
Technologies such as the Internet allow many spatially dis-
tributed parties (or agents) to rapidly interact according to
intricate protocols. Some of the most exciting applications

of this involve making decisions based on the agents’ prefer-
ences (for a more detailed discussion, see Conitzer [2010]). For
example, in electronic commerce, agents can bid on items in
online auctions. This results in an allocation of the items for sale
to the agents bidding in the auctions; one view of this is that we
decide on the allocation based on the preferences that the
agents reveal through their bids. Similarly, in an online rating
system, the quality of a product, article, video, and so on is
decided based on the submitted ratings. In an online election,
an alternative is selected based on the submitted votes. In gen-
eral, a mechanism takes the submitted preferences (bids, ratings,
votes, and so on) as input, and produces an outcome as output.

One issue with such mechanisms is that sometimes an agent
has an incentive to report her preferences insincerely, as this
will result in an outcome that she prefers. Agents that respond
to such incentives are said to report strategically. For example,
in a (first-price, sealed-bid) auction, a bidder may value the item
for sale at $100, but she may strategically choose to bid only $70
because she believes that she will still win with this bid, and pay
less. Similarly, in a rating system, an agent who believes that the
product should receive an overall rating of 7 may strategically
give it a rating of 10, in order to “correct” earlier ratings by oth-
ers that resulted in an average rating of 6 so far. Finally, in an
election, an agent whose favorite alternative is A may strategi-
cally claim that B is her most-preferred alternative, because she
believes that A has no realistic chance of winning, and she very
much wants to keep C from winning.

A fundamental problem caused by such strategic reports is
that they may result in the “wrong” outcome. For example, let
us again consider the bidder who values the item at $100 but
chooses to bid $70 instead because she believes that she will still
win with this bid. It is possible that she is mistaken — in par-
ticular, it could happen that there is another bidder who values
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n When mechanisms such as auctions, rating
systems, and elections are run in a highly
anonymous environment such as the Internet, a
key concern is that a single agent can partici-
pate multiple times by using false identifiers.
Such false-name manipulations have tradition-
ally not been considered in the theory of mech-
anism design. In this article, we review recent
efforts to extend the theory to address this. We
first review results for the basic concept of false-
name-proofness. Because some of these results
are very negative, we also discuss alternative
models that allow us to circumvent some of
these negative results.



the item at $90 but, being more cautious than the
former bidder, bids $80. In this case, the latter bid-
der wins, even though from the perspective of the
bidders’ true valuations, it would have been more
economically efficient for the item to end up with
the former bidder. Similar failures can occur with
rating and voting.

Mechanism design, which is based on game theo-
ry, concerns the study of how to design mecha-
nisms that result in good outcomes even when the
agents act strategically. A fundamental result
known as the revelation principle (Gibbard 1973;
Green and Laffont 1977; Dasgupta, Hammond,
and Maskin 1979; Myerson 1979) shows that with-
out loss of generality, we can restrict our attention
to the design of incentive compatible mechanisms —
that is, mechanisms in which it is in each agent’s
best interest to report truthfully. A strong notion
of incentive compatibility is strategy-proofness: a
mechanism is strategy-proof if no agent ever ben-
efits from misreporting, regardless of the others’
reports.

However, in highly anonymous settings such as
the Internet, declaring preferences insincerely is
not the only way to manipulate the mechanism.
Often, it is possible for an agent to pretend to be
multiple agents, and participate in the mechanism
multiple times. Many web applications only
require a valid e-mail address, and it is easy for one
agent to create multiple e-mail accounts. In an
online election, this allows a single agent to vote
multiple times — a significant drawback of online
elections. Similarly, in a rating system, a single
agent can manipulate the average or median rat-
ing to be effectively anything by rating the product
a sufficient number of times. (At some level, this is
not fundamentally different from the situation in
elections: rating can be thought of as a special case
of voting.) It is perhaps less obvious how using
multiple identities to bid can help in an auction,
but we will see examples of this shortly. We will
refer to this type of strategic behavior as false-name
manipulation. It is closely related to the notion of a
Sybil attack in the systems literature (Douceur
2002), where an attacker also uses pseudonymous
identities to subvert a system. As in the case of
strategic misreporting of preferences, the main
downside of false-name manipulation for the sys-
tem as a whole is that it may result in suboptimal
outcomes.

There are several ways in which the problem of
false-name manipulation can be addressed. One
approach is to try to prevent it directly. For exam-
ple, we can require users to submit information
that would completely identify them in the real
world, such as a social security number. However,
such an approach would doom most Internet-
based applications to failure, because users are
extremely averse to giving out such information —

for example due to concerns about identity theft,
or simply because the user prefers to stay anony-
mous. Various alternative approaches to directly
preventing false-name manipulation have been
pursued, including the following.

A completely automated public Turing test to
tell computers and humans apart, or CAPTCHA
(von Ahn et al. 2003; von Ahn, Blum, and Lang-
ford 2004), is an automated test that is easy to pass
for humans, but difficult to pass for computers.
While CAPTCHAs can prevent a manipulator from
obtaining a very large number of identifiers by
writing a program that automatically registers for
them, they do not prevent the manipulator from
obtaining multiple identifiers by hand.

A recent approach consists of attempting to cre-
ate a test that is easy for a person to pass once, but
difficult for a single person to pass more than once
(Conitzer 2008b). Early attempts to design such
tests focused on memory tests that were set up in
such a way that a user taking the test a second time
would become confused with the first time that
she took the test. Unfortunately, for the tests
designed so far, results from studies with human
subjects are nowhere close to robust enough for
practical use.

Another direction is to use social-network struc-
ture to prevent a user from obtaining too many
identifiers. Here, the basic idea is that it is easy to
create new nodes in the network, as well as edges
among them, but it is difficult to get legitimate
nodes to link to these new nodes — so that if a user
creates many false nodes, they will be disconnect-
ed from the legitimate nodes by an unexpectedly
small cut. This observation has been leveraged to
limit the number of identifiers that a manipulating
user can obtain (Yu et al. 2008; 2010).

A simple approach is to limit the number of
identifiers registered from one IP address. A down-
side of this approach is that there are often many
users behind a single IP address, so that the limit
must be set rather high. 

Some of these approaches can successfully pre-
vent a single agent from obtaining an extremely
large number of identifiers. This may be sufficient
if the agent’s goal is, for example, to send spam e-
mail. However, in the settings in which we are
interested, this is generally not sufficient: an agent
may still derive significant benefits from creating
just a few false names.

In this article, we consider to what extent the
issue of false-name manipulation can be addressed
using techniques from mechanism design. Under
this approach, we accept the fact that it is possible
for an agent to participate multiple times, but we
design the mechanism — the rules that map report-
ed preferences to outcomes — in such a way that
good outcomes result even when agents strategi-
cally decide whether to participate multiple times.
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The primary approach to doing this is simply to
ensure that it is always optimal for an agent to par-
ticipate only once (again, a revelation principle can
be given to justify this approach). A mechanism is
said to be false-name-proof if no agent ever benefits
from using multiple identifiers. The typical formal
definition also implies strategy-proofness. In this
article, we do not give formal mathematical defini-
tions of false-name-proofness; rather, we rely on
examples to illustrate the concept.

Voting
We will first discuss voting settings. One should
immediately be suspicious of the idea that an elec-
tion in which a single agent can vote multiple
times can lead to good results, and the technical
result that we will discuss in this section will lend
support to this suspicion. A natural reaction is that
we should simply avoid such elections. However,
examples of real-world online elections abound.

An intriguing recent example of this phenome-
non is the “New Seven Wonders of the World”
election, a global election to elect contemporary
alternatives to the ancient wonders. Anyone could
vote, either by phone or over the Internet; for the
latter, an e-mail address was required. One could
also buy additional votes (of course, simply using
another e-mail address was a much cheaper alter-
native). In spite of various irregularities (including
unreasonably large numbers of votes in some cas-
es (Dwoskin 2007) and UNESCO distancing itself
from the election, the election nevertheless seems
to have attained some legitimacy in the public’s
mind.

To illustrate the difficulties that such online elec-
tions face, let us first consider an election with two
alternatives, say, A and B. In this case, each voter
prefers one of the two, and will be asked to vote for
the one she prefers. If false-name manipulation is
not possible, the most natural approach is to run
the simple majority rule: the alternative with more
votes wins (with some way of breaking ties, for
example, flipping a coin). It is easy to see that this
rule is strategy-proof: there is nothing that can be
gained from voting for one’s less-preferred alterna-
tive. Also, if we suppose that an agent receives util-
ity 1 if her preferred alternative is elected, and 0
otherwise, then the majority rule maximizes the
sum of the agents’ utilities.

Unfortunately, the majority rule is clearly not
false-name-proof. For example, consider an elec-
tion in which one agent prefers A and two agents
prefer B. If the two agents that prefer B each use a
single identifier and vote truthfully, then the agent
that prefers A has an incentive to create two addi-
tional fake identifiers, and vote for A with all three
of her identifiers, to make A win. More generally,
holding the other agents’ votes fixed, an agent can

always make her preferred alternative win by cast-
ing sufficiently many votes for that alternative.

From this, the difficulty of designing a good
false-name-proof voting rule should be apparent.
One may conjecture that votes are necessarily
entirely meaningless in this context, and that we
might as well choose the winning alternative ran-
domly (flipping a coin), without regard to the
votes. Doing so is certainly false-name-proof: in
this case, there is no incentive to vote multiple
times, because there is no incentive to vote at all!
Obviously, this is not very satisfactory. 

Conitzer (2008a) studies false-name-proof vot-
ing rules more thoroughly, and it turns out that we
can do just a little better than choosing the win-
ning alternative completely at random. Consider
the following unanimity rule for two alternatives. If
all the voters vote for the same alternative (and at
least one vote is cast), then we choose that alter-
native; otherwise, we flip a fair coin to decide the
winner. Using a case-by-case analysis, we see that
this rule leaves an agent (who prefers, say, A) no
incentive for manipulation:

If B does not receive any votes from the other
agents, voting truthfully results in a win for A;

If both A and B receive votes from the other agents,
then it does not matter what the agent does;

If B receives votes from the other agents and A does
not, then the agent wants to (truthfully) cast a vote
for A to force the coin flip, but casting additional
votes will have no effect. 

While this rule avoids the bizarre scenario where
we flip a coin even though all agents agree on what
the preferred alternative is, it is otherwise still not
very desirable. For example, even if 100 agents pre-
fer A and only 1 agent prefers B, the probability that
A wins is only 50 percent. Thus, we may wonder
whether there is another false-name-proof voting
rule that is a closer approximation of the majority
rule. It turns out that the answer is negative: in a
sense, the unanimity rule is the best we can do
under the constraint of false-name-proofness.

In settings with more than two alternatives,
there is an even more negative result: in a sense, the
best we can do under the constraint of false-name-
proofness is to choose two alternatives uniformly
at random (without regard to the votes), and then
run the unanimity rule on these two alternatives.
This is somewhat reminiscent of another fairly neg-
ative characterization by Gibbard (1977) for the
case of strategy-proof randomized voting rules
(when there are no restrictions on preferences and
false-name manipulation is not possible). Gibbard’s
characterization allows for rules such as (1) choose
two alternatives at random and run a majority elec-
tion between these two, or (2) randomly choose
one of the agents as a dictator, whose most-pre-
ferred alternative is then chosen.

Unfortunately, Gibbard’s characterization does
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not allow for much more than these rules. Still, it
is much more permissive than the characterization
for false-name-proof rules. For example, choosing
a random dictator is not false-name-proof: an
agent would have an incentive to use many iden-
tifiers, to increase the chances that one of these
will be chosen as the dictator. Also, unlike in the
case of false-name-proofness, Gibbard’s characteri-
zation poses no problem in the two-alternative
case, because there it allows for the majority rule,
which is quite natural. Finally, the strategy-proof-
ness (in fact, group-strategy-proofness — no coali-
tion of agents has an incentive to deviate) of the
majority rule can be extended to more alternatives
if we restrict the agents’ possible preferences to sin-
gle-peaked preferences (Black 1948; Moulin 1980).
In contrast, for false-name-proofness, there
appears to be little hope of finding a positive result
based on restricting the preferences, because we
already get a negative result for two alternatives.

We will discuss what can be done about (or in
spite of) this impossibility result later in this arti-
cle. But, first, we turn to a discussion of combina-
torial auctions, in which the concept of false-
name-proofness was originally defined.

Combinatorial Auctions
In a combinatorial auction, multiple items are
simultaneously for sale. An agent (bidder) is
allowed to place complex bids on these items. For
example, an agent may say, “If I receive both items
A and B, that is worth $100 to me, but if I only
receive one of them, that is only worth $10.” This
is a case of complementarity, where the items are
worth more together than the sum of their parts.
Complementarity often motivates the use of a
combinatorial auction.

Generally, if I is the set of items, an agent i has a
valuation function vi : 2I → ℝ that specifies how
much she values each possible bundle of items,
and her bid will be a reported valuation function v^i
: 2I → ℝ. (We consider only sealed-bid auctions
here, where an agent only places a single bid; this
is justified by the revelation principle.) Usually, the
goal is to assign subsets of the items to the agents
in a way that maximizes efficiency, that is, if agent
i receives Si ⊆ I (where Si � Sj = Ø for i ≠ j), the goal
is to maximize �i vi(Si).

How can we incentivize truthful bidding in a
combinatorial auction? To explain this, it is help-
ful to first consider a single-item auction, in which
each agent i bids some amount v^i on the item. The
standard solution here is the Vickrey or second-price
sealed-bid auction (Vickrey 1961), where the high-
est bid wins and pays the price of the second-high-
est bid. This is strategy-proof, and the reason is
that the winning bidder automatically pays the
smallest amount she could have bid and still won

the item. It turns out that this intuition generalizes
to combinatorial auctions: in the Generalized Vick-
rey Auction (GVA), an allocation is chosen that
maximizes efficiency according to the reported val-
uation functions — that is, it maximizes �i v^i(Si)
(how ties are broken is not essential); each bidder
pays the smallest amount she could have bid to
win her bundle of items. The GVA is a special case
of the Clarke mechanism (Clarke 1971), and it is
strategy-proof.

However, the GVA is not false-name-proof. For
example, suppose we are allocating two items, A
and B. Agent 1 bids (reports a valuation of) $100
for the bundle {A, B} of both items (and $0 for any
other bundle). Suppose agent 2’s true valuation for
the bundle {A, B} of both items is $80 (and it is $0
for any other bundle). Thus, if agent 2 truthfully
reports her valuation $80, she does not win any
item. Alternatively, in a highly anonymous envi-
ronment, agent 2 can participate under two differ-
ent identifiers, 2a and 2b; if 2a bids $80 on {A}, and
2b bids $80 on {B}, then 2a and 2b will both win
their item (so that 2 wins both items). Moreover,
the GVA payments of 2a and 2b are $20 each,
because each of them could have reduced the bid
to $20 and still won the item. Hence, using the
false-name manipulation, agent 2 gets both items
and pays $40 in total. Thus, this manipulation is
profitable for agent 2. This results in an inefficient
outcome, because 1 values the items more. Figures
1 and 2 show how this example illustrates the dif-
ference between standard and highly anonymous
mechanism design settings.

While the previous example already illustrates
the potential for false-name manipulation in the
GVA, a somewhat different type of false-name
manipulation is also possible. Namely, the manip-
ulating agent can bid under multiple identifiers,
but then, once the outcome has been decided, fail
to respond for some of them — that is, have these
identifiers refuse to pay. While these refusing iden-
tifiers will presumably not obtain the items that
they won, it is possible that their presence was ben-
eficial to the agent’s other identifiers. For example,
suppose bidder 1 bids $100 for the bundle {A, B},
and bidder 2 bids $40 for the bundle {A}. Bidder 3
— the false-name bidder — has true valuation $20
for the bundle {B} and any superset of it (and $0
for any other bundle). Under the GVA, if bidder 3
bids truthfully (which is optimal if false-name bid-
ding is impossible), she wins nothing and pays
nothing. She also cannot benefit from the type of
false-name bidding in the previous example: for
example, she can win both items by bidding $100
for {A} under identifier 3a and $60 for {B} under
identifier 3b, in which case 3a pays $40 and 3b
pays $0; but her valuation for {A, B} is only $20, so
this would make her worse off. However, now sup-
pose that she can disown identifier 3a (for exam-
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ple, by never checking that e-mail account any-
more), never making the payment and never col-
lecting A. Then, she has obtained B with the other
identifier at a price of $0. This type of manipula-
tion is not addressed by the standard definition of
false-name-proofness, but recent work (Guo and
Conitzer 2010) considers a modified definition
that does also capture this type of manipulation.
In any case, most (but not all) of the standard false-
name-proof mechanisms also satisfy this stronger
condition.

At this point, the obvious question is: can we fix
the GVA mechanism, or develop a completely new
mechanism, so that the obtained mechanism is
false-name-proof and achieves efficient outcomes?
Unfortunately, the answer is no. Yokoo, Sakurai,
and Matsubara (2004) give a simple generic count-
er-example illustrating that there exists no false-
name-proof combinatorial auction mechanism
that always achieves an efficient outcome.1 They
also show that the revelation principle holds for
false-name-proof mechanisms. This implies that
there exists no efficient mechanism in general
when false-name bids are possible.

Another question we might ask is: although the
GVA is not false-name-proof in general, can we
identify some (hopefully natural and general) spe-
cial cases where the GVA is false-name-proof?

Yokoo, Sakurai, and Matsubara (2004) show that a
well-known condition called submodularity is suffi-
cient to guarantee that the GVA is false-name-
proof. Submodularity is defined as follows: for any
subset of bidders N, for two sets of items S1, S2, the
following condition holds:

V*(N, S1) + V*(N, S2) � V*(N, S1�S2) + V*(N, S1�S2),

where V*(N, S) represents the social surplus (sum
of valuations) when allocating S optimally among
N. The idea is that additional items become less
useful as there are more items already. This condi-
tion does not hold for Alice in figure 2. When Alice
has nothing, adding A does not increase her valu-
ation. When Alice has B already, adding A increas-
es her valuation from 0 to 80. In other words, A
and B are complementary for Alice, that is, the
bundle is worth more than the sum of its parts.

Theoretically, the submodularity condition is
very useful, since it guarantees several other desir-
able properties of the GVA, for example: the out-
come is in the core — that is, the seller does not
wish to sell items to some loser rather than the
winners; collusion by the losers is useless; and the
condition facilitates the computation of the win-
ners and payments (Müller 2006). However, the
submodularity condition is of limited use, because
in practice often a major motivation for using a
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Alice

Bob

$80 for {A, B}

$100 for {A, B}
Alice wins {A, B},
pays $80

Mechanism

Figure 1.  The Generalized Vickrey Auction in a Standard Setting Where the True Identities of the Agents Can Be Observed.



combinatorial auction (rather than multiple sin-
gle-item auctions sequentially) is that there is com-
plementarity among the items — though, of
course, combinatorial auctions may be useful in
settings without complementarity as well.

A series of mechanisms that are false-name-
proof in various settings has been developed: com-
binatorial auction mechanisms (Yokoo, Sakurai,
and Matsubara 2001a; Yokoo 2003), multiunit auc-
tion mechanisms (Yokoo, Sakurai, and Matsubara
2001b; Terada and Yokoo 2003; Iwasaki, Yokoo,
and Terada 2005), double auction mechanisms
(Sakurai and Yokoo 2002; 2003; Yokoo, Sakurai,
and Matsubara 2005), and combinatorial procure-
ment auctions (Suyama and Yokoo 2005).

For the purpose of illustration, let us describe
some false-name-proof combinatorial auction
mechanisms. The simplest such mechanism is
called the Set mechanism. It allocates all items I to a
single bidder, namely, the bidder with the largest
valuation for the grand bundle of all items. Effec-

tively, it sells the grand bundle as a single good, in
a Vickrey or second-price auction. It is not difficult
to see that false-name bids are ineffective under
the Set mechanism: there is only one winner and
placing additional bids only increases the payment
of the winner.

Of course, we would hope to find a mechanism
that does better than this rather trivial Set mecha-
nism. A nontrivial false-name-proof mechanism
called the Minimal Bundle (MB) mechanism
(Yokoo 2003) can be thought of as an improved ver-
sion of the Set mechanism. (In the following
description, we assume each agent is interested
only in a single bundle (single-minded) for sim-
plicity, but the general MB mechanism can also be
applied to nonsingle-minded agents.) Let us
assume bidder i is the winner under the Set mech-
anism. The grand bundle might contain some use-
less items for bidder i, that is, it may be the case that
for some S � I, vi(S) is the same as vi(I). We call the
minimal bundle S for which vi(S) = vi(I) holds the
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Alice

Bob

$80 for {A}

$80 for {B}

$100 for {A, B}

bjones wins {A},
pays $20
manip2008 wins
{B}, pays $20

Mechanism

honesty42@yahoo.com

bjones@abc.edu

manip2008@gmail.com

Figure 2. The Generalized Vickrey Auction in a Highly Anonymous (Internet) Setting.

The mechanism cannot observe the agents’ true identities directly; all it can observe is the identifiers (e-mail addresses) and the bids that
are submitted through those identifiers.



minimal bundle for i. Instead of allocating all items
I to bidder i, we first allocate Si ⊆ I to i, where Si is
the minimal bundle for i. Then, we consider the
next highest bidder j; if his or her minimal bundle
Sj does not overlap with Si, then he or she wins Sj,
and so on. The price for a bundle S is equal to the
highest valuation of another bidder for a bundle
that is minimal for that bidder and conflicting with
S, that is, it has an item in common with S.

Let us show a simple example. Assume there are
four items, A, B, C, and D, and five bidders. Their
valuations are as follows.

bidder 1: $100 for {A, B}
bidder 2: $80 for {C, D}
bidder 3: $70 for {B, D}
bidder 4: $60 for {C}
bidder 5: $50 for {A}

In this case, bidder 1 wins {A, B}. Since this bundle
conflicts with bidder 3’s bundle, the payment is
$70. Then, bidder 2 wins {C, D}. Since this bundle
also conflicts with bidder 3’s bundle, the payment
is again $70.

Again, under this mechanism, false-name bids
are useless. If bidder 1 splits her bid and obtains {A}
and {B} with separate identifiers, her payment
would be $50 + $70, which is more than her origi-
nal payment of $70. More generally, for disjoint
bundles S1 and S2, the price for obtaining S1 � S2 is
the maximum of the price of S1 and the price of S2.
However, if the bidder obtains S1 and S2 with sepa-
rate identifiers, then she must pay the sum of these
prices. Also, placing additional bids only increases
the payments of the winners.

An auction mechanism consists of an allocation
rule and a payment rule. There have been several
studies on characterizing allocation rules for which
there exists a payment rule that makes the mecha-
nism as a whole strategy-proof. Bikhchandani et al.
(2006) propose weak monotonicity and show that
it is a necessary and sufficient condition for strate-
gy-proofness when several assumptions hold on
the domain of valuation functions.

In a similar type of result, Todo et al. (2009)
show that if (and only if) an allocation rule satisfies
a condition called subadditivity as well as weak
monotonicity, then there exists an appropriate
payment rule so that the mechanism becomes
false-name-proof, that is, subadditivity and weak
monotonicity fully characterize false-name-proof
allocation rules. In other work, Iwasaki et al. (2010)
derive a negative result showing that any false-
name-proof combinatorial auction mechanism
(satisfying certain conditions) must have a low
worst-case efficiency ratio (not much better than
that of the Set mechanism), and develop a mecha-
nism whose worst-case efficiency ratio matches
this theoretical bound.

Ways Around the Negative Results
Many of the results so far are quite negative. This
is especially the case in voting settings, where even
when there are only two alternatives, the best pos-
sible rule is the unanimity rule, which will flip a
fair coin unless all the voters agree on which alter-
native is better. Even in combinatorial auctions, we
have a strong impossibility result about the worst-
case efficiency ratio. Of course, the worst-case effi-
ciency ratio may not occur very often in practice —
in particular, under some conditions on the valua-
tions, even the regular GVA mechanism is false-
name-proof. In any case, it is worthwhile investi-
gating whether we can somehow circumvent these
negative results, especially in voting settings.

A natural response is that we should just not run
mechanisms, especially voting mechanisms, in
highly anonymous settings! That is, we should run
the mechanism in an environment where we can
verify the identities of all of the agents. While this
thought is not without its merit — it does not seem
wise to conduct, for example, presidential elec-
tions over the Internet — it is apparent that many
mechanisms will be run over the Internet, and
objecting to this phenomenon will not make it go
away. For example, numerous organizations stub-
bornly continue running polls over the Internet in
spite of past troubles, and these polls can still have
significant impact. The New Seven Wonders of the
World event discussed earlier clearly illustrates this
phenomenon: in spite of questionable methodolo-
gy (and, eventually, questionable results), the elec-
tion attracted an enormous amount of attention,
as well as significant effort from various organiza-
tions that tried to get their preferred alternative
elected. Moreover, a follow-up event, the New 7
Wonders of Nature, is already underway. Similarly,
with the continued growth of e-commerce, the
presence of product rating mechanisms and auc-
tions on the Web seems more likely to increase
than to decrease. It appears that when organiza-
tions decide whether to run a mechanism over the
Internet, the convenience of doing so often far
outweighs the potential trouble from false-name
manipulations in their minds.

In the remainder of this section, we consider
several ways around the impossibility results that
do not require us to verify every identity.

Costly False Names
The assumption that a manipulator can obtain an
unlimited number of identifiers at no cost is not
realistic. Setting up a free (say) e-mail account
requires some effort, including, perhaps, solving a
CAPTCHA. This effort comes at a (presumably
small) economic cost that will make false-name
manipulation somewhat less appealing. Can we
design mechanisms that are false-name-proof
when these costs are taken into account — that is,
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when the cost is taken into account false-name
manipulation becomes strategically suboptimal —
and that outperform mechanisms that are false-
name-proof in the standard sense (that is, when
the cost of creating false names is not taken into
account)?

It turns out that this is, in fact, possible (Wag-
man and Conitzer 2008). Of course, if the cost of
creating an additional identifier is extremely high,
then (with two alternatives) even the majority rule
— choose the alternative preferred by more voters
(breaking ties randomly) — becomes false-name-
proof: even if the election is tied and casting one
additional vote will make the difference, which is
a case in which casting an additional vote has the
greatest possible value to a manipulating agent, no
agent will be willing to do this if the cost of creat-
ing an additional identifier is sufficiently high. Of
course, it is unreasonable to expect the cost to be
so high if it corresponds to something as trivial as
solving a CAPTCHA. We may try to increase the
cost — for example, by attempting to detect
manipulating agents and severely punishing them
in the real world, perhaps under some new law. Of
course, this would be extremely difficult to do. Is
there a mechanism that works even if the cost of
creating another identifier is relatively small?

It turns out that this is possible, but we need to
consider mechanisms that use randomization (and
not just for tiebreaking). The problem with the
majority rule is that when the election is currently
tied, then a single additional vote for A will make
the probability that alternative A wins jump from
.5 to 1. For an agent that prefers A, this is an enor-
mous incentive to cast another vote. To make this
more concrete, let us suppose that the agent has a
utility of 1 for A winning the election, and a utili-
ty of 0 for B winning the election. Then, the agent
has an expected utility of .5 for the election being
tied. Hence, the benefit of casting another vote is
.5, which the agent will do if the cost of obtaining
another identifier is less than .5.

However, now suppose that we use the follow-
ing rule. If A and B are tied, then A (and hence also
B) wins with probability .5. If A is ahead by one
vote, then A wins with probability .51. If A is ahead
by 2 votes, then A wins with probability .52, and so
on. If A is ahead by 50 or more votes, A wins with
probability 1. Under this rule, the benefit of casting
another vote is always at most .01, so as long as the
cost of obtaining another identifier is greater than
this, no agent will be incentivized to obtain addi-
tional identifiers.

The downside of this rule, of course, is that if A
is ahead by (say) 25 votes, then with probability 25
percent we choose alternative B, which is subopti-
mal from a welfare perspective because A makes 25
more agents happy. However, one can make an
argument that if the number of agents is large,

then the probability that the alternatives are with-
in 50 votes of each other is small — so that we
almost always choose the alternative that would
have won under the majority rule, which is the
alternative that maximizes welfare.2 The cost of
obtaining a false identifier also plays a role. For
example, if we are sure that the cost of obtaining a
new identifier is always at least .05 for any agent,
then we can increase the probability that A wins
by .05 every time it receives another vote (and
once A receives at least 10 more votes than B, A
wins with probability 1). Thus, the larger the num-
ber of agents voting, and the larger the cost of
obtaining an additional identifier, the closer the
rule gets to the majority rule — while remaining
false-name-proof.

Verifying only Some of the Identifiers
As pointed out above, a simple way of addressing
the issue of false-name manipulation is to verify
that all the identifiers correspond to real agents in
the real world. If we do so, then it suffices to run a
strategy-proof mechanism (assuming that we are
not worried about collusion, and so on). Of course,
this generally puts an unacceptable overhead on
the system. On the other hand, it is not clear that
we must really verify all of the identifiers. For
example, in an election between two alternatives,
must we really verify identifiers who voted for the
losing alternative? In a combinatorial auction,
must we really verify the identifiers that placed a
losing bid? One would think that this should not
be necessary, because in both cases, these identi-
fiers are losing anyway. Generally, we would like to
verify as few identifiers as possible, but enough to
make false-name manipulation suboptimal.

Conitzer (2007) pursues this approach in detail.
The basic version of the model is as follows. The
mechanism first collects the identifiers’ reports of
their preferences (for example, their votes or bids).
Based on these reports, the verification protocol
will ask a subset of the identifiers for real-world
identifying information. If an agent participated
under multiple identifiers, she will be able to
respond for at most one of these identifiers. This is
because if she responds for multiple identifiers
with the same identifying information, then the
manipulation is easily detected.3 This poses no
problem for the manipulating agent if the verifica-
tion protocol asks for identifying information for
at most one of her identifiers. However, if the ver-
ification protocol wishes to verify two of her iden-
tifiers, then the agent has a problem. She can
choose to submit identifying information for
either one, but must then stay silent for the other.
If an identifier stays silent, the verification protocol
knows that something fishy is going on: presum-
ably, the reason that the identifier stays silent is
that it is one of the identifiers used by a manipu-
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lating agent, who has chosen to respond for one of
her other identifiers instead. However, the verifica-
tion protocol cannot identify which identifier this
is; nor can it, presumably, find the agent in the real
world to punish her. Thus, it is assumed that all
that the verification protocol can do is to remove
the nonresponsive identifier(s) from the mecha-
nism. If a nonempty set of identifiers is removed,
then the verification protocol starts from scratch
with the remaining reports (and can thus choose
to verify additional identifiers).4

As a simple example, suppose that we wish to
run a majority election between two alternatives.
We can proceed as follows. First, let each identifier
vote for either A or B. Suppose that A comes out
ahead by l votes (nA = nB + l). Then, the verification
protocol will ask for identifying information of nB
+ 1 of the identifiers voting for A. If all of them
respond with valid (and distinct) identifying infor-
mation, we declare A the winner; otherwise, all the
nonresponsive identifiers are removed, and the
verification protocol starts anew with the remain-
ing votes (note that the balance may have shifted
to B now). In the end, we will have guaranteed that
there were more responsive identifiers for the win-
ning alternative than for the losing alternative.
This removes any incentive for an agent to partic-
ipate multiple times.

As another example, let us consider again a com-
binatorial auction in which we use the GVA. Agent
1 uses identifier 1 to bid $100 for {A, B}, and agent
2 uses two identifiers, 2a and 2b, and bids $80 for
{A} with the former and $80 for {B} with the latter.
Without verification, this is an effective false-name
manipulation for agent 2. However, now let us sup-
pose that the verification protocol decides to ask
both 2a and 2b for identifying information. At this
point, agent 2 has a problem. She can respond for
neither, in which case both identifiers are removed
and the manipulation was obviously ineffective.
She can also respond for (say) 2a, in which case 2b
will be removed. After the removal of 2b, 2a loses.
Thus the manipulation becomes ineffective.

Unlike in the case of majority voting, for com-
binatorial auctions we have not made it clear how
the verification protocol chooses which identifiers
to ask for identifying information in general.
Without a general specification of this, we cannot
say whether the resulting overall mechanism is
robust to false-name manipulation, or not. More
ambitiously, can we give a general characteriza-
tion of how much verification is needed in order
to guarantee false-name-proofness? It turns out
that we can.

First, let us say that a subset of at least two
reports (votes or bids) requires verification if it is
possible that this subset consists exactly of the
identifiers used by a single agent, and that more-
over, under the mechanism without verification,

this agent is strictly benefiting from this manipu-
lation (relative to just using a single identifier). For
instance, in the previous example, the set of bids
{2a, 2b} requires verification, because we have
already seen that an agent can benefit from using
these two bids under the standard GVA. Similarly,
in a majority election between two alternatives, if
A is ahead of B by l votes, then any subset of l + 1
votes for A requires verification. (A subset of l or
fewer votes does not require verification, because,
if a single agent had submitted these l votes, then
the agent would have succeeded just as well with-
out manipulating, since her single true vote would
have been enough to make A win.)

Now, it turns out that the necessary and suffi-
cient condition for the verification protocol to
guarantee false-name-proofness is as follows: for
every subset that requires verification, the verifica-
tion protocol must ask for identifying information
from at least two of the identifiers in this subset.
The intuition is simple: if the protocol asks at most
one of the identifiers in the subset for identifying
information, then we have found a situation
where this subset would lead to a successful manip-
ulation for an agent (because the agent can
respond for this one identifier). On the other hand,
a verification protocol that satisfies this condition
will not leave any incentives for false-name manip-
ulation, because in every situation where an agent
engages in a false-name manipulation that might
be beneficial, that agent will be asked to provide
identifying information for at least two of her
identifiers, and will hence fail to respond for at
least one. It is important to recall here that when
at least one identifier is removed, the verification
protocol restarts, so that the identifiers that the
agent has left when verification finally terminates
completely cannot constitute a beneficial false-
name manipulation.

Using Social Network Structure to 
Prevent False-Name Manipulation
Yet another way around the impossibility results
for false-name-proofness is to use the social rela-
tionships among the agents. This is an idea that
has been explored in the systems literature in the
context of preventing Sybil attacks (Yu et al. 2008;
2010), but more recent work takes a mechanism
design approach to this (Conitzer et al. 2010). Let
us suppose that the entity running the mechanism
(the center) has access to some social network
structure on the identifiers. For example, in 2009,
Facebook, Inc., conducted a poll among its users
regarding its new terms of use. Facebook naturally
knows the social network structure among the
accounts. At the same time, it is easy for a user to
create one or more fake accounts on Facebook.
Moreover, it is easy for that user to connect some
of her accounts (including her legitimate account)
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to each other, in arbitrary ways: the user simply
logs in under one account, requests to connect to
the other account, then logs in under that account
and approves the request. However, it is more dif-
ficult for this user to connect her fake accounts to
the accounts of other users: presumably, if the user
sends a request from one of her fake accounts to
another user’s account, that user will not recognize
the fake account, and reject the request.5

Let us assume that the manipulating user is
unable to connect her fake accounts to the
accounts of any other users. Of course, she can still
connect her true account to the accounts of her
real-life friends. This results in an odd-looking
social network graph, where the manipulating
user’s true account provides the only connection
between her fake accounts and the rest of the
graph. Technically, her true account is a vertex cut
of size 1 in the graph (where the vertices of the
graph are the accounts). While the center cannot
directly observe that the accounts on the other side
of this vertex cut are indeed fake, she has reason to
be suspicious of them. To remove incentives for
false-name manipulation, the center can simply
refuse to let such accounts participate. Of course,
the downside of this is that in some cases, such
accounts are actually legitimate accounts that just
happen not to be very well connected to the rest of
the graph. However, if this rarely occurs (for legit-
imate accounts), then preventing a few legitimate
accounts from participating may be a reasonable
price to pay to obtain a type of false-name-proof-
ness guarantee.

There are several issues that need to be addressed
to make this approach successful. The first is that,
at least in principle, the manipulating user could
build a structure of fake accounts that is incredibly
large and complex, just as much so as the true
social network. If she does so, then how does the
center know which one is the true social network?
To address this, we make the reasonable assump-
tion that some accounts are trusted by the center,
in the sense that these accounts are known to cor-
respond to real agents. Thus, the accounts that the
center should suspect are the ones that are sepa-
rated from the trusted accounts by a vertex cut of
size (at most) 1.

Another issue is that two legitimate users may
conspire and create fake accounts together. In this
case, they can connect the fake accounts to both of
their legitimate accounts, so that there is no vertex
cut of size 1. Of course, the two legitimate accounts
now constitute a vertex cut of size 2. The general
solution to this problem, unsurprisingly, is to
refuse to let any account participate that is sepa-
rated from the trusted accounts by a vertex cut of
size at most k, where k is the largest number of
users that can be conceived to conspire together.

In fact, this introduces another subtlety that

needs to be addressed. It turns out that, if the only
accounts that we prevent from participating are
the ones that are separated from the trusted
accounts by a vertex cut of size at most k, then
there can still be incentives to create fake accounts.
The reason is that, while these fake accounts will
not be allowed to participate, they may neverthe-
less prevent other accounts from being separated
from the trusted accounts by a vertex cut of size at
most k, which can be strategically valuable. A solu-
tion is to apply the procedure iteratively: remove
the accounts that are separated from the trusted
accounts by a vertex cut of size at most k, then do
the same on the remaining graph, and so on, until
convergence.

For the case where there are no trusted accounts,
these techniques can still be applied if we have a
method of verifying whether accounts are legiti-
mate. Then, accounts that have passed the verifi-
cation step take the role of trusted accounts. This
naturally leads to the question of which accounts
should be verified. One natural approach is to try
to find a minimum-size set of accounts that, when
verified, guarantees that every account in the
graph is legitimate (that is, no accounts are sepa-
rated from the verified accounts by a vertex cut of
size at most k). It turns out that this optimization
problem can be solved in polynomial time, using a
matroid property of this problem (Nagamochi,
Ishii, and Ito 1993).

Coalitional Games
In this final section before the conclusion, we con-
sider one additional setting that is slightly different
in nature from the mechanism design settings that
we have considered so far. Here, we consider some
elements of cooperative game theory, also known as
coalitional game theory. Specifically, we consider set-
tings in which agents can work together in a coali-
tion to generate some type of value. For example,
multiple companies may be able to increase their
profit by working together. A key question is how
to divide the gains that result from such coopera-
tion among the members of the coalition.

Coalitional game theory provides several solu-
tion concepts that prescribe how much of the gen-
erated value each agent should receive. These solu-
tion concepts require us to know the characteristic
function w : 2N→ ℝ, where N is the set of all agents
and w(S) gives the value that would be generated
by coalition S. A good example of a solution con-
cept is that of the Shapley value (Shapley 1953). To
understand the Shapley value, it helps to first con-
sider a simpler way of dividing the value, which we
will call the marginal contribution solution. Place
the agents in some order �: {1, …, n} → N, where
�(i) gives the agent ordered ith. Let S(�, k) = {a �
N: �-1(a) � k} consist of the first k agents according
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to the order �. Then, we give each agent her mar-
ginal contribution to the coalition — that is, the
agent �(k), who is ordered kth, receives w(S(�, k)) –
w(S(�, k – 1)), the difference between the value that
the first k agents can generate and the value that
the first k – 1 agents can generate.

A drawback of the marginal contribution solu-
tion concept is that it requires us to choose some
order �, and this order can have a significant
impact on the values received by individual agents.
For example, suppose that two agents are substi-
tutable, in the sense that having either one of
them in a coalition generates a significant amount
of value, but having both of them generates hard-
ly more value than just having one. Then, each of
these two agents would strongly prefer to be earli-
er in the order, where she can still make a differ-
ence. The Shapley value gives a fair solution to this
problem: it simply averages the marginal contribu-
tion value over all possible orders. That is, agent a
receives (1/|�|) ��w(S(�,�-1(a))) – w(S(�,�-1(a) – 1))
under the Shapley value, where |�| is the number
of possible orders of the agents.

However, it turns out that the Shapley value is
vulnerable to a type of false-name manipulation
(Yokoo et al. 2005). To see why, we first consider
the fact that the reason that an agent is useful to a
coalition is that she brings certain resources to the
coalition. Letting R be the set of all possible
resources, we can define a characteristic function
directly over subsets of these resources, v: 2R → ℝ.
If we know that agent a owns resources Ra, then we
can rederive the characteristic function over sub-
sets of agents from this: the value of a coalition is
simply the value of all the resources they possess,
w(S) = v(�a�S Ra).

Now, consider a situation where there are three
resources, {A, B, C}, and all these resources are nec-
essary to generate any value: v({A, B, C}) = 1 and
v(S) = 0 for S � {A, B, C}. Also, suppose that there
are two agents: agent 1 owns resource C and agent
2 owns resources A and B. It is straightforward to
calculate that the Shapley value of each agent is
1/2. However, now suppose that 2 pretends to be
two agents instead: 2a who owns resource A, and
2b who owns resource B. Then, the Shapley value
of each identifier is 1/3. Because agent 2 controls
two of these identifiers, she obtains a total value of
2/3, greater than the 1/2 that she would have
obtained without false-name manipulation. (This
example was given by Yokoo et al. (2005). This
type of manipulation has also been studied in the
context of weighted voting games (Bachrach and
Elkind 2008).)

This leads to the question of whether there are
good solution concepts in this context that are not
vulnerable to this type of manipulation. Because we
have a characteristic function v that is defined over
subsets of the resources rather than the agents, a

natural idea is to distribute payoffs to the resources,
instead of to the agents. Then, an agent receives the
payoffs of all of the resources she owns. For exam-
ple, if we apply the idea of the Shapley value to the
resources directly, then each of the resources A, B,
and C receives 1/3, regardless of who owns them.
This immediately prevents the type of false-name
manipulation discussed above: distributing one’s
resources over multiple identifiers does not affect
how much these resources will receive.

Unfortunately, distributing to resources instead
of to agents introduces another problem, namely
that an agent may wish to hide some of her
resources. To see why, consider a different function
v, namely one for which v({A, B, C}) = v({A, C}) =
v({B, C}) = 1, and v(S) = 0 for all other S. A straight-
forward calculation shows that the Shapley value
(applied to resources) gives 1/6 to each of A and B.
Now, consider a situation where agent 1 owns
resource C, and agent 2 owns resources A and B. If
agent 2 hides resource A (but reports resource B),
then the restriction of v on the reported resources
is v({B, C}) = 1 and v(S) = 0 for all S � {B, C}. Hence,
the Shapley value distributes 1/2 to B, which is
more than the 1/6 + 1/6 = 1/3 that agent 2 would
have received without hiding A.

Based on these ideas, Yokoo et al. (2005) define
the anonymity-proof core, which is robust to these
manipulations. Ohta et al. (2006) give a compact
representation of outcome functions in the
anonymity-proof core, and also introduce a con-
cept called the anonymity-proof nucleolus. Finally,
Ohta et al. (2008) introduce the anonymity-proof
Shapley value, based on the concept of the Shapley
value discussed previously.

Conclusion
As we have seen, the basic notion of false-name-
proofness allows for useful mechanisms under cer-
tain circumstances, but in general there are impos-
sibility results that show that false-name-proof
mechanisms have severe limitations. One may
react to these impossibility results by saying that,
since false-name-proof mechanisms are unsatisfac-
tory, we should not run any important mecha-
nisms in highly anonymous settings — unless, per-
haps, we can find some methodology that directly
prevents false-name manipulation even in such
settings, so that we are back in a more typical
mechanism design context.

However, it seems unlikely that the phenomenon
of false-name manipulation will disappear anytime
soon. Because the Internet is so attractive as a plat-
form for running certain types of mechanisms, it
seems unlikely that the organizations running these
mechanisms will take them offline. Moreover,
because a goal of these organizations is often to get
as many users to participate as possible, they will be
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reluctant to use high-overhead solutions that dis-
courage users from participating. As a result, per-
haps the most promising approaches at this point
are those that combine techniques from mecha-
nism design with other techniques, as discussed
towards the end of this article. It appears that this is
a rich domain for new, creative approaches that can
have significant practical impact.
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Notes
1. Fairly weak conditions that preclude false-name-proof-
ness were later given by Rastegari, Condon, and Leyton-
Brown (2007).

2. This may lead one to ask why we do not simply use the
majority rule; the answer is that the majority rule is not
false-name-proof with small costs, so that the votes can
no longer be taken at face value.

3. It is possible that the agent can respond, for some iden-
tifier, with the identifying information of some other
real-world agent. However, if the other real-world agent
is a willing participant in this, then this is a case of col-
lusion, not false-name manipulation. Otherwise, it is a
case of identity theft, which would have to be prevented
through other means.

4. It may seem inefficient to start entirely from scratch;
however, it facilitates the analysis. Moreover, because the
protocol will remove any incentives to participate more
than once, we may assume that, in fact, nobody will par-
ticipate more than once, so that we do not expect any
identifiers to not respond. (This, of course, does not
mean that we do not need to do any verification at all,
because then incentives to participate multiple times
would reappear.)

5. Of course, depending on the particular social network,
some users may actually approve such requests. Howev-
er, it seems that it would be easy to detect an account that
illegitimately attempts to connect to many other users: it
would have a noticeably low success rate, and these oth-
er users may report the account.
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June 6–10, 2011 

13th International Conference on AI and Law  
University of Pittsburgh School of Law 

http://www.law.pitt.edu/ICAIL2011 
ICAIL 2011 will be held under the auspices of the International 
Association for Artificial Intelligence and Law (IAAIL), in 
cooperation with AAAI and ACM.  Topics include: 
• the computational study of legal reasoning and argumentation 
• the formal representation of norms and normative systems 
• advanced IT studies, using law as the illustrative domain 
• advanced IT applications to support tasks in the legal domain. 

Program Chair: Tom van Engers, Leibniz Center for Law, 
University of Amsterdam, Netherlands (vanEngers@uva.nl) 
Conference Chair: Kevin Ashley, University of Pittsburgh School 
of Law, PA, USA (Ashley@pitt.edu) 
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