
Preventive maintenance can reduce breakdowns and the
costs associated with them but is also costly when done
frequently. That is why substantial efforts have been

invested in minimizing the expected total cost due to failures
and preventive maintenance of industrial equipment (Dekker
1996, Tan and Kramer 1997, Bäckert and Rippin 1985, Dekker
and Scarf 1998). In industry, most preventive-maintenance
approaches include the use of fixed schedules, optimized in
advance for minimum cost. However, there are many situations
in which maintenance replanning is necessary to operate with
as low cost as possible. For example, unexpected breakdowns
force the production unit to stop for emergency repair, and per-
forming other maintenance tasks at the same time can save time
and money. In addition, the increasing use of condition moni-
toring leads  to more unpredictable maintenance events and a
need for dynamic planning. 

In this article, we present the ideas behind the preventive-
maintenance optimizer (PMOPT) tool used to optimize gas tur-
bine maintenance schedules. We developed PMOPT for Siemens
Industrial Turbomachinery AB (SIT AB), one of the leading man-
ufacturers of gas turbines of small and medium size. Gas tur-
bines are used for power generation in various production facil-
ities that often have high down time costs. A gas turbine in the
form of a jet engine is depicted in figure 1. Axial flow gas tur-
bines (including many industrial gas turbines) are constructed
using a compressor, which produces compressed air to a combus-
tion chamber, where fuel is injected. The resulting mixture is
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n Preventive-maintenance schedules occurring
in industry are often suboptimal with regard to
maintenance coallocation, loss-of-production
costs, and availability. We describe the imple-
mentation and deployment of a software deci-
sion support tool for the maintenance planning
of gas turbines, with the goal of reducing the
direct maintenance costs and the often costly
production losses during maintenance down
time. The optimization problem is formally
defined, and we argue that the feasibility ver-
sion is NP-complete. We outline a heuristic
algorithm that can quickly solve the problem for
practical purposes and validate the approach on
a real-world scenario based on an oil produc-
tion facility. We also compare the performance
of our algorithm with results from using integer
programming and discuss the deployment of the
application. The experimental results indicate
that down time reductions up to 65 percent can
be achieved, compared to traditional preventive
maintenance. In addition, the use of our tool is
expected to improve availability by up to 1 per-
cent and to reduce the number of planned
maintenance days by 12 percent. Compared to
an integer programming approach, our algo-
rithm is not optimal but is much faster and pro-
duces results that are useful in practice. Our test
results and SIT AB’s estimates based on opera-
tional use both indicate that significant savings
can be achieved by using our software tool,
compared to maintenance plans with fixed
intervals. 



ignited, thereby increasing the volume and veloci-
ty of the gas flow, in turn driving the turbine. Since
the turbine is coupled to the compressor, the com-
bustion cycle is sustained. A typical application of
industrial gas turbines is offshore oil platforms,
where power outage can cause an extremely high
loss of revenue. In such applications, small
improvements in terms of overall availability,
which is one expected outcome of implementing
condition-based maintenance (CBM), have a sub-
stantial positive effect on the total income for the
customer. 

Condition-based gas turbine maintenance,
where component lifetime is dependent on factors
such as load profile, quality of fuel, ambient tem-
perature, and particle levels, is therefore becoming
more and more common. Although lifetime pre-
dictions can sometimes be performed with high
precision, the predicted maintenance dates will
sooner or later diverge from their estimates
depending on on-site conditions. 

The approach we present in this article provides
the means to quickly optimize maintenance when
unplanned events make the previous schedule
unsuitable. We use a rolled-out representation of
the predicted future maintenance schedule and
take positive effects of co-allocation, overall avail-
ability due to preventive maintenance, horizon
effects, and costs due to both maintenance and
loss of production into account. Since proper risk
analysis and deterioration model identification is
in many practical cases difficult to perform from
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scratch, maintenance intervals are often based on
analytical models and “best practice.” In PMOPT,
we assume that a safe deadline for all maintenance
activities exists, which simplifies the problem and
makes it easy to adapt already existing mainte-
nance plans for use in PMOPT. 

The contributions of this article include that we
(1) precisely define the maintenance-scheduling
problem discussed, (2) argue that the planning
problem is NP-complete, (3) outline an algorithm
that can quickly solve the problem for practical
purposes, (4) show results for a real-world scenario,
(5) compare the results of our algorithm to the
results from using integer programming, and (6)
discuss the implementation and deployment of
PMOPT. 

Related Work 
Maintenance optimization has been an active
research area for a long time; Dekker (1996) gives a
good overview of the different applications. The
work most closely related to our article is con-
cerned with maintenance scheduling where eco-
nomic dependencies between activities exist. Most
researchers seem to use a common setup cost s for
all maintenance activities performed at a single
maintenance occasion. The cost saving for group-
ing n maintenance activities together then
becomes (n – 1)s. In this article, we propose a mod-
el of indirect economic dependence between activ-
ities, where the economic effect of joint execution

Intake Compression Combustion Exhaust

Air Inlet

Cold Section

Compression Combustion Chambers Turbine Exhaust

Hot Section

Figure 1. Schematics of a Gas Turbine. 

Image taken from figure 14-1, Airplane Flying Handbook, U.S. Federal Aviation Administration 2004.



depends on the resulting down time of the main-
tenance stop. The down time in turn depends pri-
marily on the length of the activities at the stop
and whether activities can be performed in paral-
lel or not. 

As an example of the former approach, Wilde-
man, Dekker, and Smit (1997) discuss the type of
economic dependencies with one single shared set-
up cost and in addition propose a polynomial solu-
tion approach to the scheduling problem. The
polynomial solution is optimal if the optimal
groups are always consecutive, that is, the activities
occur in the same order as their locally optimal
date. In the model proposed in this article, it may
very well be optimal to group activities noncon-
secutively if the earnings from doing so outweigh
the costs. Van Dijkhuizen and van Harten (1997)
propose a generalization to a tree-shaped setup
structure. Another approach is given by Yamayee,
Sidenblad, and Yoshimura (1983), who use dynam-
ic programming to optimize maintenance with
respect to equipment reliability, demand of gener-
ating units, and maintenance cost. The main dif-
ference compared to our work is that Yamayee et
al. consider large-scale scheduling of power-gener-
ating units, whereas we focus on single-unit multi-
component maintenance, for which a detailed
down time model is beneficial. 

Tan and Kramer (1997) consider opportunistic
maintenance in the chemical processing industry.
Monte Carlo simulation is used to estimate costs,
which allows a generic cost structure. In this
approach, it is possible that an event with a low
probability but a very high cost is not sampled and
therefore not taken into account. Another differ-
ence compared to our work is that, in addition, we
consider nonhomogenous loss-of-production
costs. The model we employ therefore allows us to
optimize maintenance for scenarios that include
periods with both lower than normal down time
cost and with a higher cost. This is important in
many industrial areas, for example, in the oil and
gas industry. Marseguerra, Zio, and Podofillini
(2002) also use Monte Carlo simulation and genet-
ic algorithms and, in addition, consider other
properties such as the number of maintenance
technicians available. However, other economic
dependencies between components are not con-
sidered. 

Background 
The common practice of gas turbine maintenance
planning today is to base the schedules on equiva-
lent operating hours (EOH) and cycles (number of
turbine restarts). In calculating EOH, we modify
the number of operating hours with factors for
load, fuel quality, presence of water injection, and
(to a limited extent) significant exhaust tempera-

ture differences. However, the model is not
detailed enough in how these variables are han-
dled, and factors such as ambient air temperature
and pressure, rotational speeds, and more detailed
outlet temperatures are not included. Instead, the
EOH calculations have built-in safety margins to
accommodate for variables not explicitly modeled. 

To improve overall maintenance efficiency, new
calculations for estimating the remaining lifetime
of gas turbine components based on operation pro-
file, environmental conditions, and condition data
(obtained through inspections and sensors on the
gas turbine) was developed by SIT AB. A lifetime
prediction tool, producing deterministic lifetime
estimates, was also developed. The lifetime esti-
mates produced by the tool include relevant safety
margins. Therefore, changes in lifetime do not
affect risk levels negatively as long as the gas tur-
bine is maintained within its predicted service
period. In fact, risk levels are in many cases dra-
matically reduced, since the lifetime prediction
tool also detects and decreases maintenance inter-
vals for gas turbines operating under conditions
with increased component wear (for example high
load, high humidity, or low fuel quality). 

Maintenance Activities 
In this article, we assume that the optimal mainte-
nance intervals (t i

opt) for the individual compo-
nents have already been calculated. We use the
term replacement of a component to represent
repair to a state that is as good as new, while
inspections (including servicing, lubrication, on-
condition, and failure-finding tasks) are considered
“as-good-as-old” maintenance and do not affect
component lifetime. 

Since replacements restore component lifetime
fully, it is suboptimal to schedule inspections inde-
pendently of the performed replacements. The sce-
nario of independent inspections and replace-
ments is shown in figure 2, where a total of five
inspections are made. In contrast, the scenario
used in this article is shown in figure 3. Here, only
three inspections are needed; the replacements
that occur in between restore component status,
and therefore, fewer inspections are needed. Note
that truly independent inspections can still be
modeled using a separate artificial component con-
taining only inspection items. 

The Gas Turbine 
Maintenance Process 

In this section, we outline a workflow for the use of
gas turbine maintenance planning. The process is
dependent on both online lifetime predictions
using a prognostics tool and on-demand mainte-
nance optimization using the PMOPT scheduling
tool. The workflow shown in figure 4 starts with
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identification and specification of single and com-
posed components and corresponding items. If an
item can belong to more than a single component,
we either split the item into separate items for the
components in question or put the item in a gener-
ic component schedule existing solely for that pur-
pose.
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Independent of this activity, production plan-
ning begins so that requirements from production
can be used later in specifying constraints for the
maintenance optimization. As an intermediate
step, initial lifetime predictions are carried out
using EOH and start-stop cycle estimates for com-
ponents without damage accumulation algorithms

Time

Age

Overhaul Replacement

Inspections

Figure 2. Unrelated Replacements or Overhauls and Inspections of a Single Component. 
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Figure 3. Synchronized Replacements or Overhauls and Inspections, 
Resulting in the Elimination of Unnecessary Inspections (dotted). 
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Figure 4. Workflow of Maintenance Planning using PMOpt. 



� Minimum required availability. 
bj Base cost of opening opportunity j.
vj Maximum work time at opportunity j.
�j Date of an opportunity j. 
t[i] Maintenance date of item i.
t i

opt Locally optimal time of maintenance for item i.
t i

dl Deadline of item i, relative to pi.
�pi Duration in phase q � 1..p for item i.
t i

min Earliest possible date for item i.
h Scheduling horizon. 
� Artificial item representing the schedule start. 
ci Cost of item i. 
� Artificial item representing the schedule end. 
kmax Maximum discrepancy parameter tried in LDS. 
t i

max Latest possible date for item i.
li Loss of production cost at opportunity j.
ℰ The set of head items. 
ℒ The set of tail items. 
obs(i) Predicate indicating whether item i is obsolete. 
pi Predecessor of item i.
rj Resting time att opportunity j.
t i

rt Release time of item i, relative to pi. 
si Terminator of item i.
uj Total work time at opportunity j. 
A The number of working hours per day. 
b Maximum branching factor in the search tree. 
d Remaining depth of the search tree. 
k LDS discrepancy parameter. 
m Number of opportunities. 
n Number of items. 
p Number of phases. 
w Weight for cost due to unused lifetime. 

or using prognostic tools for the other compo-
nents. 

From the lifetime predictions and production
requirements, a maintenance specification is then
constructed using PMOPT. It is important to point
out that as many requirements as possible are for-
malized in the specification. At the same time, a
list of known recurring and one-time maintenance
opportunities is made together with durations and
estimates on the cost of down time during the
opportunities. Further, a contract specification is
needed, formalizing the contract period and avail-
ability requirements. Some of the contract require-
ments, for example calendar constraints, may also
have to be put in the maintenance specification; to
avoid clutter, these requirements are not shown in
figure 4. 

Given the output of the process so far, PMOPT is
now ready to produce initial maintenance sched-
ules. During production, PMOPT is used continual-
ly and updated with the latest information as soon
as it is available. For example, PMOPT needs to
know which part of the maintenance plan has
already been executed and, consequently, which

items are still pending. Unexpected corrective
actions and maintenance opportunities are insert-
ed manually together with suitable adjustments on
the remaining lifetime of the components affect-
ed. Production changes mean that the future main-
tenance opportunities, costs, and priorities change,
and such changes must be fed into PMOPT to pro-
duce relevant results. When the maintenance plan
of the gas turbine is changed for other reasons not
part of the CBM process, PMOPT still needs new
maintenance schedules, so that maintenance is
planned according to the current state of practice. 

Scheduling Maintenance 
with Downtime Costs 

We informally describe the maintenance schedul-
ing with opportunities problem (MSOP) as the
problem of allocating n maintenance items to m
dates (opportunities) for a set of independent com-
ponents in a single unit and for a time period of h
weeks, so that constraints on timeliness, mainte-
nance duration, and total availability (due to pre-
ventive maintenance) are satisfied. We assume that
maintenance of any component means that the
entire unit has to be shut down. The allocation
should minimize direct and indirect maintenance
costs, including spare parts, labor, and the value of
production that is lost due to maintenance. In the
rest of this section, we use terminology depicted in
the adjacent shaded box. 

Each component has a cyclical schedule of arbi-
trary length, consisting of replacement (Rx) and
inspection (Ixy) items. The date of a replacement
depends on the previous replacement, while
inspections depend on the previous item regardless
of type. We assume that the given component
schedules are followed; deviations are taken into
account by updating the schedule data. 

Duration and Downtime Models 
In maintaining a gas turbine, the work included in
a single maintenance item can often be divided
into different phases, for example the phases shut-
down and cooling, dismantling, repair, reassembly,
and startup, which are shown in figure 5. 

To estimate work time at a maintenance stop,
each maintenance item therefore has a duration
specification �i = ��1i, �2i, …, �pi� dividing work into
p nonnegative work phases. All activities within a
single phase at a single stop are assumed to be ful-
ly independent and can therefore be executed in
parallel. In contrast, the phases themselves are
done in an orderly fashion. The total work time uj
of a stop can thus be computed as the sum of the
maximum work time in each block: 

(1)
uj i n

i j
q p

qi=
≤ ≤

≤ ≤
∑ max

1
1

performed at

Δ
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An example is given in figure 5, where the five
duration specifications �1 = �8, 0, 13, 0, 12�, �2 =
�13, 7, 0, 7, 12�, �3 = �13, 7, 8, 17, 8�, �4 = �13, 15,
7, 8, 12� and �5 = �13, 10, 12, 0, 12� are jointly per-
formed at the same stop. The working time for the
different phases then becomes �13, 15, 13, 17, 12�,
and the total work time at the stop is then 70
hours. 

Given the total work time at a stop, we can now
compute the down time by adding resting time for
the maintenance crew. We assume that a working
day consists of A hours and that all calendar weeks
(consisting of 6 working days) are alike. The resting
time at an opportunity consists of night and week
rest time and is computed as follows: 

(2)

The total down time is the sum of working time
and resting time. Continuing our example in figure
5 and assuming that A = 10, we obtain a resting
time of 108 hours and a total down time of 178
hours. 

Scheduling Model 
We assume that n maintenance items i have been
rolled out to cover weeks 1 to h (the horizon of the
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problem). The decision variable t[i] represents the
date of item i. The schedule end is modeled by the
artificial item � at date h + 1, and the schedule
start is modeled by another artificial item � at date
0. The possible allocation dates within the sched-
ule are modeled by a set of opportunities j � 1..m
with dates �j and maximum work time vj.

The different timeliness constraints in the prob-
lem are illustrated in figure 6 and can be expressed
as follows. Each item i has a release time t i

rt and a
deadline t i

dl relative to i’s predecessor pi. Each item
also has an optional earliest and latest date of exe-
cution (t i

min and t i
max). After a replacement, a se -

quence of inspections should follow before a new
replacement is made. Similarly, the schedule
should contain enough replacements to cover the
scheduling period, but extra replacements should
not be taken into account. We call rolled-out items
that do not have to be executed obsolete items. For
this purpose, each item i has a terminator si that
makes i obsolete if i is done later or at the same
date as si. For simplicity, we force obsolete items to
be allocated to the same date as their terminator.
Formally, we define the predicate obs(i), with the
meaning that item i is made obsolete by its termi-
nator si, as follows.

obs(i) � t[i] = t[si] (3)

Replacements always have � as their terminator,
which implies that they are obsolete when they are
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Figure 5.

Duration and down time model, where work is divided into phases in which activities can be executed in parallel. Resting time is then
added. We assume that Mondays are spent travelling. 



not performed before the problem horizon h. Fig-
ure 6 illustrates relative timeliness constraints
between pairs of tasks as well as predecessor and
terminator relationships in a fictional schedule.
The set of items that are first in the schedule for
each component is called the set of head items, and
is denoted ℰ. All head items have � as their pred-
ecessor. 

To ensure that the gaps after sequences of items
are not too large, we use special items representing
the end of such sequences. We call such items tail
items. The set of tail items ℒ consists of (1) the last
replacement for each component and (2) the last
item in each inspection sequence. To ensure that
the generated schedules cover the scheduling peri-
od, we force all tail items to be obsolete. The dead-
line constraints then ensure that the gaps at the
end of an inspection or replacement sequence are
smaller than required. 

Each item also has an item cost ci consisting of
work and material cost. In addition, the value of
production per hour at an opportunity j is denot-
ed lj. We also use a base cost bj for opening up
opportunity j. The base cost is associated with

shared setup costs not related to the down time of
the opportunity and includes some of the costs for
shutting down and restarting the gas turbine, trav-
el expenses, and other shared costs that cannot be
modeled using material, work, or down time costs.
Minimum availability is specified using the param-
eter � (where 0 ≤ � ≤ 1). The total availability is
defined as the time not spent on preventive main-
tenance divided by the total available time. 

The constraints can now be formally stated. 

Each item i should be allocated to a date less than
or equal to its deadline. 

�i � 1..n : = t[i] ≤ t[pi] + t i
dl (4)

Each item has to respect its absolute allocation
interval. 

�i � 1..n : = t i
min ≤ t[i] ≤ t i

max (5)

Each tail item has to be obsolete. 

�i � ℒ : obs(i) (6)

Each nontail item i should be either obsolete or
allocated to a date larger than its offset. 

�i � 1..i \ℒ : obs(i) � t[i] ≤ t[pi] + t i
rt (7)
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Figure 6.

Dependencies (top) and relative timeliness constraints (bottom) between different maintenance items of a component. 



For each opportunity j, the work time uj of j must be
lower than the maximum work time vj.

�j � 1..m : uj ≤ vj (8)

The availability of the plan should be greater than
the minimum availability �. 

(9)

The objective of the optimization problem is to
minimize the cost function f, defined as follows: 

(10)

The first term is the maintenance cost of all items
performed before the schedule horizon, the second
term is the indirect cost due to loss of production,
and the third term is the total of the shared costs
due to initiation of maintenance (base costs). 

Complexity 
Let FMSOP be the problem of determining whether
a feasible maintenance schedule exists. In this sec-
tion, we argue that FMSOP is NP-complete by
showing that (1) FMSOP is in NP, since it has a
polynomial-time verification algorithm (Cormen
et al. 2001), and (2) that there is a polynomial-time
reduction from the bin packing problem (BPP)
(Coffman, Garey, and Johnson 1997) to FMSOP.
The objective of BPP is to pack items i � {1, …, n}
of given sizes ai into as few bins (with fixed capac-
ity V) as possible. The used capacity of a bin is com-
puted as the sum of the weights of the items in the
bin. The decision variant of BPP answers the ques-
tion whether a packing for any given number of
bins m exists. 

Given a candidate solution to FMSOP (that is an
assignment of dates to the maintenance items), we
can verify the constraints on structure and timeli-
ness by simply testing equations 4–7 for the given
dates of the item and its predecessor and termina-
tor. This verification can be done in O(n) time. The
m capacity constraints in equation 8 can easily be
verified by accumulating the items allocated to the
opportunities in time O(np + m), where m is the
number of opportunities and p is the number of
phases. The availability constraint in equation 9
can also, in a similar fashion, be verified in O(np +
m) time. The procedure outlined above is polyno-
mial, and therefore FMSOP is in NP. 

We can translate a given BPP into a FMSOP by hav-
ing m opportunities, each opportunity j having date
�j = j and capacity vj = V. Let the horizon h = m + 1.
Each BPP item i is translated into a FMSOP replace-
ment item i with � as predecessor, 0 as release time,
m as deadline, t i

min = 0 and t i
max = h. The duration �qi

= ai if q = i and 0 otherwise, that is, the duration
(weight) of an item is always put in a unique phase
in �i. All items i have an artificial item n + i as ter-
minator, which in turn have release time 1, dead-
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line h +1, t i
min = 0, t i

max = h +1, � as terminator and
arbitrary duration. By definition, the tail items,
being replacements, have to occur at �, which is
outside the schedule. Let the minimum availability
� = 0. The transformed problem corresponds direct-
ly to BPP, since (1) each BPP item is represented by
an FMSOP replacement, (2) each BPP bin is repre-
sented by an FMSOP opportunity with unique date
and equal capacity, and (3) the total down time of
an opportunity is computed as the sum of the item
durations at that opportunity, since all durations
are in unique working phases, which corresponds
directly to the sum of the weights of items in a bin
in BPP. All other constructs of FMSOP are disabled
and therefore do not constrain the solution, and
therefore, BPP is a special case of FMSOP. 

If we could find a solution to the transformed
FMSOP using a polynomial-time algorithm, we
could then use that algorithm to solve BPP (which
is NP-complete [Garey and Johnson 1979]) in poly-
nomial time. This property together with the pre-
vious conclusion that FMSOP is in NP implies that
FMSOP is NP-complete. 

Efficient polynomial-time approximations exist
for the bin-packing problem (Coffman, Garey, and
Johnson 1997). However, MSOP differs in objective
from BPP and has complicating side constraints
that are missing in BPP. For example, in MSOP,
each opportunity (date) can have a different capac-
ity, base cost, and down time cost. In BPP, a bin is
defined only by its capacity, which is also uniform.
Another difference is that items in MSOP can par-
tially overlap within an opportunity due to the
work time model used. These properties make bin-
packing approaches inapplicable to MSOP. It is cur-
rently an open issue whether polynomial-time
approximation schemes exist for MSOP. 

A Tool for Maintenance Scheduling 
The optimization software consists of two separate
programs that communicate using files; PMOPT -
GUI and MAINTOPT. The schedule and related infor-
mation are considered to be a project and are stored
in a project file. A typical user would load a previ-
ously created project file directly after starting
PMOPT. PMOPT-GUI makes it possible to edit the
project file, and it immediately displays the effects
of edits, such as costs and availability. Edits include
changing lifetime estimates, adding or deleting
components and items, and moving or copying
items within and between components. Whenev-
er the user requests an optimization of the current
maintenance plan, PMOPT-GUI produces a rolled-
out representation of the specification, which is
passed on to the optimizer. As soon as MAINTOPT

finishes, the solution file is read back into PMOPT-
GUI and shown to the user. 
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Optimization Algorithm 
The requirement for the optimization algorithm is
that it should be able to produce maintenance
schedules within a limited time to be used interac-
tively. Many industrial problems can be solved
using tree search methods, especially if guiding
heuristics are available. For example, best-first
search methods such as A* search have been suc-
cessful on many problems (Nilsson 1971; Hart,
Nilsson, and Raphael 1972). However, A* search is
reliant on the availability of a good admissible
heuristic, and if no such heuristic is available, A*
search will on some problems use up too much
memory and time to be practically useful. Depth-
first-based search methods avoid the memory
issues of breadth-first search and A* but can easily
get stuck in unproductive areas of the search tree
when the heuristic fails. Limited discrepancy
search (LDS) addresses this problem (Harvey and
Ginsberg 1995; Korf 1996). The basic idea of LDS is
to use depth-first search guided by a heuristic but
to allow a specified number of “discrepant” choic-
es disagreeing with the heuristic. The number of
discrepant choices allowed in each path from root
to leaf is the discrepancy parameter k.

The basic LDS procedure introduced by Harvey
and Ginsberg (1995) only works on binary search
trees, although the authors also discuss extensions
to nonbinary problems. Algorithm 1 shows such an
extension, also modified to continue searching for
a best possible solution as measured by an objective
function f, which is infinitely valued for the empty
node NIL. In the original paper, it is discussed

whether all discrepant choices emanating from a
specific node should be treated equally, that is,
counted as “using up” a discrepancy of one, or
whether each further step away from the heuristic
should be counted as using up one more discrepant
choice. In algorithm 1, the latter view is taken. Fig-
ure 7 shows the unique paths explored for each
choice of k in a tree with branching factor 3. 

Korf (1996) modified LDS so that it only gener-
ates paths with exactly k discrepancies. This modi-
fication is done by keeping track of the remaining
depth d, pruning branches for which d ≤ k. While
modifying LDS to nonbinary trees, a similar
improvement can be done if the maximum branch-
ing factor b is known. At most d discrepant choices
can be made in a subtree of depth d, each choice
using up at most b − 1 discrepancies. We can there-
fore prune choices i where (b – 1)(d – 1) + i < k, or in
other words, start with choice number max(0, k – (b
– 1)(d – 1)). We assume that the function call SUC-
CESSORS(node) returns a list of feasible successor
nodes in increasing order of heuristic value. 

In the LDS procedure we use, maintenance items
are assigned in order of increasing deadline, and
the value-selection heuristic picks opportunities in
increasing cost order, with a bias for late opportu-
nities. In essence, the heuristic used is defined as 

(11)

where t[i � �j] is the result of assigning item i to
opportunity j given assignment t, w is a balancing
weight, and t i

opt is the original (optimal) mainte-
nance interval for component i. t i

opt is different
from t i

dl in that t i
dl may be changed due to con-

sumed lifetime of component i. Note that variable
domains are pruned using interval propagation
(Lhomme 1993). In our experiments, we found
that a maximum discrepancy of kmax = 2 gave over-
all good performance. We used w = 1 as the weight
value to favor late assignments, and the default
optimization time is set to 30 seconds, which is
more than enough for the problem instances we
have tried. 

Development and Deployment 
Manual planning is the norm in the gas turbine
field, and before PMOPT and the lifetime prediction
tool, SIT AB did not have any manual or automat-
ic procedures for improving maintenance sched-
ules. Instead, it used a standard schedule equal to
20,000 operating hours subject to a constant level
of degradation at a standard pace for all compo-
nents in the gas turbine. The initial effort at SIT AB
focused on developing more accurate lifetime pre-
dictions, and the need for optimization of mainte-
nance schedules first became apparent when the
technology was driven to the point that the total
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LDS-PROBE(node, k, d, b)
(1) if LEAF(node) then return node
(2) �suc0, …, sucb–1� ← SUCCESSORS(node)
(3) bt ← NIL

(4) for i = max(0, k – (b – 1)(d – 1)) to min(b – 1, k)
(5) bt ← argminf (bt, LDS-PROBE(suci, k – i, d, b))
(6) return bt

LDS(node, d, b, kmax)
(1) res ← NIL

(2) for k ← 0 to kmax

(3) res ← argminf (res, LDS-PROBE(node, k, d, b))
(4) return res

Algorithm 1. Limited Discrepancy Search for 
Nonbinary Optimization Problems with Objective f. 



effect of component lifetime extensions could be
evaluated. 

We were first approached by SIT AB regarding
maintenance-scheduling optimization during the
summer of 2006 at an international conference
related to condition monitoring. This first contact
resulted in a sequence of meetings during the
autumn at which we discussed and evaluated the
feasibility of the project idea. At this time point,
we had already developed the core maintenance-
optimization engine (MAINTOPT). However, MAIN-
TOPT was in its infancy, and we soon became aware
that we had to extend it with side constraints and
objective function terms that we had not previ-
ously considered. One example is the availability

constraints and the focus on down time as a criti-
cal parameter, which was not implemented in
MAINTOPT at that time. However, being able to
demonstrate our ideas helped a lot during the ini-
tial meetings. 

Before starting the PMOPT development process,
a third-party commercial product for maintenance
optimization was evaluated at SIT AB. One of the
main problems with the third-party product was
that it could not model important properties of the
gas turbine planning problem, such as seasonal
variations and usage profiles for different parame-
ters like load, particle levels, and environmental
factors. More importantly, the evaluated tool, and
most other generic maintenance-optimization
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(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3 (e) k = 4

(f) k = 5 (g) k = 6

Figure 7. Unique Explored Edges for Different Discrepancy Values in a Tree with Branching Factor 3. 



tools, use costs based on statistics. In reality, it is
common that the statistically optimal point of
lowest cost is not practically feasible due to lack of
data and the need for large safety margins. The
consequences of some types of failures, including
the possibility of loss of life, are under these cir-
cumstances too severe to be modeled and used as a
basis for planning. In addition, for a complex
machine such as a gas turbine, it is impractical to
identify all possible failures, the corresponding sta-
tistical distributions, and all consequences and
associated costs for each failure. Instead of having
too many estimates, we decided that a safe dead-
line for each maintenance item was a more rea-
sonable alternative. 

Throughout the project, a total of five people
from the Swedish Institute of Computer Science
were directly involved. We had two main contact
persons at SIT AB and decided to directly involve
several site managers for evaluation. SIT AB was
also heavily involved in the specification and
development throughout the project, and this
form of close collaboration allowed us to design
accurate models of the application and was in our
opinion a main factor behind the successful proj-
ect outcome. 

First Versions 
In November 2006, we received a spreadsheet con-
taining an early draft specification of the problem
to be solved. The spreadsheet showed some ideas
regarding calculations on down time and mainte-
nance-activity packaging, and we decided to devel-
op a prototype from the draft specification. The
prototype was nothing more than a simple graph-
ical front end to MAINTOPT without any interac-
tion. Nonetheless, it served the purpose of show-
ing the feasibility of the project proposal well.
After this prestudy and basic demonstration, we
began discussions regarding the project economy
and deliverables in early 2007. Soon after that the
contracts were signed and development started.
We finished the first release (version 0.9) in mid-
April 2007. Due to time pressure, the first version
was more of a prototype than a mature software
product. With many test releases in between, ver-
sion 1.0 was finally shipped in June 2007. The
global CBM project was however not fully opera-
tional at that time, and version 1.0 was therefore
mainly used for evaluation and as a platform for
further development. 

From experience with the first releases, we soon
realized that changes in the optimization engine
were rather straightforward to implement. Howev-
er, software maintenance and extensions that pri-
marily affected the management of the problem
model was much more time-consuming. One of
the biggest problems was to implement functional-
ity to manage the maintenance schedule while ver-

ifying model consistency under the entire set of
user actions possible. For example, changes in the
maintenance schedule made after running the gas
turbine for some time needed to be synchronized
with the already laid-out maintenance schedule up
to the current time point. Other areas that we chose
to put more work into than estimated were the
models of work time, application security, licens-
ing, management of gas turbine maintenance proj-
ects, and user accounts and rights management. 

Second Version 
We made several changes to the basic design of
PMOPT in the second phase of the project to sim-
plify the software maintenance of the application
and facilitate future extensions. Rewriting the core
of the application from scratch was perhaps the
largest change, but we also made some significant
changes in the search algorithm, which took some
effort. In the beginning, we implemented MAIN-
TOPT as a pure branch-and-bound algorithm based
on A* search (Russell and Norvig 2003). However,
after extensive experimentation with sample
maintenance projects we realized that the A*
search spent too much time and memory explor-
ing high-level decisions in the search tree and
failed to find feasible solutions quickly. Since
responsiveness was one of the main criteria of
PMOPT, we resorted to experimentation with
heuristics and after a while added the LDS proce-
dure as a first stage of the algorithm to quickly find
feasible solutions. Lately, we have completely
removed the A* search from MAINTOPT after observ-
ing that the heuristics were not nearly powerful
enough. Under these conditions, the A* search did
not explore the search tree to its maximum depth
within a reasonable time, and therefore, no feasi-
ble solutions were found. The ability to produce a
reasonably good solution fast was more important
than optimality, and we therefore chose LDS as the
primary search algorithm. 

With major changes to the GUI and improved
heuristics, we released version 2.0 in March 2008,
two months in advance of its deadline due to the
much improved core design, which helped speed up
the implementation of new features. Since then, we
have made more improvements and shipped a new
release in August the same year. The latest release
(version 2.4) was shipped in November 2008. 

Deployment at SIT AB 
During the development of PMOPT, we became
increasingly aware that a planning tool of this type
is not easily deployed. First of all, key personnel
had to be trained in condition-based maintenance
and in how to use PMOPT. During the development
of the first version, we continuously discussed sug-
gestions and ideas for the usability enhancement
of the software. Before deployment could begin,
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we also had to develop suitable business models
and finish evaluating current technology. In addi-
tion, data-acquisition routines, working processes,
and suitable information flows needed to be estab-
lished. Therefore, PMOPT was not deployed in
operational use until early 2008 after the release of
version 2.0. 

The greatest benefit of using PMOPT seems to
come from the ability to reoptimize maintenance
after unexpected stops have occurred. The software
has been used operatively for five months by
employees at SIT AB to help plan maintenance for
two gas turbine operators (end-user customers).
PMOPT is fully operational in planning mainte-
nance for the first operator and is used for valida-
tion and testing purposes of the global CBM strat-
egy and the technology involved for the second.
We test the planning software to gain feedback
from practical experience using both PMOPT and
the lifetime prediction algorithms. SIT AB plans to
have four or five people working with PMOPT for
10–15 different operational contracts within a few
years. Today, the tool is used interactively by
experts in extended lifetime maintenance. When
more people are starting to use PMOPT on a larger
scale, changes and upgrades will likely be necessary
as the user requirements on the application
emerge. 

Application Maintenance and Support 
We performed software maintenance of PMOPT on
demand when bug reports were filed, which hap-
pened mostly from our main contact people at SIT
AB after new releases had been shipped. Naturally,
we got most bug reports just after the delivery of
version 1.0. Overall, larger improvements were
mostly related to the GUI and the usability of the
system. Current users have direct contact with us
and are able to ask questions as well as request
changes. During the development, we improved
our understanding of the domain substantially,
and we gradually implemented several new fea-
tures in the problem models. SIT AB explicitly
requested some changes, while we judged other
changes to be necessary to make the code base easy
to maintain. As an example, we changed the spec-
ification of the optimization model several times.
Specifically, after a request from SIT we updated
the work time model to more accurately capture
the real duration, down time, and cost of a main-
tenance opportunity. In addition, the team also
proposed other changes regarding the model of
dependencies between maintenance items and the
handling of obsolete items. 

Estimated and Measured Benefits 
In this section, we evaluate PMOPT using condition
data and operational plans for a gas turbine used

by a customer in the oil and gas industry. The cost
of one engineer man-hour is roughly 120 USD, and
the loss-of-production cost is estimated to 12,000
USD per hour. The results of the evaluation are
based on the predicted cost savings produced by
PMOPT. The turbine under consideration has 17
components with individual schedules. We use a
standard maintenance schedule for the site as com-
parison. We modeled the critical components in
the gas generator stage for which lifetime data was
available (compressor turbine guide vanes and
blades) and analyzed the components in a prog-
nostics tool to determine suitable inspection inter-
vals. The average increase in inspection period was
116 percent, and replacements for the critical com-
ponents were not necessary, since their predicted
lifetime became longer than the standard mainte-
nance-contract length of 15 years. We described
the scenario in more detail in a previous paper
(Bohlin et al. 2009). 

SIT AB has done a partial validation of the
obtained lifetimes in that a reference gas turbine,
having operated under the same conditions, was
dismantled after a standard maintenance interval
of 20,000 operating hours and thoroughly inspect-
ed. The analysis showed that the accumulated
damage was significantly less than predicted using
the standard EOH calculations. However, final val-
idation has to wait until one or more reference gas
turbines have been dismantled after a longer oper-
ational period. 

We performed the evaluation on two scenarios.
The first scenario had a three-week seasonal stop
during the summer, when maintenance could be
done without any negative effects on production.
Such opportunities for maintenance are common
in practice. In the second scenario, no such favor-
able opportunities existed. In both scenarios, a low
base cost was associated with all maintenance
stops, and high costs were associated with loss of
production. The schedules resulting from running
PMOPT were analyzed with regard to cost of pro-
duction losses and maintenance costs. PMOPT was
set to run for at most 30 seconds. In all examples
tried, at most 10 hours of work per day were
allowed before a resting period. 

Results 
Table 1 shows simulated results on availability, rel-
ative maintenance load, and down time for the
eight different cases and a brand new gas turbine.
The rows “EOH” and “Progn” correspond to plan-
ning maintenance at the last possible date, as spec-
ified using standard EOH calculations and the
prognostics tool, respectively. This approach min-
imizes direct maintenance costs while ignoring
other costs. The rows marked “EOH opt” and
“Progn opt” correspond to optimizing mainte-
nance using PMOPT. 

Articles

SPRING 2010   33



Results are reported for availability due to pre-
ventive maintenance (“Avail”), maintenance costs
(“Maint index”), and productive down time (“DT
days”). Zero-cost down time corresponds to no
production losses and is, therefore, in contrast to
the theoretical model used in the optimization,
not considered as down time in the results. Main-
tenance costs are expressed using an index. In it,
100 represents the cost of doing maintenance with
the intervals from the standard schedule. In table
1, the results of using the standard schedule are
typeset in boldface. Note that these results are sub-

optimal when low-cost opportunities are present. 
As can be seen in table 1, better lifetime esti-

mates had a significant impact on maintenance
costs, availability, and down time. Adding the opti-
mization of maintenance using PMOPT yields even
better results and increases direct maintenance
costs slightly. These results are to be expected,
since production losses in this case are very costly
and optimization is done with regard to both loss
of production costs and direct maintenance costs.
When zero-cost maintenance opportunities were
available, productive down time was reduced to
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With Seasonal Stop Without Seasonal Stop 

Availability 
Percentage 

Maintenance 
index 

Down-time 
days 

Availability 
Percentage 

Maintenance 
index

Down-time 
days 

EOH 97.60 100 131 97.60 100 131 

EOH opt 99.99 109 0.42 98.15 120 101 

Progn 98.20 61 98 98.20 61 98 

Progn opt 100.0 62 0 98.81 75 65 

With Seasonal Stop Without Seasonal Stop 

Availability 
Percentage 

Maintenance 
index 

Down-time 
days 

Availability 
Percentage 

Maintenance 
index

Down-time 
days 

EOH 97.60 100 131 97.60 100 131 

EOH opt 99.99 109 0.42 98.15 120 101 

Progn 98.20 61 98 98.20 61 98 

Progn opt 100.0 62 0 98.81 75 65 

With Seasonal Stop Without Seasonal Stop 

Availability 
Percentage 

Maintenance 
index 

Down-time 
days 

Availability 
Percentage 

Maintenance 
index 

Down-time 
days 

EOH 95.26 121 259 95.26 121 259 

EOH opt 99.56 133 24.0 97.49 149 137 

Progn 96.03 79 217 96.03 79 217 

Progn opt 99.79 82 11.6 98.35 85 90 

Table 1. Predicted Results of Maintenance Optimization for a New Gas Turbine. 

Table 2. Predicted Results of One Maintenance Optimization for a 
Gas Turbine with Randomly Chosen History for Its 17 Components. 

With Seasonal Stop Without Seasonal Stop 

Difference 
Percentage 

Gap 
Percentage 

Time Difference 
Percentage 

Gap 
Percentage 

Time 

New Turbine 

EOH opt –6.1 0 40 minutes – ∞ 8 hours 

Progn opt –1.1 0 27 minutes +93 75.6 8 hours 

Used Turbine 

Progn –23.6 1.79 8 hours – ∞ 8 hours 

Progn opt – 0.6 0.95 8 hours – ∞ 8 hours 

Table 3. Comparison of Results between CPLEX 9.0 and PMOPT.

Negative numbers mean that CPLEX produced a lower cost than PMOPT.



zero or almost zero by planning maintenance for
the available opportunities. Table 1 also shows that
for the schedule with no advantageous opportuni-
ties, down time was reduced by more than 50 per-
cent using PMOPT and prognostics. 

Table 2 shows predicted results for the eight dif-
ferent cases and gas turbine already in use, simu-
lated by setting the already-used lifetimes of the
gas turbine components to a random number
drawn from a uniform distribution between zero
and the maintenance interval for the component.
As expected, table 2 shows higher costs and lower
availability than table 1 due to a more spread out
maintenance need. Using a prognostics tool and
PMOPT in this scenario also yielded significant
results. In the experiments, down time was
reduced by 65 percent for a schedule with no
advantageous opportunities, compared to the cur-
rent state of practice. In the case where seasonal
opportunities were present, down time was
reduced by 95 percent. 

Comparison with Integer Programming 
To investigate how far away from the optimum the
results from PMOPT were, we formulated MSOP as
an integer linear-programming problem. We used
ILOG CPLEX 9.0 on a mainframe computer with a
2.2 GHz dual core AMD Opteron CPU and 8 GB of
RAM to solve the problem. The total run time for
each case was limited to 8 hours. Although run-
ning an algorithm for such a long time is not suit-
able for our needs, the comparison still gives us
valuable insight in where PMOPT can be improved.
In contrast, PMOPT was run on a laptop with a 1.6
GHz Intel CPU for 30 seconds in each case. 

Results for the eight different cases in the previ-
ous sections are compared in table 3. Diff gives the
relative difference between the best found cost for
PMOPT and CPLEX, with negative values indicating
that CPLEX found a better solution than PMOPT.
The Gap column gives the relative optimality gap
(distance to the relaxed optimum) as returned by
CPLEX, with higher values indicating that the gap
is larger. The gap is infinite if no feasible solution
was found within 8 hours. The Time column
reports CPU runtime for proving optimality, with a
cutoff at 8 hours. 

For the two cases with a new turbine and sea-
sonal stops, CPLEX was able to find the exact opti-
mal solution (indicated by a gap value of 0). For
the two cases with a used turbine and seasonal
stops, CPLEX had found better solutions than
PMOPT when 8 hours had passed, with a quite
small optimality gap. While CPLEX produces
slightly better results for cases with lifetimes from
the prognostics tool (Progn), the instances with
standard EOH lifetimes appear to benefit more sig-
nificantly. It is notable that CPLEX reports a result
that  is more than 23 percent better than PMOPT in

the case with EOH lifetimes and seasonal stops.
However, when there are no seasonal stops, CPLEX
cannot find a solution even close to the result from
PMOPT within 8 hours. 

Conclusions and 
Future Work 

We described the development and deployment of
an opportunity-based maintenance-planning tool,
PMOPT, specifically designed to fit the purpose of
improving the maintenance schedules for gas tur-
bines from SIT AB. The goal was to reduce both
direct maintenance costs and production losses.
Thanks to close collaboration with key personnel
at SIT AB, we gained important insights into indus-
trial maintenance planning, which allowed us to
design and implement the maintenance-planning
tool. We believe that the working process we used
has contributed greatly to the successful deploy-
ment of PMOPTS. 

We formally described and characterized the
scheduling problem as NP-complete, and discussed
a heuristic algorithm for solving it. Our experi-
ments using real-world data for lifetime predic-
tions showed a potential for significantly reduced
down time (with up to 65 percent) and costs.
Experiments with integer programming gave even
greater gains but at the cost of much longer solu-
tion times. Expected effects in practical use include
large availability improvements and preventive-
maintenance reductions of up to 12 percent.
Future plans include fleet-level planning and
labor-resource optimization and scheduling, inclu-
sion of stochastic deterioration models and expect-
ed costs due to corrective maintenance, and appli-
cation to other domains. We are also considering
investigating solution sensitivity with regard to
parameter changes. 
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Save the Date! 

AAAI-12 in 

Toronto, Canada

The Twenty-Sixth AAAI Conference on
Artificial Intelligence (AAAI-12) and the
Twenty-Fourth Conference on Innovative
Applications of Artificial Intelligence
(IAAI-12) will be held in Toronto, Canada
at the Sheraton Centre Toronto Hotel, July
22–26, 2012. Please be sure to mark your
calendars now for this conference, AAAI’s
third visit to Canada!
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