Leveraging Multiple Artificial Intelligence Techniques to Improve the Responsiveness in Operations Planning: ASPEN for Orbital Express

  • Russell Knight Jet Propulsion Laboratory, California Institute of Technology
  • Caroline Chouinard Red Canyon Software
  • Grailing Jones Jet Propulsion Laboratory, California Institute of Technology
  • Daniel Tran Jet Propulsion Laboratory, California Institute of Technology

Abstract

The challenging timeline for DARPA’s Orbital Express mission demanded a flexible, responsive, and (above all) safe approach to mission planning. Mission planning for space is challenging because of the mixture of goals and constraints. Every space mission tries to squeeze all of the capacity possible out of the spacecraft. For Orbital Express, this means performing as many experiments as possible, while still keeping the spacecraft safe. Keeping the spacecraft safe can be very challenging because we need to maintain the correct thermal environment (or batteries might freeze), we need to avoid pointing cameras and sensitive sensors at the sun, we need to keep the spacecraft batteries charged, and we need to keep the two spacecraft from colliding... made more difficult as only one of the spacecraft had thrusters. Because the mission was a technology demonstration, pertinent planning information was learned during actual mission execution. For example, we didn’t know for certain how long it would take to transfer propellant from one spacecraft to the other, although this was a primary mission goal. The only way to find out was to perform the task and monitor how long it actually took. This information led to amendments to procedures, which led to changes in the mission plan. In general, we used the ASPEN planner scheduler to generate and validate the mission plans. ASPEN is a planning system that allows us to enter all of the spacecraft constraints, the resources, the communications windows, and our objectives. ASPEN then could automatically plan our day. We enhanced ASPEN to enable it to reason about uncertainty. We also developed a model generator that would read the text of a procedure and translate it into an ASPEN model. Note that a model is the input to ASPEN that describes constraints, resources, and activities. These technologies had a significant impact on the success of the Orbital Express mission. Finally, we formulated a technique for converting procedural information to declarative information by transforming procedures into models of hierarchical task networks (HTNs). The impact of this effort on the mission was a significant reduction in (1) the execution time of the mission, (2) the daily staff required to produce plans, and (3) planning errors. Not a single miss-configured command was sent during operations.
Published
2014-12-22
Section
Articles