
Alan Turing (Turing 1950) approached the abstract ques-
tion can machines think? by replacing it with another,
namely can a machine pass the imitation game (the Tur-

ing test). In the years since, this test has been criticized as
being a poor replacement for the original enquiry (for exam-
ple, Hayes and Ford [1995]), which raises the question: what
would a better replacement be? In this article, we argue that
standardized tests are an effective and practical assessment of
many aspects of machine intelligence, and should be part of
any comprehensive measure of AI progress.

While a crisp definition of machine intelligence remains
elusive, we can enumerate some general properties we might
expect of an intelligent machine. The list is potentially long
(for example,  Legg and Hutter [2007]), but should at least
include the ability to (1) answer a wide variety of questions,
(2) answer complex questions, (3) demonstrate common-
sense and world knowledge, and (4) acquire new knowledge
scalably. In addition, a suitable test should be clearly meas-
urable, graduated (have a variety of levels of difficulty), not
gameable, ambitious but realistic, and motivating.

There are many other requirements we might add (for
example, capabilities in robotics, vision, dialog), and thus
any comprehensive measure of AI is likely to require a battery
of different tests. However, standardized tests meet a surpris-
ing number of requirements, including the four listed, and
thus should be a key component of a future battery of tests.
As we will show, the tests require answering a wide variety of
questions, including those requiring commonsense and
world knowledge. In addition, they meet all the practical
requirements, a huge advantage for any component of a
future test of AI.
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But How Intelligent Is It? 
Standardized Tests as 
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Peter Clark, Oren Etzioni

� Given the well-known limitations of
the Turing test, there is a need for objec-
tive tests to both focus attention on, and
measure progress toward, the goals of
AI. In this paper we argue that machine
performance on standardized tests
should be a key component of any new
measure of AI, because attaining a high
level of performance requires solving sig-
nificant AI problems involving language
understanding and world modeling —
critical skills for any machine that lays
claim to intelligence. In addition, stan-
dardized tests have all the basic require-
ments of a practical test: they are acces-
sible, easily comprehensible, clearly
measurable, and offer a graduated pro-
gression from simple tasks to those
requiring deep understanding of the
world. Here we propose this task as a
challenge problem for the community,
summarize our state-of-the-art results
on math and science tests, and provide
supporting data sets (www.allenai.org).



Science and Math as Challenge Areas
Standardized tests have been proposed as challenge
problems for AI, for example, Bringsjord and Schi-
manski (2003), Bringsjord (2011), Beyer et al. (2005),
Fujita et al. (2014), as they appear to require signifi-
cant advances in AI technology while also being
accessible, measurable, understandable, and motivat-
ing. They also enable us easily to compare AI per-
formance with that of humans.

In our own work, we have chosen to focus on ele-
mentary and high school tests (for 6–18 year olds)
because the basic language-processing requirements
are surmountable, while the questions still present
formidable challenges for solving. Similarly, we are
focusing on science and math tests, and have recent-
ly achieved some baseline results on these tasks (Seo
et al. 2015, Koncel-Kedziorski et al. 2015, Khot et al.
2015, Li and Clark 2015, Clark et al. 2016). Other
groups have attempted higher level exams, such as
the Tokyo entrance exam (Strickland 2013), and
more specialized psychometric tests such as  SAT
word analogies (Turney 2006), GRE word antonyms
(Mohammad et al. 2013), and TOEFL synonyms
(Landauer and Dumais 1997).

We also stipulate that the exams are taken exactly
as written (no reformulation or rewording), so that
the task is clear, standard, and cannot be manipulat-
ed or gamed. Typical questions from the New York
Regents 4th grade (9–10 year olds) science exams,
SAT math questions, and more are shown in the next
section. We have also made a larger collection of
challenge questions drawn from these and other
exams, available on our web site.1

We propose to leverage standardized tests, rather
than synthetic tests such as the Winograd schema
(Levesque, Davis, and Morgenstern 2012) or MCTest
(Richardson, Burges, and Renshaw 2013), because
they provide a natural sample of problems and more
directly suggest real-world applications in the areas
of education and science. 

Exams and Intelligence
One pertinent question concerning the suitability of

exams is whether they are gameable, that is, answer-
able without requiring any real understanding of the
world. For example, questions might be answered
with a simple search-engine query or through simple
corpus statistics, without requiring any understand-
ing of the underlying material. Our experience is that
while some questions are answerable in this way,
many are not. There is a continuum from (computa-
tionally) easy to difficult questions, where more dif-
ficult questions require increasingly sophisticated
internal models of the world. This continuum is
highly desirable, as it means that there is a low barri-
er to entry, allowing researchers to make initial
inroads into the task, while significant AI challenges
need to be solved to do well in the exam. The diver-
sity of questions also ensures a variety of skills are
tested for, and guards against finding a simple short-
cut that may answer them all without requiring any
depth of understanding. (This contrasts with the
more homogeneous Winograd schema challenge
[Levesque, Davis, and Morgenstern 2012], where the
highly stylized question format risks producing spe-
cialized solution methods that have little generality).
We illustrate these properties throughout this article.

In addition, 45–65 percent of the regents science
exam questions (depending on the exam), and virtu-
ally all SAT geometry questions, contain diagrams that
are necessary for solving the problem. Similarly, the
answers to algebraic word problems are typically four
numbers (see, for example, table 1). In all these cases,
a Google search or simple corpus statistics will not
answer these questions with any degree of reliability.

A second important question, raised by Davis in
his critique of standardized tests for measuring AI
(Davis 2014), is whether the tests are measuring the
right thing. He notes that standardized tests are
authored for people, not machines, and thus will be
testing for skills that people find difficult to master,
skipping over things that are easy for people but chal-
lenging for machines. In particular, Davis conjectures
that “standardized tests do not test knowledge that is
obvious for people; none of this knowledge can be
assumed in AI systems.” However, our experience is
generally contrary to this conjecture: although ques-
tions do not typically test basic world knowledge
directly, basic commonsense knowledge is frequent-
ly required to answer them. We will illustrate this in
detail throughout this article.

The New York Regents 
Science Exams

One of the most interesting and appealing aspects of
elementary science exams is their graduated and
multifaceted nature: Different questions explore dif-
ferent types of knowledge and vary substantially in
difficulty (for a computer), from a simple lookup to
those requiring extensive understanding of the
world. This allows incremental progress while still
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demanding significant advances for the most difficult
questions. Information retrieval and bag-of-words
methods work well for a subset of questions but even-
tually reach a limit, leaving a collection of questions
requiring deeper understanding. We illustrate some
of this variety here, using (mainly) the multiple
choice part of the New York Regents 4th Grade Sci-
ence exams2 (New York State Education Department
2014). For a more detailed analysis, see Clark, Harri-
son, and Balasubramanian (2013). A similar analysis
can be made of exams at other grade levels and in
other subjects.

Basic Questions
Part of the New York Regents exam tests for relative-
ly straightforward knowledge, such as taxonomic
(“isa”) knowledge, definitional (terminological)
knowledge, and basic facts about the world. Example
questions include the following.

(1) Which object is the best conductor of electricity?
(A) a wax crayon (B) a plastic spoon (C) a rubber eras-
er (D) an iron nail

(2) The movement of soil by wind or water is called (A)
condensation (B) evaporation (C) erosion (D) friction

(3) Which part of a plant produces the seeds? (A)
flower (B) leaves (C) stem (D) roots

This style of question is amenable to solution by
information-retrieval methods and/or use of existing
ontologies or fact databases, coupled with linguistic
processing.

Simple Inference
Many questions are unlikely to have answers explic-
itly written down anywhere, from questions requir-
ing a relatively simple leap from what might be
already known to questions requiring complex mod-
eling and understanding. An example requiring (sim-
ple) inference follows:

(4) Which example describes an organism taking in
nutrients? (A) dog burying a bone (B) A girl eating an
apple (C) An insect crawling on a leaf (D) A boy plant-
ing tomatoes in the garden

Answering this question requires knowledge that eat-
ing involves taking in nutrients, and that an apple
contains nutrients. 

More Complex World Knowledge
Many questions appear to require both richer knowl-
edge of the world, and appropriate linguistic knowl-
edge to apply it to a question. As an example, con-
sider the following question:

(5) Fourth graders are planning a roller-skate race.
Which surface would be the best for this race? (A)
gravel (B) sand (C) blacktop (D) grass 

Strong cooccurrences between sand and surface,
grass and race, and gravel and graders (road-smooth-
ing machines), throw off information-retrieval-based
guesses. Rather, a more reliable answer requires
knowing that a roller-skate race involves roller skat-

ing, that roller skating is on a surface, that skating is
best on a smooth surface, and that blacktop is
smooth. Obtaining these fragments of world knowl-
edge and integrating them correctly is a substantial
challenge.

As a second example, consider the following ques-
tion:

(6) A student puts two identical plants in the same
type and amount of soil. She gives them the same
amount of water. She puts one of these plants near a
sunny window and the other in a dark room. This
experiment tests how the plants respond to (A) light
(B) air (C) water (D) soil

Again, information-retrieval methods and word cor-
relations do poorly. Rather, a reliable answer requires
recognizing a model of experimentation (perform
two tasks, differing in only one condition), knowing
that being near a sunny window will expose the
plant to light, and that a dark room has no light in it. 

As a third example, consider this question:
(7) A student riding a bicycle observes that it moves
faster on a smooth road than on a rough road. This
happens because the smooth road has (A) less gravity
(B) more gravity (C) less friction (D) more friction 

A reliable processing of this question requires envi-
sioning and comparing two different situations, over-
laying a simple qualitative model on the situations
described (smoother → less friction → faster). It also
requires basic knowledge that bicycles move, and
that riding propels a bicycle.

All the aforementioned examples require general
knowledge of the world, as well as simple science
knowledge. In addition, some questions more direct-
ly test basic commonsense knowledge, such as the
following:

(8) A student reaches one hand into a bag filled with
smooth objects. The student feels the objects but does
not look into the bag. Which property of the objects
can the student most likely identify? (A) shape (B) col-
or (C) ability to reflect light (D) ability to conduct elec-
tricity

This question requires, among other things, knowing
that touch detects shape, and that sight detects color. 

Some questions require selecting the best explana-
tion for a phenomenon, requiring a degree of metar-
easoning. For example, consider the following ques-
tion:

(9) Apple trees can live for many years, but bean
plants usually live for only a few months. This state-
ment suggests that (A) different plants have different
life spans (B) plants depend on other plants (C) plants
produce many offspring (D) seasonal changes help
plants grow

This requires not just determining whether the state-
ment in each answer option is true (here, several of
them are), but whether it explains the statement giv-
en in the body of the question. Again, this kind of
question would be challenging for a retrieval-based
solution.



As a final example, consider the following ques-
tion from the Texas Assessment of Knowledge and
Skills exam3 (Texas Education Agency 2014):

(10) Which of these mixtures would be easiest to
separate? (A) Fruit salad (B) Powdered lemonade (C)
Hot chocolate (D) Instant pudding

This question requires a complex interplay of basic
world knowledge and language to answer correctly.

Diagrams
A common feature of many elementary grade exams
is the use of diagrams in questions. We choose to
include these in the challenge because of their ubiq-

uity in tests, and because spatial interpretation and
reasoning is such a fundamental aspect of intelli-
gence. Diagrams introduce several new dimensions
to question-answering, including spatial interpreta-
tion and correlating spatial and textual knowledge.
Diagrammatic (nontextual) entities in elementary
exams include sketches, maps, graphs, tables, and
diagrammatic representations (for example, a food
chain). Reasoning requirements include sketch inter-
pretation, correlating textual and spatial elements,
and mapping diagrammatic representations (graphs,
bar charts, and so on) to a form supporting compu-
tation. Again, while there are many challenges, the
level of difficulty varies widely, allowing a graduated
plan of attack. Two examples are shown. The first,
question 11 (figure 1), requires sketch interpretation,
part identification, and label/part correlation. The
second, question 12 (figure 2), requires recognizing
and interpreting a spatial representation.

Mathematics and Geometry
We also include elementary mathematics in our chal-
lenge scope, as these questions intrinsically require
mapping to mathematical models, a key requirement
for many real-world tasks. These questions are partic-
ularly interesting as they combine elements of lan-
guage processing, (often) story interpretation, map-
ping to an internal representation (for example,
algebra), and symbolic computation. For example
(from ixl.com):

(13) Molly owns the Wafting Pie Company. This
morning, her employees used 816 eggs to bake pump-
kin pies. If her employees used a total of 1339 eggs
today, how many eggs did they use in the afternoon?

Such questions clearly cannot be answered by
information retrieval, and instead require symbolic
processing and alignment of textual and algebraic
elements (for example, Hosseini et al. 2014; Koncel-
Kedziorski et al. 2015; Seo et al. 2014, 2015) fol-
lowed by inference. Additional examples are shown
in table 1.

Note that, in addition to simple arithmetic capa-
bilities, some capacity for world modeling is often
needed. Consider, for example, the following two
questions:

(14) Sara’s high school won 5 basketball games this
year. They lost 3 games. How many games did they
play in all?

(15) John has 8 orange balloons, but lost 2 of them.
How many orange balloons does John have now?

Both questions use the word lost, but the first ques-
tion maps to an addition problem (5 + 3) while the
second maps to a subtraction problem (8 – 2). This
illustrates how modeling the entities, events, and
event sequences is required, in addition to basic alge-
braic skills.

Finally we also include geometry questions, as
these combine both arithmetic and diagrammatic
reasoning together in challenging ways. For example,
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Figure 1. Question 11.

(11) Which letter in the diagram points to the plant structure that takes in
water and nutrients?

A

B

C

D



question 16 (figure 3) requires multiple skills (text
processing, diagram interpretation, arithmetic, and
aligning evidence from both text and diagram
together). Although very challenging, there has been
significant progress in recent years on this kind of
problem (for example, Koncel-Kedziorski et al.
[2015]). Examples of problems that current systems
have been able to solve are shown in table 2.

Testing for Commonsense
Possessing and using commonsense knowledge is a
central property of intelligence (Davis and Marcus
2015). However, Davis (2015) and Weston et al.

(2015) have both argued that standardized tests do
not test “obvious” commonsense knowledge, and
hence are less suitable as a test of machine intelli-
gence. For instance, using their examples, the fol-
lowing questions are unlikely to occur in a standard-
ized test:

Can you make a watermelon fit into a bag by fold-
ing the watermelon?

If you look at the moon then shut your eyes, can
you still see the moon?

If John is in the playground and Bob is in the
office, then where is John? 

Can you make a salad out of a polyester shirt?

However, although such questions may not be
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Figure 2. Question 12.

(2) Which diagram correctly shows the life cycle of some insects?

Larva 

Egg Adult 

Pupa 

A

Egg 

Adult 

Pupa 

B

Larva 

Adult 

Pupa 

Larva 

Egg 

C

Table 1. Examples of Problems Solved 
By Alges with the Returned Equation.

(From Koncel-Kedziorski et al. [2015])

T bbll 1 E ll ff P bbll S ll dd

Problems and Equations 

John had 20 stickers. He bought 12 stickers from a store in the 
mall and got 20 stickers for his birthday. Then John gave 5 of the 
stickers to his sister and used 8 to decorate a greeting card. How 
many stickers does John have left? 
((20 + ((12 + 20) – 8)) – 5) = x 

Maggie bought 4 packs of red bouncy balls, 8 packs of yellow 
bouncy balls, and 4 packs of green bouncy balls. There were 10 
bouncy balls in each package. How many bouncy balls did Maggie 
buy in all? 
x = (((4 + 8) + 4) * 10) 

Sam had 79 dollars to spend on 9 books. After buying them he had 
16 dollars. How much did each book cost? 
79 = ((9 * x) + 16) 

Fred loves trading cards. He bought 2 packs of football cards for 
$2.73 each, a pack of Pokemon cards for $4.01, and a deck of 
baseball cards for $8.95. How much did Fred spend on cards? 
((2 * 2.73) + (4.01 + 8.95)) = x 

A

D

B

O

C

E

Figure 3. Question 16.

(16) In the diagram, AB intersects circle O at D, AC inter-
sects circle O at E, AE = 4, AC = 24, and AB = 16. Find AD.



directly posed in standardized tests, many questions
indirectly require at least some of this commonsense
knowledge in order to answer. For example, question
(6) (about plants) in the previous section requires
knowing (among other things) that if you put a plant
near X (a window), then the plant will be near X.
This is a flavor of blocks-world-style knowledge very
similar to that tested in many of Weston et al.’s
examples. Similarly question (8) (about objects in a

bag) requires knowing that touch detects shape, and
that not looking implies not being able to detect col-
or. It also requires knowing that a bag filled with
objects contains those objects; a smooth object is
smooth; and if you feel something, you touch it.
These commonsense requirements are similar in style
to many of Davis’s examples. In short, at least some
of the standardized test questions seem to require the
kind of obvious commonsense knowledge that Davis
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Table 2. Examples of Problems That Current Systems Have Solved.

Questions (left) and interpretations (right) leading to correct solution by GEOS. From Seo et al. (2015).

In the diagram at the
left, circle O has a
radius of 5, and CE = 2. 
Diameter AC is
perpendicular to
chord BD. What is 
the length of BD?        

B

CA

B

D

C

A

M

40˚
In isosceles triangle
ABC at the left, lines
AM and CM are the
angle bisectors of
angles BAC and BCA.
What is the measure
of angle AMC?       

In the figure at left, the
bisector of angle BAC is
perpendicular to BC at
point D. If AB = 6 and
BD = 3, what is the
measure of angle BAC?     

Equals(RadiusOf(O), 5) 
IsCircle(O)
Equals(LengthOf(CE), 2) 
IsDiameter(AC) 
IsChord(BD)
Perpendicular(AC), BD) 
Equals(what, Length(BD))  

 

IsIsoscelesTriangle(ABC) 
BisectsAngle(AM, BAC) 
IsLine(AM) 
CC(AM, CM) 
CC(BAC, BCA) 
IsAngle(BAC) 
IsAngle(AMC) 
Equals(what, MeasureOf(AMC))  

 
a) 110    b) 115  c) 120  d) 125  e) 130 

 

IsAngle(BAC)
BisectsAngle(line, BAC) 
Perpendicular(line, BC) 
Equals(LengthOf(AB), 6) 
Equals(LengthOf(BD), 3) 
IsAngle(BAC) 
Equals(what, MeasureOf(BAC))    

 
 

 
 

correct

correct

(a) 

(b) 

(c) 

Questions

a) 12     b) 10      c) 8      d) 6      e) 4 

Interpretations

C

B

A

E

O
5

5

2 D

a) 15     b) 30    c) 45    d) 60     e) 75 

correct



and Weston et al. call for in order to
derive an answer, even if the answers
themselves are less obvious. Converse-
ly, if one authors a set of synthetic
commonsense questions, there is a sig-
nificant risk of biasing the set toward
one’s own preconceived notions of
what commonsense means, ignoring
other important aspects. (This has
been a criticism sometimes made of
the Winograd schema challenge.) For
this reason we feel that the natural
diversity present in standardized tests,
as illustrated here, is highly beneficial,
along with their other advantages.

Other Aspects of 
Intelligence

Standardized tests clearly do not test
all aspects of intelligence, for example,
dialog, physical tasks, speech. Howev-
er, besides question-answering and rea-
soning there are some less obvious
aspects of intelligence they also push
on: explanation, learning and reading,
and dealing with novel problems.

Explanation
Tests (particularly at higher grade lev-
els) typically include questions that
not only ask for answers but also for
explanations of those answers. So, at
least to some degree, the ability to
explain an answer is required.

Learning and Reading
Reddy (1996) proposed the grand AI
challenge of reading a chapter of a
textbook and answering the questions
at the end of the chapter. While stan-
dardized tests do not directly test text-
book reading, they do include ques-
tion comprehension, including
sometimes long story questions. In
addition, acquiring the knowledge
necessary to pass a test will arguably
require breakthroughs in learning and
machine reading; attempts to encode
the requisite knowledge by hand have
to date been unsuccessful.

Dealing with Novel Problems
As our examples illustrate, test taking
is not a monolithic skill. Rather it
requires a battery of capabilities and
the ability to deploy them in poten-
tially novel and unanticipated ways. In
this sense, test taking requires, to some

level, a degree of versatility and the
ability to handle new and surprising
problems that we would expect of an
intelligent machine.

State of the Art 
on Standardized Tests

How well do current systems perform
on these tests? While any performance
figure will be exam specific, we can
provide some example data points
from our own research.

On nondiagram, multiple choice sci-
ence questions (NDMC), our Aristo
system currently scores on average 75
percent (4th grade), 63 percent (8th
grade), and 41 percent (12th grade) on
(previously unseen) New York Regents
science exams (NDMC questions only,
typically four-way multiple choice). As
can be seen, questions become consid-
erably more challenging at higher
grade levels. On a broader multistate
collection of 4th grade NDMC ques-
tions, Aristo scores 65 percent (unseen
questions). The data sets are available
at allenai.org/aristo.html. Note that
these are the easier questions (no dia-
grams, multiple choice); other ques-
tion types pose additional challenges
as we have described. No system to
date comes even close to passing a full
4th grade science exam.

On algebraic story problems such as
those in table 1, our AlgeS system
scores over 70 percent accuracy on sto-
ry problems that translate into single
equations (Koncel-Kedziorski et al.
2015). Kushman et al. (2014) report
results on story problems that translate
to simultaneous algebraic equations.
On geometry problems such as those
in table 2, our GeoS system achieves a
49 percent score on (previously
unseen) official SAT questions, and a
score of 61 percent on a data set of
(previously unseen) SAT-like practice
questions. The relevant questions,
data, and software are available on the
Allen Institute’s website.4

Summary
If a computer were able to pass stan-
dardized tests, would it be intelligent?
Not necessarily, but it would demon-
strate that the computer had several
critical skills we associate with intelli-
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gence, including the ability to answer
sophisticated questions, handle natural
language, and solve tasks requiring
extensive commonsense knowledge of
the world. In short, it would mark a sig-
nificant achievement in the quest
toward intelligent machines. Despite
the successes of data-driven AI systems,
it is imperative that we make progress
in these broader areas of knowledge,
modeling, reasoning, and language if
we are to make the next generation of
knowledgable AI systems a reality. Stan-
dardized tests can help to drive and
measure progress in this direction as
they present many of these challenges,
yet are also accessible, comprehensible,
incremental, and easily measurable, To
help with this, we are releasing data sets
related to this challenge. 

In addition, in October 2015 we
launched the Allen AI Science Chal-
lenge,5 a competition run on kaggle
.com to build systems to answer eighth-
grade science questions. The competi-
tion attracted over 700 participating
teams, and scores jumped from 32.5
percent initially to 58.8 percent by the
end of January 2016. Athough the win-
ner is not yet known at press time, this
successful impact demonstrates the
efficacy of standardized tests to focus
attention and research on these impor-
tant AI problems.

Of course, some may claim that
existing data-driven techniques are all
that is needed, given enough data and
computing power; if that were so, that
in itself would be a startling result.
Whatever your bias or philosophy, we
encourage you to prove your case, and
take these challenges!

AI2’s data sets are available on the
Allen Institute’s website.5

Notes
1. www.allenai.org.

2.  www.nysedregents.org/Grade4/Sci-
ence/home.html .

3. tea.texas.gov/student.assessment/taks/rel
eased-tests/.

4. www.allenai.org/euclid.html.

5.  www.allenai.org/2015-science-chal-
lenge.html.

6.  www.allenai.org/data.html.
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