mole’s movement generated by
a wizard with a two-button controller who was lis-
tening out of view of both the children and the game
screen. The most recent 12 pairs of children interact-
ed with the mole directly in an autonomous version
of the game. Additional details can be found in
(Lehman and Al Moubayed 2015). 

Both the issues of overlapping speech and out-of-
task behavior should be greatly simplified by MM’s
design. The mole’s world is arranged to elicit specific
patterns of speech — if children play strategically,
then turn-taking should be almost completely pre-
dictable. There are flat stretches to evoke repeated,
isolated gos by one child, steep walls to produce
repeated, isolated jumps by the other, and crevasses
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Figure 3. Two Children Playing and a 
Screenshot from the Animated Side-Scroller Mole.



labeled values at 1 (ready to do some-
thing else), 3 (could take it or leave it),
5 (very much into the game) and 7
(can’t drag him/her away) and unla-
beled values at 2, 4, and 6 (Al
Moubayed and Lehman 2015). The
average mean across all players in the
training group was 3.64, 3.88, and 3.67
(coders 1, 2, and 3, respectively), while
the average mean across all players in
the test group was 4.68, 5.06, and 4.91.
In other words, players who interacted
with the wizarded character were
judged to feel less than halfway
between could take it or leave it and
very much into the game (on average),
while players who interacted with the
autonomous mole were judged to be
solidly enjoying the game play.

Engagement Isn’t Fun
Every interaction is a concrete design
problem, an attempt to find enough
constraint to make what the human
does align with what the technology
can handle. When natural behavior is
inconsistent with those assumptions,
it exposes the hard edges of the design.
Children who play Robo Fashion
World have discussions among them-
selves about which item to choose
next, shout their choices out at the
same time, and make up “king hat”
rather than saying “crown.” Children
who play Mole Madness, on the other
hand, tell each other what to do and
not to do before and after doing it, take
actions that make no strategic sense,
and invent new pronunciations of
common, everyday words. On the sur-
face, problem behaviors in the two
games appear distinct and specific to
their respective interactions, but in
reality they differ in degree rather than
kind. The most important thing about
MM is not that it can be implemented
as an autonomous system, but that it
demonstrates that certain challenges
are likely to arise whenever young chil-
dren are having fun. 

More often than not, young chil-
dren are accompanied by others — par-
ents, babysitters, siblings, and friends.
When a character interaction is in dan-
ger of breaking down because what is
expected is unclear to the child, some-
one who is older and more capable is
always a potential source of guidance

to get through and items to avoid that
require coordinated, overlapping, and
orchestrated sequences of the two
commands by both voices. Together
with the rapid pace, the everyday
vocabulary and simple semantics of
the keywords should make the game
accessible to even the youngest play-
ers, without the desire or need for side
conversation. 

Despite such anticipation and cue-
ing, almost none of the predictability
that should have followed from the
design decisions outlined above actu-
ally occurs during gameplay. Overlap-
ping speech is not limited to areas
where it is required to maneuver the
character because most children dis-
cover, to their great delight, that
sequences of overlapping gos and
jumps make the mole fly. As a result,
overlap can occur anywhere and does
so, almost 40 percent of the time. 

Even the keywords, themselves, defy
expectations. All players start the first
level with well-articulated, sensible
employment of their individual key-
words, but as confidence grows, lan-
guage behavior changes, and children
throughout the age range seek to
increase the expressivity of the task
vocabulary through elision, repetition,
and elongation. A clearly pronounced
instance of go or jump takes about 300
milliseconds and has a straightforward
cause-and-effect meaning. To get faster
movement than full word pronuncia-
tion allows, all children spontaneously
create fast speech forms (“g- g- g- guh
go,” “jumjumjumjumjump”), crowd-
ing multiple commands into the same
amount of time. Most children also
create slow speech forms through elon-
gation (“gooo!” “juuuuuuuuuump”)
when they want a single, bigger move-
ment, a movement right away, or
steady movement at the typical pace.
The existence of these different forms,
all unquestionably in-task from the
child’s point of view, adds not only to
the complexity of recognizing each
command per se, but also to the prob-
lem of handling speech overlap.

The presence of out-of-task speech is
the final complication. The pacing of
the game did have an effect — most
interplayer speech was both brief and
nonconversational (“oh nice start,” “ah
a crow,” “yay I got that”). It was also

different from side talk in RFW in that
the amount was significantly correlated
between players, that is, children tend-
ed to adopt more or less the same
degree of sociability during play. In
other respects, however, the phenome-
non was quite similar: the overall
amount was highly variable across
pairs, but almost every pair had some,
and about 25 percent of the utterances
contained at least one instance of go or
jump. Side talk with keywords was vir-
tually always about the game play
itself, encompassing both instructions
where misidentification of the ad -
dressee would be advantageous (“jump
he’s falling”) and admonitions where
misidentification would exacerbate the
problem (“no stop saying go”).

Solutions in the Small
Despite the reappearance of the very
phenomena we wanted to eliminate,
MM did prove to have easier, more
tractable versions of RFW’s problems.
As a result, we were able to build an
autonomous version of the game by
extending classic, example-based key-
word spotting to handle overlapping
speech and historical context. The
implemented system has been trained
on almost seven hours of hand-labeled
data from the children in the last wiz-
arded data collection. It contains sepa-
rate models for nonoverlapping go,
nonoverlapping jump, overlapping
keywords, speech in social utterances,
and background noise. It calculates
whether to send a go and/or jump
command to the mole every 150 mil-
liseconds, based on the pattern of pos-
terior probabilities for the full set of
models over the last 450 milliseconds
of game play (for details, see Sundar,
Leh man, and Singh [2015] and Leh -
man, Wolfe, and Pereira [2016a]). 

An evaluation with 12 pairs of previ-
ously unseen children showed that the
system was more responsive and accu-
rate than a human wizard for all of
overlapping, nonoverlapping, fast, reg-
ular, and slow speech (Lehman, Wolfe,
and Pereira 2016b). Most important,
children were judged to have enjoyed
the game. We asked three mothers of
young children to code the video of
each player in both the wizarded train-
ing set (31 pairs) and the autonomous
test set using a seven-point scale with
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for problem solving. Although getting
that guidance almost inevitably results
in metaconversation that includes task
vocabulary, being able to get it may be
the only way the child can successful-
ly reengage in the interaction. More
importantly, children don’t use others
just for information — they use them
to make an already fun experience
more fun. In RFW, children who were
shouting their choices over each other
were smiling and laughing as they did
so. In MM, the children who coders
judged to be having the most fun were
the children with the largest amount
of side talk and the ones who were the
most synchronous in their volume,
pitch, and use of alternate word forms
(Chaspari and Lehman 2015). 

The Fun Curve in figure 4 captures
this dilemma: the very behaviors that
signal we’ve achieved our entertain-
ment goal appear to be the most prob-
lematic for autonomy. In our part of
the design space, children’s actions
become unpredictable at both ends of
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Figure 4. The Fun Curve. 

Unpredictability, from the system’s point of view, occurs, by definition, when the child is not engaged in the interaction. It also occurs, at
least for systems we can build with current technologies, when the child is having too much fun. 
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the curve — when they are disengaged
from the task and when they are so
engaged that they, essentially, act like
children: creative, boisterous, and
unreservedly social. Adults can act this
way as well, but adults can also diag-
nose the effect of their behavior on the
quality of the interaction, modify their
behavior to bring it back in-task, and
find enjoyment despite the self-
restraint. Most language-based interac-
tion technologies and agent imple-
mentations have been the result of
anticipating the natural communica-
tion of adults; adult self-correction and
adaptation is a source of constraint that
they assume. When basic capabilities
are designed and combined into agents
for children, it is typically done in the
context of education or therapy, where
engagement is the focus, the efficacy of
fun may be debated, and the idea of
“crazy fun” is antithetical to the more
critical requirement of time-on task.

The solution to the dilemma is a sci-
ence of fun. Our characters should be

able to anticipate what form fun will
take and recognize when children are
having it. They should have weak
methods for easing its most extreme
expression back toward a state where
the main activity can resume. And,
eventually, they should have strategies
for actively joining in. If a great deal of
the art of interaction design lies in min-
imizing what is, from the character’s
point of view, out-of-task behavior,
then a character that supports fun as its
key in-task behavior will open up a new
part of the space of interaction design. 
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