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The extension of the focus of research on robotics from
vision-based physical interaction with the environment
towards more social multimodal, including speech-based,

interactions with humans brings fundamentally new challenges
to dialogue modeling. Instead of designing interactions for
information-oriented query systems—which have also been
extended to virtual agents—it has now become necessary to take
physical situatedness into account. This means that questions of
reactability to dynamic environments, possibly involving mul-
tiple modalities, and of potentially open-ended, unstructured
interactions, involving multiple tasks at a time, play an impor-
tant role and have to be considered in the dialogue model. Also,
the idea of the robot as a partner requires a mixed-initiative
interaction style that enables both interaction partners to
exchange information on their own initiative, to suggest new
tasks, and ultimately the capability to learn from each other. 

In light of these challenges, we have suggested an approach
to dialogue modeling on robots that—while keeping task and
dialogue structure well separated—tightly integrates dialogue
and domain level and includes concepts that support rapid pro-
totyping of interaction scenarios, which in our research has
proven a valuable factor to boost dialogue development
through gathering widespread experience and sampling data
(Peltason and Wrede 2010a, 2010b). 

In this article, we focus on the special demands that robot
applications impose on the developer and compare our
approach, called PaMini (for pattern-based mixed-initiative
human-robot interaction), with existing, well-established dia-
logue modeling approaches to identify problematic issues and
potential remedies from different approaches (being well aware
that most of them originally had not been intended for robot-
ics). 

The aim of this comparison is twofold. On the one hand, it is
meant to give an overview of state-of-the-art dialogue-modeling

Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

The Curious Robot as a Case Study 
for Comparing Dialogue Systems 

Julia Peltason, Britta Wrede

Modeling interaction with robots raises new
and different challenges for dialogue modeling
than traditional dialogue modeling with less-
embodied machines. We present four case stud-
ies of implementing a typical human-robot
interaction (HRI) scenario with different state-
of-the-art dialogue frameworks in order to iden-
tify challenges and pitfalls specific to HRI and
potential solutions. The results are discussed
with a special focus on the interplay between
dialogue and task modeling on robots. 



techniques and to illustrate the differences
between these. On the other hand, we attempt to
illustrate the differences between robotics and tra-
ditional domains for speech applications and to
point out potential pitfalls in robotics. 

The Target Scenario: 
A Curious Robot 

As target scenario for our case studies, we chose a
simplified version of the Curious Robot, an object
learning and manipulation scenario that we have
presented recently (Lütkebohle et al. 2009). This is
a typical robotic application as it includes prob-
lems of perception and learning as well as action-
oriented communication. Figure 1 shows the cur-
rent setup. 

As previous studies have shown, it is beneficial
to allow for mixed initiative by letting the robot
ask for unknown objects and by allowing the user
to initiate a teaching or a query episode at any
time. Thus, whenever the robot detects an
unknown object, it asks for its label (for the case
studies we have neglected the problem of reference
through nonverbal gestures). Once the label is giv-
en by the user, the robot asks how to grasp the
object, which the human is expected to answer by
naming the grip type. Having acquired both label
and grip, it autonomously grasps the object, while
reporting the beginning and completion or the
failure of the action. Grasping may also be rejected
by the back end right away, or the user may cancel
the ongoing grasping action. Additionally, the user
can at any time ask the robot to enumerate the
objects learned so far or how to grasp a specific
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Figure 1. The Curious Robot Scenario on the Robot Platform Flobi. 
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object. Finally, the user ends the interaction by say-
ing goodbye. 

Although the target scenario is kept extremely
simple, it presents a number of typical challenges
that dialogue systems in robotics have to face. First
of all, the robot must react dynamically to its envi-
ronment. Timing and order of the robot’s ques-
tions cannot be fixed beforehand since they
depend on the robot’s perception of the world. We
therefore assume for our case studies that the
action to select the next object comes from a back-
end component, in form of an interaction goal,
which may be either label, grip, or grasp. Second,
the user’s test questions require the dialogue sys-
tem to cope with focus shifts and, as they may be
asked during the robot’s grasping action, even with
multitasking abilities. Finally, going on with the
interaction during grasping while still enabling
feedback about the ongoing action and the possi-
bility to cancel it requires some kind of asynchro-
nous coordination between dialogue system and
back end. 

As the focus of the case studies lays on dialogue
modeling, the goal was not to achieve a fully
fledged implementation running on a robotic plat-
form. Therefore, speech recognition and speech
synthesis were replaced by text input and output,
and all perception and motor activities have been
simulated. Also, we ignored subtle yet important
aspects of the interaction such as nonverbal cues,
social behavior, or the engagement process that
typically precedes the interaction. 

Case Study 1
Implementing the Curious 

Robot with Ravenclaw 
The first case study investigates the Ravenclaw dia-
logue manager, which is being developed at
Carnegie Mellon University (Bohus and Rudnicky
2009). A large number of speech applications have
been implemented with it, spanning from a bus
information system, to calendar applications, to a
support application for aircraft maintenance. Well-
maintained documentation, including step-by-
step tutorials, is provided. 

At the core of Ravenclaw is the dialogue task spec-
ification, which encapsulates the domain-specific
aspects of the control logic and forms a hierarchi-
cal plan for the interaction and is executed by the
domain-independent dialogue engine at run time.
It consists of a tree of dialogue agents, each han-
dling a subtask of the interaction, such as greeting
the user or presenting the result of a database
lookup. There are two types of dialogue agents: dia-
logue agencies that represent tasks that are further
decomposed and fundamental dialogue agents that
are terminal nodes in the tree, implementing

atomic actions. The fundamental dialogue agents
further fall into four categories. An Inform agent
produces an output, a Request agent requests infor-
mation from the user, an Expect agent expects
information from the user without explicitly
requesting it, and an Execute agent performs back-
end calls, such as database access. During interac-
tion, the dialogue engine traverses the tree in a
depth-first manner unless otherwise specified by
pre-and postconditions or by error handling and
repair activities. Agents from the task tree are put
on top of a dialogue stack in order to be executed
and are eliminated when completed. 

Figure 2 shows a possible dialogue task specifica-
tion for our test scenario. (As Ravenclaw does not
support visualization, the tree was created by
hand.) Its main part is the PerformTask agency,
which is divided into two agencies handling
human and robot initiative, respectively. The Sys-
temInitiative agency is reset after completion and
executed repeatedly unless the user initiative
agency is triggered or the user ends the interaction.
It consists of an Execute agent fetching the current
interaction goal from the back end, and the agen-
cies ObtainLabel, ObtainGrip, and Grasp. ObtainLa-
bel and ObtainGrip request label and grip, respec-
tively, and communicate it to the back end where
it gets stored. Grasp first announces grasping, then
executes it, and finally reports success, rejection, or
failure. The three agencies are not executed in suc-
cession, but alternatively, depending on conditions
such as the current interaction goal (not shown in
the figure). The UserInitiative agency can be activat-
ed by the user’s test questions at any time. This is
achieved by adding a trigger directive to its sub-
agents, making ListObjects and GripQuery, respec-
tively, the currently focused agent, that is,  the top-
most agent on the stack. Table 1 illustrates a typical
dialogue example. It includes two focus shifts for
the user’s test questions (U3 and U4). Since the back
end blocks during grasping (R8), an ongoing grasp-
ing action cannot be canceled. The failure of grasp-
ing is reported back from the back end (R9). 

Technically, the dialogue agents are defined as
C++ macros that communicate with the back end
by exchanging user-defined frame data structures
through a centralized message-passing architec-
ture. Figure 3 illustrates the portion of the dialogue
task specification that defines the Grasp agency
and its subagents Announce, Execute, InformCom-
pleted, InformRejected, and InformFailed. Grasp is
only executed if the interaction goal has the value
label (line 2), and it succeeds if the grasp action has
either been rejected, completed, or has failed (lines
12–14). Announce prompts the speech output spec-
ified for this situation (line 17). Execute then calls
the associated back-end function (lines 21–23) and
stores its result (line 24). Depending on whether
the result is rejected, completed, or failed (lines 28,
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33, 38), the appropriate output is generated (lines
29, 34, 39). 

Most requirements of our target scenario
could be realized with Ravenclaw. When it comes
to a real-world robotic scenario, a shortcoming
might however be that the dialogue task tree large-
ly predefines the interaction flow. As suggested in
our target scenario, a robot needs to react not only
to the user’s utterance, but also to many kinds of
events that occur in its environment. With Raven-
claw, this can be achieved by controlling the navi-
gation through the task tree with pre- and post-
conditions. However, for highly unstructured
scenarios with many possible paths through the
task tree, the dialogue structure may thus become
unclear, up to unstructured spaghetti code at the
worst. Already our toy scenario contains a number
of “jumps” in the control flow in order to react to
the current interaction goal, the user’s focus shifts
and the back-end results. 

Further, we encountered difficulties regarding
the asynchronous coordination of back-end calls.
While Ravenclaw does support asynchronous
back-end calls, it does not provide mechanisms
that support a further communication between
dialogue and back end about a running back-end
action. In the target scenario, grasping was there-
fore implemented using a blocking back-end call,
which enables the robot to report success or failure
when it is done. With the blocking back-end call,
however, the interaction cannot be maintained

during action execution, and also the possibility to
cancel the action could not be realized. 

Another issue is reusability. Even for our basic
test scenario, the dialogue task specification shown
in figure 2 contains several agencies that have a
similar structure, such as ObtainLabel and Obtain-
Grip, or ListObjects and GripQuery, and one can eas-
ily think of another agency with the same struc-
ture as the Grasp agency, such as a following or
navigation task. With the Inform, Expect, and Exe-
cute agents as the only unit of premodeled conver-
sational capabilities, Ravenclaw does not account
for such recurring structures, which are not specific
to robotics but will occur in any domain. 

A new version of the Olympus dialogue archi-
tecture (in which Ravenclaw is embedded) was
described briefly by Raux and Eskenazi (2007). This
new version (which is not the one we have used)
features a multilayer architecture for event-driven
dialogue management. It was originally designed
to address the issue of reacting to conversational
events in real time so as to enable flexible turn tak-
ing and to react on barge-ins. With the proposed
architecture, also nonconversational events (such
as perceptual events) can be handled. It therefore
seems probable that some of these difficulties
could be resolved with it. In particular, with an
event-based architecture, the dialogue manager
could react directly to a change of the current
interaction goal. Also, it could react to update
events of a robot action (such as grasping begins),

Utterance Comment 

U1 Hello. 

R1 Hi, hello. 

R2 What is that? Back-end returns interaction goal label  

U2 This is an apple. 

R3 How should I grasp the apple? Back-end returns interaction goal grip  

U3 What objects do you know already? Focus shift: ListObject focused agent 

R4 I know ‘apple’. 

R5 How should I grasp the apple? ObtainGrip focused agent again 

U4 How do you grasp a banana? q Focus shift: GripQuery focused agent  

R6 Sorry, I don’t know. 

R7 How should I grasp the apple? ObtainGrip focused agent again 

U5 With the power grasp.  

R8 I am going to grasp the apple now. Back-end returns interaction goal grasp 

  Back-end blocks during grasping 

R9 Sorry, I failed to grasp the apple. 

U6  Goodbye. 

R10 Goodbye.  

Table 1. An Example Dialogue for the Curious Robot implementation with Ravenclaw.

The table includes two focus shifts for the user’s test questions (U3 and U4). Since the back end blocks during grasping
(R8), an ongoing grasping action cannot be canceled. The failure of grasping is reported back from the back end (R9).
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while keeping the interaction going. However, it
lacks an overarching structure for temporally
extended actions (such as the tasks in the PaMini
framework described in case study 4), and it lacks
a generic mechanism for handling such events
(such as the task state protocol in PaMini). This
means that the event processing, that is,  keeping
track of the dialogue moves associated with events,
is still left to the developers. 

Apart from these difficulties, Ravenclaw has
proven to support many aspects of the target sce-
nario very efficiently. For one, speech understand-
ing integrates naturally into dialogue modeling
and output generation. The concepts of the seman-
tic speech-understanding grammar designed by
the scenario developer are available within the dia-
logue specification and within the output-genera-
tion component. Dialogue variables need not be
specified explicitly. 

Further, Ravenclaw uses a generic grounding
model that provides several strategies for concept
grounding, such as implicit and explicit confirma-
tion strategies, and nonunderstanding recovery
strategies, such as repeating the original prompt or
asking the user to repeat or rephrase (Bohus and
Rudnicky 2005). The grounding policies are speci-
fied in a configuration file, which is the reason the
dialogue task specification in figure 2 does not con-
tain agents for confirming and correcting label and
grip. 

Finally, the fact that Ravenclaw does not provide
premodeled conversational structures can also be
viewed as a benefit: the scenario developer does
not have to stick to the structures provided but has
full control over the dialogue flow. 

Case Study 2
Implementing the Curious 
Robot with Collagen/Disco 

The second approach we looked at is the collabo-
ration manager Collagen (for collaborative agent)
(Rich and Sidner 1998). Even though it is rather a
plug-in for intelligent user interfaces than a dia-
logue system in the narrower sense, we included it
in our case studies because it investigates some
aspects that are very relevant for robotics, such as
agents communicating about a task and coordi-
nating their actions in order to work toward a
shared goal, while accounting for physical actions
as well. Unlike a real dialogue system, Collagen
takes rather an observational role, relying on the
collaborative interface paradigm. In this paradigm, a
software agent assists the user in operating an
application program, both communicating with
each other as well as with the application. They are
informed about each others’ actions either by a
reporting communication (“I have done x”) or by
direct observation. The Collagen framework can be
seen as the mediator of the communication
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Figure 2. The Ravenclaw Task Specification for the Curious Robot Scenario. 
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between the agent and the user. 
Various desktop applications have been devel-

oped based on Collagen, including assistants for
air travel planning and email and a programmable
thermostat. Our case study was, however, not con-
ducted with the Collagen framework itself, but
with its open-source successor Disco. 

Collagen has a task model that defines for the
specific application domain the typical domain
goals and procedures for achieving them. The task
model is a collection of goal decomposition rules,
called recipes. Collagen tracks the user’s progress
with respect to the task model and automatically

generates system utterances and choices for user
utterances, based on the current discourse state.
One component of the discourse state is the focus
stack, representing its attentional aspects. The
focus stack contains hierarchical discourse seg-
ments, each contributing to a specific shared plan.
A shared plan corresponds to the intentional
aspects of the discourse and is represented as a
(possibly still incomplete) plan tree, specifying the
actions to be performed, and by whom. 

Figure 4 shows a collection of recipes that speci-
fy our target scenario. The upper part of the figure
shows the top-level goals Greeting, ObjectQuery
(that is, the user asks to enumerate the objects
learned), GripQuery (that is, the user queries the
appropriate grip for a specific object) and Goodbye,
each of which can be achieved by a robot’s action.
For instance, the goal Greeting can be achieved by
the robot’s SayHello action. It may seem somewhat
surprising that the mutual greeting can be
achieved by the robot’s SayHello action alone, but
the user’s greeting was already carried out with the
user selecting the top-level goal Greeting (utter-
ances U1, R1 in table 1). The top-level goal Robo-
tInitiative, shown in the lower part of figure 4, cov-
ers the goals and actions concerning the robot’s
initiative. It is divided into the subgoals ObtainLa-
bel, ObtainGrip, and Grasp, each with an applica-
bility condition over the current interaction goal.
The subgoal ObtainLabel can be achieved with the
user executing TellLabel and the robot executing
SaveLabel; likewise with ObtainGrip. Again, it might
seem surprising that the ObtainLabel subgoal does
not imply a robot action such as AskLabel, but,
similarly as with the greeting, the robot’s label
query is expressed as a suggestion to the user to
execute TellLabel (table 1, utterances R2 and U3). 

Figure 5 shows how the recipe for RobotInitiative
is coded in the XML task specification language. It
is decomposed into its three subtasks (lines 3, 12,
and 21), which again are decomposed further
(lines 5–6, 14–15, and 23). Lines 4, 13, and 22
encode the applicability conditions for the respec-
tive subtask. The value of the built-in variable exter-
nal indicates whether it is the user or the system
who is supposed to execute the subtask. For exam-
ple, TellLabel is assigned to the user (line 7), while
SaveLabel is assigned to the system (line 8). Further,
variables can be passed from one subtask to anoth-
er, for instance the label (line 9) or the grip name
(line 18). A task model description may also con-
tain JavaScript fragments that connect the model
with the underlying application or device, as
required for polling the current interaction goal
(lines 4, 13, 22). 

The dialogue example shown in table 2 illus-
trates in detail how the dialogue evolves from
these recipes: the user selects the top-level goals,
and the robot either performs its part of the task, if

1  DEFINE_AGENCY( CGrasp ,
2    PRECONDITION ((int)C("result.interactiongoal") == 2
3  )
4  DEFINE_SUBAGENTS(
5    SUBAGENT(Announce, CAnnounce , "")
6    SUBAGENT(Execute , CExecute , "")
7    SUBAGENT(InformCompleted , CInformCompleted , "")
8    SUBAGENT(InformRejected , CInformRejected , "")
9    SUBAGENT(InformFailed , CInformFailed , "")
10  )
11  SUCCEEDS_WHEN(
12   ( SUCCEEDED(InformCompleted) ||
13    SUCCEEDED(InformRejected) ||
14    SUCCEEDED(InformFailed )))
15
16  DEFINE_INFORM_AGENT( CAnnounce ,
17    PROMPT( "inform grasping <result")
18  )
19  DEFINE_EXECUTE_AGENT( CExecute ,
20    EXECUTE(
21     C("query_type") = NQ_GRASP;
22     pTrafficManager -> Call(this ,
23      "backend.query <query_type >new_result");
24     C("result") = C("new_result");)
25  )
26  DEFINE_INFORM_AGENT( CInformCompleted ,
27    PRECONDITION(
28     (int)C("result.taskstate") == RC_COMPLETED)
29    PROMPT( "inform grasping_completed <result")
30  )
31  DEFINE_INFORM_AGENT( CInformRejected ,
32    PRECONDITION(
33     (int)C("result.taskstate") == RC_REJECTED)
34    PROMPT( "inform grasping_rejected <result")
35  )
36  DEFINE_INFORM_AGENT( CInformFailed ,
37    PRECONDITION(
38     (int)C("result.taskstate") == RC_FAILED)
39    PROMPT( "inform grasping_failed <result")
40  )

Figure 3. Ravenclaw’s Dialogue Task Specification 
for the Grasp Agency and Its Subagents.
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possible, or suggests an appropriate action to the
user. 

A fundamental difference to the implementa-
tion with Ravenclaw is that rather than the dia-
logue flow itself, only the task needs to be speci-
fied. Based on the current discourse state and the
recipes, the dialogue is generated automatically
out of a generic rule framework (Rich et al. 2002).
Rules specify the system’s next action for a partic-
ular situation. For instance, the Execute rule speci-
fies that a primitive task that is assigned to the
agent should be executed directly, whereas the
AskWho rule says that for a task whose executor is
not determined, the system should return an utter-
ance of the form “Who should perform goal?” Col-
lagen provides a collection of default rules, and fur-
ther rules can be plugged in to implement a
different collaboration style. 

The generated output can be customized as to
how tasks can be referred to and how their execu-
tion is confirmed. Table 2 contrasts the customized
version of the output with the automatically gen-
erated version, such as “Hello” versus “Let’s
achieve Greeting” in utterance U1. Additionally, the
rules generate not only the system’s next action
but present also the agenda for the user, that is,
choices for the user to say, or rather to type. For
example, choices generated after the robot’s label
query include rejecting the proposed action (“I’m
not going to answer your question”), abandoning
the top-level goal (“Let’s not explore the objects on
the table”), and focus shifts (“What objects do you
know already?” “How do you grasp a banana?”). 

Although our target scenario is not at all the

Greeting

SayHello
who: robot

TellLabel
who: user

SaveLabel
who: robot

TellGrip
who: user

SaveGrip
who: robot

ExecuteGrasping
who: robot

ObjectQuery

ObtainLabel ObtainGrip Grasp

ListObjects
who: robot

RobotInitiative

Interaction goal == “label” Interaction goal == “grasp”
Interaction goal == “grip”

GripQuery

LookupGrip
who: robot

Goodbye

SayGoodbye
who: robot

Figure 4. Collagen’s Recipes for the Curious Robot Scenario. 

1  <task id="RobotInitiative">

2

3  <subtasks id="ObtainLabel">

4    <applicable> interactionGoal() == "label" </applicable >

5    <step name="TellLabel" task="TellLabel"/>

6    <step name="SaveLabel" task="SaveLabel"/>

7    <binding slot="$TellLabel.external" value="true"/>

8    <binding slot="$SaveLabel.external" value="false"/>

9    <binding slot="$SaveLabel.label" value="$TellLabel.label"/>

10   </subtasks>

11

12   <subtasks id="ObtainGrip">

13    <applicable> interactionGoal() == "grip" </applicable >

14    <step name="TellGrip" task="TellGrip"/>

15    <step name="SaveGrip" task="SaveGrip"/>

16    <binding slot="$TellGrip.external" value="true"/>

17    <binding slot="$SaveGrip.external" value="false"/>

18    <binding slot="$SaveGrip.grip" value="$askGrip.grip"/>

19   </subtasks>

20

21   <subtasks id="Grasp">

22    <applicable> interactionGoal() == "grasp" </applicable >

23    <step name="ExecGrasping" task="ExecGrasping"/>

24    <binding slot="$ExecGrasping.external" value="false"/>

25    <binding slot="$success" value="$ExecGrasping.success"/>

26    </subtasks>

27

28  </task >

Figure 5. Collagen’s Recipes for the Robot Initiative Goal. 
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type of scenario Collagen was intended for origi-
nally, many requirements of the target scenario
could be realized with it. Its model of collaborative
discourse, wherein two interaction partners collab-
orate on a task by proposing and performing
actions, supports very well the focus shifts that
were stipulated in the specification. In contrast,
the robot’s task initiative that generates its query
for label and grip could not be implemented using
the default agent that comes with the framework
since it does not suggest top-level goals on its own.
It should however be easily possible to adapt the
default implementation such that it is able to pro-
pose ObtainLabel, ObtainGrip, and Grasp
autonomously. For the case study, we worked
around this problem by introducing the top-level
goal RobotInitiative, which the user is to select
explicitly (“Let’s explore the objects on the table.”),
whereupon the robot chooses between ObtainLa-
bel, ObtainGrip, and Grasp, depending on the cur-
rent interaction goal. 

Another problem we encountered affects the
communication of back-end results, such as the
success of grasping or the robot’s enumeration of
the objects learned. Collagen does not support
variable system utterances, for example, by tem-
plate-based output generation. This is the reason
why the robot simply answers OK when the user
asks to enumerate the known objects (see R5 in
table 2), or why the robot does not communicate
that grasping has failed (see R8 in table 2). Admit-

tedly, Collagen does not claim to be a complete
natural language processing system, and within
the collaborative interface-agent paradigm it
would probably be the underlying application that
is responsible for representing the application-spe-
cific results to the user. 

The automatic generation of system utterances is
a very powerful technique. However, while the
wording of the generated utterances can be config-
ured, the developer cannot control when utterances
are generated. This is the reason the beginning of
grasping cannot be announced (see R8 in table 2).
Also, generating utterances automatically leads to
asymmetry in the task model: while some of the
user utterances are explicitly represented as sub-
tasks (for example, TellLabel and TellGrip), the sys-
tem utterances are not present in the task model. 

The most serious shortcoming pertains to error
handling. The task model provides a built-in suc-
cess variable, indicating the success of a subtask. It
is used to control replanning. However, a binary
value might not always provide sufficient infor-
mation. Some applications might want to discrim-
inate between a failure and a rejection of the sub-
task, or between different error causes. For
instance, if a plan fails because the underlying
application is otherwise busy, it might be reason-
able to reexecute the plan later, whereas retrying
might be pointless if the requested functionality is
unavailable in general. 

Finally, just as the Ravenclaw framework, Colla-

Configured Utterance Generated Utterance Comment 

U1 Hello. Let’s achieve Greeting.  User selects goal Greeting 

R1 Hello. Ok.  Robot executes SayHello 

U2 Let’s explore the objects on the table. Let’s achieve RobotInitiative.  User selects goal RobotInitiative 
Back-end returns interaction goal label 

R2 What is that?  Please execute TellLabel. Robot asks user to perform TellLabel 

U3 An apple. An apple.  User asserts that TellLabel done 

R3 Ok. Ok. Robot executes SaveLabel 

U4 Let’s explore the objects on the table. Let’s achieve RobotInitiative. User selects goal RobotInitiative 
Back-end returns interaction goal grip 

R4 How should I grasp it?  Please execute TellGrip Robot asks user to perform TellGrip 

U5 What objects do you know already? What objects do you know already? Focus shift: User selects goal ObjectQuery 

R5 Ok. Ok. Robot executes ListObjects 

R6 How should I grasp it?  Please execute TellGrip.  Back to TellGrip 

U6 With the power grasp. With the power grasp. User asserts that TellGrip done 

R7 Ok. Ok.  Robot executes SaveGrip 

U7 Let’s explore the objects on the table. Let’s achieve RobotInitiative. User selects goal RobotInitiative 
Back-end returns interaction goal grasp 
Robot executes Grasp 

R8 Ok. Ok. Grasp failed 

U8 Goodbye. Let’s achieve Goodbye.  User selects goal Goodbye 

R9 Goodbye. Ok. Robot executes SayGoodbye 

Table 2. Example Dialogue for the Curious Robot Implementation with Collagen/Disco.
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gen does not provide mechanisms for asynchro-
nous coordination of task execution. Thus, neither
the continuation of the interaction during grasp-
ing could be realized, nor could the grasping action
be canceled. 

Case Study 3
Implementing the Curious 

Robot with Dipper 
In the third case study, we explored the informa-
tion state (IS) approach to dialogue modeling
(Traum and Larsson 2003) whose key idea is that
the dialogue is driven by the relevant aspects of
information (the information state) and how they
are updated by applying update rules, following a
certain update strategy. The term information state is
intentionally kept very abstract. One may choose
to model the external aspects of the dialogue, such
as variables to assign, or rather the internal state of
the agents, such as goals, intentions, beliefs, and
obligations, in order to realize a plan-based dia-
logue management. The Prolog-based TrindiKit is
known as the original implementation of the IS
approach (Traum and Larsson 2003). Others fol-
lowed, based on different programming languages.
For our case study, we chose the stripped-down
reimplementation Dipper (Bos et al. 2003). 

Dipper is set on top of the Open Agent Architec-
ture (OAA), a C++ framework for integrating dif-
ferent software agents in a distributed system (Mar-
tin, Cheyer, and Moran 1999). OAA agents provide
services that other agents may request by submit-
ting a high-level Interagent Communication Lan-
guage (ICL) expression (a solvable, which can be
viewed as a service request) to the facilitator agent
that knows about all agents and mediates the inter-
action between them. In addition to the facilitator
and the Dipper agent, the implementation of the
target scenario includes a SpeechRecognitionAgent
and a TTSAgent for (simulated) speech input and
output, a MotorServer agent that simulates grasping,
an ObjectDatabase that stores object labels and the
associated grip, and an ActionSelection agent that
selects the current interaction goal. 

The upper part of figure 6 (lines 1 –7) shows the
information state for the Curious Robot scenario,
which is designed such that it models the most
obvious information, namely the current interac-
tion goal (line 5), the current user utterance and its
interpretation (lines 2–3), and incoming events
from the back-end task (line 4). Further, it contains
control flags that determine whether the system is
ready to receive speech input (line 6) or task events
(line 7). 

The lower part of figure 6 (lines 9–33) shows the
update rules that are necessary to realize the
robot’s label query. Update rules are written in the
Prologlike Dipper update language, specified by

the triple (name, conditions, effects), with name a
rule identifier, conditions a set of tests on the cur-
rent information state, and effects an ordered set of
operations on the information state. The first rule,
getInteractionGoal, deals with the situation when
no interaction goal is set (line 10). In that case, an
OAA solvable is sent that polls the interaction goal
(line 11) and updates the information state with
the result (line 12). The second rule, waitForUtter-
ance, is applicable if the listening flag is set (line 15).
It posts a solvable for the SpeechRecognitionAgent
(line 16), integrates the result into the information
state (lines 17–18), and resets the flag (line 19). The
processLabel rule applies if the user has given an
object label (lines 22–23). It posts solvables for
acknowledging and storing the label (lines 24–25)

1  infostate(record ([is:record ([

2   utterance:atomic ,

3   interpretation:atomic ,

4   task_event:atomic ,

5   interaction_goal:atomic ,

6   listening:atomic ,

7   awaiting_event:atomic ])])).

8

9 urule(getInteractionGoal ,

10   [eq(is:interaction_goal ,’’)],

11   [solve(getInteractionGoal(X),

12    [assign(is:interaction_goal ,X)]) ,]).

13

14  urule(waitForUtterance ,

15   [eq(is:listening ,yes)],

16   [solve(recognize(X, Y),

17    [assign(is:utterance , X),

18     assign(is:interpretation , Y),

19     assign(is:listening, no )])]).

20

21  urule(processLabel ,

22   [eq(is:interpretation ,label),

23    eq(is:interaction_goal, label)],

24   [solve(store(is:utterance)),

25    solve(say(is:utterance Okay)),

26    assign(is:interaction_goal, ’’),

27    assign(is:utterance, ’’),

28    assign(is:interpretation, ’’)]).

29

30  urule(LabelQuery ,

31   [eq(is:interaction_goal ,label)],

32   [solve(say(’What is that ’),

33    [assign(is:listening ,yes )])]).

Figure 6. Dipper’s Information State Definition and 
Update Rules for the Robot’s Label Query. 
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and resets the information state (lines 26–28). The
last rule, LabelQuery, posts a solvable that will trig-
ger the label query and set the flag for receiving
speech input (lines 32–33) if the current interac-
tion goal is label (line 31). 

When implementing the target scenario, we
found the idea of a central information state that
determines the next steps of the interaction to be
very intuitive. Also, the division of responsibilities
between distributed agents enables a modular
approach that roughly resembles the distributed
event-based architecture of the original system. 

However, we encountered problems with respect
to the update rules and the update strategy. While
TrindiKit leaves it to the developer to implement
the (possibly highly complex) update strategy, Dip-
per provides a built-in update strategy that simply
selects the first rule that matches, applies its effects
to the information state, and starts over with
checking the first rule again. This means that rules
are executed on a first-come, first-served principle,
where the order of the rules matters, resulting in a
brittle system behavior. In our case study, this is
the reason, for example, the processLabel rule is
defined before the LabelQuery rule. If it was the
other way round, the system would loop over the
LabelQuery and never execute ProcessLabel. Of
course, we could overcome the problem by intro-
ducing additional control flags, which would make
the information state unnecessarily complex. As a
result of this update strategy, some requirements of
the target scenario could not be realized. 

Focus shifts could only partly be implemented.
The problem was not to define the appropriate
update rules (such as processListObjects), but rather
that user utterances are processed only at specific
points in time, that is, only if the listening flag
(which we have adopted from the example in Bos
et al. [2003]) is set. Thus, a focus shift may be ini-
tiated only when the robot expects the user to
speak, for example, after having asked the label
query. If the rule for speech recognition were appli-
cable at any time, it might conflict with other
rules. 

Also, asynchronous coordination, which the
OAA framework actually supports well, could only
partly be realized, due to the first-come, first-served
update strategy that enables speech input only at
certain points. Thus, the robot’s feedback on the
grasping action could be realized by explicitly wait-
ing for respective task events by virtue of the wait-
ForTaskEvent rule, whereas the possibility to cancel
an ongoing grasping action could not be imple-
mented because the waitForUtterance rule would
have conflicted with the waitForTaskEvent rule. 

Another issue is that the update rules handle
both organizational tasks (such as polling different
input sources or producing output) and dialogue
management tasks. A clear separation of concerns

could make the dialogue strategy more obvious
and prevent the information state from being over-
loaded with control flags. 

In a real-world application, testability and main-
tainability might become issues. As rule systems
get more complex, their behavior can become very
hard to predict. Already in our simplified Curious
Robot implementation, which required about 15
rules, it was not easy to identify the actual dialogue
flow. 

Case Study 4
Implementing the Curious 

Robot with PaMini 
Finally, we reimplemented the target scenario with
the PaMini approach that we have suggested
recently (Peltason and Wrede 2010b, 2010a). In
contrast to these dialogue frameworks, PaMini tar-
gets specifically human-robot interaction. 

One key idea of the approach is the concept of
tasks that can be performed by components. Tasks
are described by an execution state and a task spec-
ification that contains the information required for
execution. A task state protocol specifies task states
relevant for coordination and possible transitions
between them. Typically, a task gets initiated,
accepted, may be canceled or updated, may deliver
intermediate results, and finally is completed. Alter-
natively, it may be rejected by the handling com-
ponent or execution may fail. Task updates cause
event notifications, which are delivered to PaMini
(and to other participating components). From the
dialogue system perspective, the task state proto-
col establishes a fine-grained—yet abstract—inter-
face to the robotic subsystem. PaMini is backed by
the integration toolkit XCF (Wrede et al. 2004), but
could in principle be used with any middleware
that supports the task state protocol. 

Internally, PaMini relies on generic interaction
patterns that model recurring conversational struc-
tures, such as making a suggestion or negotiating
information. They are defined at an abstract level,
but can be tailored with an application-specific
configuration. Interaction patterns are visualized
as a finite-state transducer, taking as input either
human dialogue acts or the previously mentioned
task events, and producing robot dialogue acts as
output. In the states, actions such as task or vari-
able updates may be executed. By combining the
task states with robot dialogue acts, the conversa-
tion level is related with the domain level. At run
time, patterns can be interleaved to achieve a more
flexible interaction style. 

The interaction patterns have been extracted
from different human-robot interaction scenarios,
most notably a home-tour scenario, in which a
mobile robot acquires information about its envi-
ronment, and the (original) Curious Robot sce-
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nario. Since then, PaMini has been used in many
further scenarios, ranging from a virtual visitor
guide to a robot assistant that has been sent to the
RoboCup@Home 2011 competition. Technically,
the patterns are implemented as statecharts (Harel
1987), using the Apache Commons SCXML engine
(commons.apache.org/scxml), and wrapped in a
Java API. 

To realize the target scenario, we have set up a
distributed system with (simulated) components
that communicate through the task state protocol.
The system includes components for speech input
and output, an action selection component, and a
motor server. This breakdown is similar to the one
in the Dipper-based implementation. 

When selecting the interaction patterns to use,
we found that in some cases more than one pat-
tern provided by PaMini was appropriate. For
instance, there are a few patterns modeling a robot
information request, differing in the confirmation
strategy (implicit or explicit). Also, the system-ini-
tiated action may be cancelable or not, and the
robot may ask for permission before action execu-
tion or not. For our target scenario, we chose an
explicit confirmation strategy and nonacknowl-
edged yet cancelable action execution. Altogether,
we used seven patterns, one each for greeting, part-
ing, the robot’s label and grip query, the user’s test
questions, and the robot’s self-initiated grasping. 

The upper part of figure 7 shows the Robot Self-
Initiated Action pattern, required for the grasping
action. First, the robot announces its intended
action. Next, PaMini initiates the associated sys-

tem task. As the handling system component
accepts the task, the robot asserts action execution.
Once the task is completed, the robot acknowl-
edges. Additionally, the pattern handles the vari-
ous possible faults. 

Figure 8 shows an excerpt of the associated dia-
logue act configuration. It determines conditions
for the human dialogue acts and how exactly the
robot dialogue acts should be expressed, both
being possibly multimodal. The dialogue act
R.acknowledge in the state asserted, for instance, is
specified as the utterance I finished grasping (lines 1 -
–6). Similarly, in order to be interpreted as H.cancel,
the XML representation of the user utterance has
to match the XPath expression /utterance/cancel
(lines 15–18). 

Apart from the dialogue acts, the developer has
to configure the task communication (that is,  the
task specification for tasks initiated by the dialogue
system, and possible task state updates), as well as
the definition of variables (used for parameterizing
the robot’s dialogue acts and within the task spec-
ification). While the dialogue act configuration is
written in the domain-specific XML configuration
language as depicted in figure 8, the latter two are
specified by extending Java base classes. Since not
each pattern involves task communication or the
use of variables, only the dialogue act configura-
tion is obligatory. 

The definition of variables and of the task com-
munication often goes hand in hand. For instance,
the robot’s label query is modeled using the Cor-
rectable Information Request pattern, shown in the

task.cancel_failed / R.refuse

task.canceled / R.acknowledge

task.failed / R.apologize

task.completed / R.acknowledge

task.rejected / R.refuse

task.accepted / R.assert

H.cancel /
cancel_requested

update-task-state(abort)

/ R.announce initiate
initiate-task()

asserted

a

await_confirmation
update-variable-context(userinput) confirmed

update-dialog-task-state(completed)

H.correct / R.askForConfirmation
H.confirm /

R.acknowledge
H.answer /

R.askForConfirmation

H.negate / R.question

/ R.question / 
update-dialog-task-spec

update-dialog-task-state(result_available)

asked
update-dialog-task-state(accepted)

b

Figure 7. Two Example Interaction Patterns. 

The upper part shows the Robot Self-Initiated Cancelable Action pattern, which is used to model the robot’s grasping action. The lower part
shows the Robot Information Request with Explicit Confirmation pattern, which is used to model the robot’s label and grip queries. 



lower part of figure 7. As soon as the human
answers the robot’s information request (R.question
and H.answer, respectively), the object label is
extracted from the user utterance and assigned to
an appropriate variable (see update-variable-context
in state await confirmation), which is then used to
parameterize the robot’s confirmation request
R.askForConfirmation (for example, “Apple. Is that
correct?”), and to augment the task specification
with the label so as to transfer it to the responsible
system component. 

As the Curious Robot has been one of the devel-
opment scenarios for PaMini, it is not surprising
that all of the stipulated requirements could be
met. With the task state protocol, state updates of
temporally extended back-end calls such as grasp-
ing are delivered by event notification, enabling
PaMini to give feedback on the ongoing action, as
illustrated in table 3 (R8, R10). Conversely, PaMini
can update or cancel tasks online (U7-R10). By
admitting interleaving interaction patterns, the
interaction can be maintained during task execu-
tion. During the robot’s grasping action, for
instance, the user initiates a focus shift by asking a
question (U6-R9), which is modeled by interleav-
ing a Robot Self-Initiated Action pattern with a
Human Information Request. 

Perhaps the most striking difference to the oth-
er dialogue frameworks affects discourse planning.
While local discourse planning is determined by
the interaction patterns, global discourse plan-
ning—that is,  how the patterns are combined—is
not done within the dialogue framework but is
decided by the back end (or by what the user says,

of course). This enables the dialogue system to
respond to the dynamic environment in a flexible
and reactive way. 

While the other frameworks discussed provide
generic strategies for grounding or collaboration,
PaMini goes one step further in this respect by pro-
viding premodeled “building blocks of interac-
tion,” intended to encapsulate the subtleties of dia-
logue management and domain integration. Both
a usability test (Peltason and Wrede 2010a) and our
first experiences with the framework support that
interaction patterns enable developers to rapidly
implement new interaction scenarios. Further-
more, as the interaction patterns are kept self-con-
tained, new features can be added without break-
ing existing functionality (of which we are
running the risk, such as with Dipper’s update
rules). This significantly eases incremental system
development. 

As PaMini has been developed with robotics in
mind, it might exhibit a couple of deficiencies
when applied to nonrobotics scenarios. First, the
definition of variables is not as straightforward as
it is with Ravenclaw, where variables are derived
directly from the semantic speech-recognition
grammar. PaMini, in contrast, leaves variable han-
dling to the developer. Also, as PaMini does not
maintain an explicit representation of the infor-
mation that needs to be gathered during the dia-
logue, overanswering is not supported. Relying on
tasks as the fundamental concept that drives the
interaction, PaMini could be referred to as an
action-oriented, rather than as information-ori-
ented approach. 

Also, as PaMini outsources much of the respon-
sibility for discourse planning to the back end, lit-
tle support is provided for interactions whose
structure is determined by the current dialogue
state (or the current information state) rather than
by an “intelligent back end”. This might be a has-
sle in information-negotiating scenarios, in which
the back end typically plays a more passive role. 

In general, the interaction patterns, however
useful they may be, definitely impose restrictions
on the developers. Though patterns for many pur-
pose do exist, the framework is not designed such
that new patterns can be implemented by nonex-
perts easily. 

Discussion 
Our case study was performed with the goal to
identify pitfalls and potential remedies as well as
potential future challenges for dialogue modeling
on robots. As the case studies have shown, none of
the investigated frameworks overcomes all prob-
lems in one solution. However, the summary of
the results as depicted in Table 4 allows some inter-
esting conclusions to be drawn. On the one hand
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1  <robotDialogAct

2   state="asserted"

3   type="R.acknowledge">

4    <verbalization

5     text="I finished grasping."/>

6  </robotDialogAct >

7

8  <robotDialogAct

9   state="asserted"

10   type="R.apologize">

11    <verbalization

12     text="Sorry, I failed to grasp the %OBJECT %."/>

13  </robotDialogAct

14

15  <humanDialogAct

16  state="asserted"

17   type="H.cancel"

18   xpath="/utterance/cancel"/>

Figure 8. An Excerpt from PaMini’s Dialogue Act 
Configuration for the Robot’s Grasping Action. 



there are challenges that have been solved by most
of the four dialogue frameworks such as focus
shifts, grounding, and separation between dia-
logue and task structure. On the other hand, the
question how to model the interaction with the
back end tends to be solved individually by each
framework. Binary success variables, as used in the
reasoning-based Collagen/Disco approach seem to
be somewhat underspecified for a satisfying infor-
mation behavior of the robot. The user-defined
result frame allows for more freedom but also
imposes much knowledge and work on the devel-
oper. From this perspective PaMini’s task state pro-
tocol appears to be a good compromise between
both, allowing the developer an easy and stan-
dardized yet flexible interaction with the back end.
Depending on the solution for the interplay with
the back end, the discourse planning—which is an
important factor for the user experience—is affect-
ed in different ways: frameworks that are more
back-end driven tend to allow for a less restricted
dialogue structure. 

In order to keep our case studies simple, we have
limited the target scenario to verbal interaction.

Nevertheless, nonverbal behaviors and multi-
modality are crucial aspects in situated dialogue.
Except for Collagen/Disco, which relies on text
input and output, multimodality could have been
realized with all of the discussed dialogue man-
agers, as they operate at the semantic level below
which the input and output sources may be
exchanged. The new version of Ravenclaw sup-
ports multimodal input and output by providing
agents for modality integration and for the pro-
duction of multimodal output (Raux and Eskenazi
2007). Both Dipper and PaMini rely on a distrib-
uted architecture with arbitrary sources for input
and output. PaMini, for instance, provides a col-
lection of available output modalities such as
pointing gestures or mimics (depending on the
robot platform), that can be combined. However,
neither Dipper nor PaMini handles the issues of
input fusion and output synchronization. 

Moreover, human-robot interaction demands
more than classical 1:1 interactions. Often, the
robot will be situated in environments where mul-
tiple possible interaction partners are present, or a
robot might even have to collaborate with other
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Utterance Comment Active Interaction Pattern 

U1 Hello.  Human Interaction Opening 

R1 Hi, hello.  Human Interaction Opening 

R2 What is that?  Back-end publishes interaction goal label Robot Information Request with Explicit 
Confirmation 

U2 This is a lemon.  Robot Information Request with Explicit 
Confirmation 

R3 Melon. Is that correct?  Robot Information Request with Explicit 
Confirmation 

U3 No, it’s a lemon!  Robot Information Request with Explicit 
Confirmation 

R4 Lemon. Is that correct?  Robot Information Request with Explicit 
Confirmation 

U4 Yes, this is correct. Robot Information Request with Explicit 
Confirmation 

R5 How should I grasp the lemon?  Back-end publishes interaction goal grip Robot Simple Information Request 

U5 With the power grasp.  Robot Simple Information Request 

R6 Alright.  Robot Simple Information Request 

R7 I am going to grasp the lemon. Back-end publishes interaction goal grasp 
Grasp task initiated by PaMini 

Robot Self-Initiated Cancelable Action 

R8 I start grasping now.  Grasp task accepted by back-end Robot Self-Initiated Cancelable Action 

U6 How do you grasp a banana? Focus shift and multi-tasking Robot Self-Initiated Cancelable Action 

R9 Sorry, I don’t know.   Human Information Request 

U7 Stop!  Cancel requested by PaMini Human Information Request 

R10 Ok, I stop.  Grasp task canceled by back-end Robot Self-Initiated Cancelable Action 

U8 Goodbye.  Robot Self-Initiated Cancelable Action 

R11 Goodbye. Human Interaction Closing 

Table 3. An Example Dialogue for the Curious Robot Implementation with PaMini.

Not surprisingly, all requirements could be realized, including focus shifts, multitasking, and cancellation of an ongoing grasping action.



robots. Thus, the capability of multiparty interac-
tion is another crucial requirement. PaMini has
recently been extended so as to be able to manage
multiple interactions (with multiple participants
each), and a multiparty engagement model (Bohus
and Horvitz 2009) has been integrated (Klotz et al.
2011). Ravenclaw has provisions for the opposite
case, in which multiple robots collaborate, form-
ing a team (Dias et al. 2006). 

Overall, the results and insights from our case
studies indicate that the focus of future research
will lie on the semantic processes, such as reason-
ing or back-end communication. This relates to the
questions that we have not targeted in our present
investigation, such as how to couple reasoning
with dialogue structure. This entails—among oth-
er factors—how to make reasoning processes trans-
parent to the user without overloading answers
with technical details, but also how to interactive-
ly incorporate user input into the reasoning
process. Semantic processes also relate to back-end
communication that grounds the communication
in physical, real-world actions and thus opens up
new possibilities with respect to core linguistic
questions of semantic representation, reference
resolution, or nonverbal communication. From
this perspective we can expect human-robot inter-
action to have a boosting effect on dialogue mod-
eling research. 
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