
Several business and technology drivers are disrupting the
world of enterprise software, and that in turn is driving the
need for more effective data-quality solutions. These driv-

ers include business acceptance of the software-as-a-service
(SaaS) model, wide adoption of the web as a platform, collapse
of enterprise application silos, aggregation of data from dis-
parate internal and external sources, the agile mindset, and the
economic conditions driving agility. 

SaaS is a software deployment model in which the provider
licenses applications for use as service on demand, most often
accessed through a browser. In 2007 SaaS clearly gained momen-
tum, with the sector having three billion dollars in revenue; by
2013 revenue could reach 50 percent of all application software
revenues (Ernst and Dunham 2006). Customer benefits from
SaaS deployments include much quicker and easier implemen-
tations, relatively painless upgrades, global access through the
browser, lower total cost of ownership, and software vendors
sharing more of the risk (Friar et al. 2007). Related to SaaS is
another significant shift, the move from proprietary platforms
to the web as a platform. Again the user benefits because of less
vendor lock-in, open standards, well documented and broadly
accepted standards, and long-term commitment by the software
industry as a whole. These all contribute to higher quality solu-
tions across the industry as well as accelerated innovation and
more choice and flexible solutions available to the user. 
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n Recent advances in enterprise web-based
software have created a need for sophisticated
yet user-friendly data-quality solutions. A new
category of data-quality solutions that fill this
need using intelligent matching and retrieval
algorithms is discussed. Solutions are focused
on customer and sales data and include real-
time inexact search, batch processing, and data
migration. Users are empowered to maintain
higher quality data resulting in more efficient
sales and marketing operations. Sales managers
spend more time with customers and less time
managing data. 



Over the past couple of decades enterprise soft-
ware solutions tended to result in data in silos, for
example, a deployed accounting system that is
unable to share data with a customer-relationship
management system. The potential business value,
or benefit, from removing data silos has driven
companies to pursue such efforts to completion.
Collapse of the data silo is related to the larger phe-
nomenon of overall data aggregation on the web.
A growing pool of online structured data, better
tools, and, again, a large economic driver are all
pushing organizations to aggregate and use data
from a multitude of sources. 

Finally, one of the most significant shifts in the
software industry is the explicit transition toward
agile software development. Agile development
includes iterative software development method-
ologies in which both requirements and solutions
evolve during the development of the software.
Agile methodologies are in contrast to waterfall
methodologies, which imply that requirements are
well known before development starts (Larman
and Basili 2003). More effective agile processes are
important not only for software development, but
for organizations of all types and sizes. The neces-
sity to keep organizations aligned with opportuni-
ties and external competitive forces is forcing this
reality. Being agile allows an organization to adapt
more rapidly to external forces, which in turn
increases the chances of survival. 

For companies, the above trends are resulting in
more effective use of enterprise software as well as
more efficient business operations. Effectiveness is
driving adoption across the business landscape,
across industries, and from very small companies
up to the Global 2000. Efficiency is driving appli-
cation acceptance and usage within the company.
This combination of effectiveness and efficiency,
driving adoption and usage, is fueling enormous
growth of structured business data. 

Large volumes of structured business data
require significant effort to maintain the quality of
the data. For instance, with customer-relationship
management (CRM) systems (deployed under SaaS
or traditional software installations), ActivePrime
and its partners have found that data quality has
become the number one issue that limits return on
investment. As the volume of data grows, the pain
experienced from poor quality data grows more
acute. Data quality has been an ongoing issue in
the IT industry for the past 30 years, and it contin-
ues and is expanding as an issue, fueling the
growth of the data-quality industry to one billion
dollars in 2008. It is also estimated that companies
are losing 6 percent of sales because of poor man-
agement of customer data (Experian QAS 2006). 

Several competing definitions of data quality
exist. The pragmatic definition is considered here;
specifically, if data effectively and efficiently sup-
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ports an organization’s analysis, planning, and
operations, then that data is considered of high
quality. In addition, data cleansing is defined as
manual or automated processes that are expected
to increase the quality of data. 

Existing Solutions 
Past solutions to data-quality problems were driv-
en in part by the economics of the institutions
having the problem. Traditionally, the demand for
data-quality solutions was driven by very large
organizations, such as Global 2000 corporations.
They had the resources to deploy complex soft-
ware system for gathering data, and they were the
first to notice and suffer from the inevitable data-
quality problems resulting from this complexity.
Accordingly, the approaches developed by the
information technology researchers pioneering
the area of data quality (Lee et al. 2006) tended to
emphasize statistical data assessment, business
process engineering, and comprehensive organiza-
tional data-assurance policies. Given their size, the
early data-quality customers had the resources to
adopt these labor-intensive and therefore expen-
sive solutions. The traditional data-quality solu-
tions tended to rely heavily on manual operations,
in two different respects. 

First, data was often hand-cleansed by contract-
ing with external staffing agencies. Business ana-
lysts would first identify what type of data-quality
work needed to be performed and on which data.
Large data sets would be broken up into reasonable
sizes and put into spreadsheets. This data would be
distributed to individuals along with instructions
for cleansing. After the manual work on a spread-
sheet was finished oftentimes the work could be
cross-checked by another worker and any discrep-
ancies investigated. Once the data was finished it
was reassembled into the appropriate format for
loading back into the source IT system. Such man-
ual effort has clear drawbacks, including the time
required to cycle through the entire process, the
possibility for manual error, and the need to export
and then import the final results. Exporting is usu-
ally fairly easy. The importing is almost always the
bigger issue. Import logic typically needs to identi-
fy not only which specific fields and records to
update, but also how to deal with deleted or
merged data, and how to accomplish this all with-
out introducing new errors. Another issue is that
additional work is required to build and thorough-
ly test the import tools. Finally, the entire manual
process has little room for increased return on
investment. The customer has to pay for the man-
ual work each time data is cleansed, meaning that
the economic benefits of automation are not real-
ized. 

Second, earlier data-quality vendors provided



technological solutions to data-quality problems,
and these required significant manual setup. The
reasons for the manual setup included business
analysis to understand data-quality needs of the
organization, identification of the final data-quali-
ty work flow, and then the actual programming
and configuration to put the data-quality solution
in place. In other words, these companies were
building custom data-quality solutions using data-
quality vendor application programming inter-
faces (APIs). Once the solution was put in place,
automation reduced the manual effort, so a longer
horizon for return on investment was acceptable.
These solutions worked fine for large companies
that could afford both the problem, initial enter-
prise system that aggregates the data, and the solu-
tions. Today, sophisticated business applications
are being used by even the smallest organizations;
hence, the manual effort associated with data qual-
ity must be in alignment with the resources of
these smaller organizations. The data-quality solu-
tions must leverage automation and, at the same
time, provide the business user with intuitive
access to the processing results and the ability to
override the results. 

Data-quality research has also seen significant
progress with the first issue of the new ACM Jour-
nal of Data and Information Quality published in
2009. Frameworks for researching data quality
have been introduced (Madnick 2009, Wang 1995)
as well as specific mathematical models for
addressing the record linkage problem (Fellegi and
Sunter 1969). Recent research in record linkage
includes the development and deployment of
more intelligent linkage algorithms (Moustakides
and Verykios 2009, Winkler 2006). Data linkage is
a core issue in many data-cleansing operations and
is the process of identifying whether two separate
records refer to the same entity. Linkage can be
used for both identifying duplicate records in a
database as well as identifying similar records
across disparate data sets. 

Solutions 
ActivePrime’s initial products and services focus on
increasing the quality of data in CRM systems.
CRM systems store people-centered data at the
core with other types of data, like product, trans-
actional, or other forms of data, considered sec-
ondary in nature. Though the secondary data is
essential as well, in a CRM system the user interac-
tions predominantly revolve around managing
and querying the people-centered data. The main
entities involved are organizations and people.
Organizations are typically referred to as accounts
and people as contacts. As is expected, accounts
and contacts have properties such as postal
addresses, email addresses, phone numbers, and

such. The main focus has been on the effective and
efficient management of the quality of account
and contact data. 

Before we describe the various solutions, it is
important to understand why the quality of data
in CRM systems is so poor in the first place, and
also how data enters the system. One of the main
reasons for poor quality data in CRM systems is
that the data is initially entered by hand into some
system, sometimes by users without appreciation
for the importance of data quality. For instance,
the user may initially enter the data into an email
client for which the user is the sole consumer of
the data. For this dedicated one-party use, the
quality of the data may not be so important. If the
company name is misspelled, or if the person’s title
is abbreviated in a unique way, there really is no
problem. The issues arise if that data is then syn-
chronized with a large volume of data in a CRM
system with many other users, and the organiza-
tion is depending on the data for operational pur-
poses. Suddenly the misspellings, abbreviations,
and missing information have significant, materi-
al impact on the ability of the organization to
leverage the data. 

There are five points of entry for the majority of
data entering CRM systems: manual entry of data
by sales, marketing, and support personnel; batch
importing of data from external sources of infor-
mation; data synchronization from other software
and devices like email clients, mobile phones, and
PDAs; web entry of data by a potential customer or
other third party; and migration of data from lega-
cy systems. 

Successful CRM data-quality initiatives must
account for managing the quality of data at all
these points of entry. ActivePrime’s three solu-
tions, CleanEnter, CleanCRM, and CleanMove,
address each of these areas. 

Data Quality upon Manual Entry 
Upon manual entry of data, either through the
web or using the CRM data-entry user interface
(UI), CleanEnter provides search functionality that
notifies users if they are about to enter a duplicate
record. Figure 1 displays the search UI on contact
entities and shows that entering a new contact of
“ron raegan” has a potential match with four
records in the system. At this point the user can
drill down on a record, navigate to a record in the
CRM system, or choose to continue entering “Ron
Raegan” as a new record. 

Data Quality upon Batch Entry 
Customer data is often batch-entered after atten-
dance at a trade show or after purchasing a list of
customer data from a third party. Upon batch
entry of data, or when cleansing large volumes of
data that have just been synchronized into the
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CRM system, sales or marketing support staff will
need to identify areas in the data that need to be
standardized or find and merge duplicate data. Fig-
ure 2 shows the standardization screen in Clean-
CRM, with each pair of lines representing the
record before and after standardization. For exam-
ple, Rows 97 and 98 illustrate two fixes: the address
convention standardized to short form—Dept
instead of Department, and the country name nor-
malized from America to USA. The user has control
over which standardizations can be applied by
selecting controls on a UI (not shown) that include
turning all standardizations on or off and setting
naming conventions for corporate names, business
designations, addresses, secondary address format-
ting, city spelling corrections, and state names as
short form or long form. 

The second type of cleansing applied by Clean-
CRM is identification and merging of duplicate
data. Duplicates can be identified based on exact or
inexact matching on any field. Duplicates can then
be merged together according to some predefined
merge rule or a custom merge rule. Merge rules
specify how records are rolled up, which record is
the master record in the system, and which field
data are selected in the case of conflicting data. Fig-
ure 3 shows the merge screen with two duplicate
sets. Note that the first set contains two records, 8.1
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and 8.2 with differences in account name and first
name. Even given spelling errors and nicknames
the duplication has been found. 

A combination of domain knowledge and inex-
act matching allows for finding these records. The
nickname ontology is deployed and in this
instance finds that Becky and Rebecca refer to the
same person. Note that if either Becky or Rebecca
had been misspelled, CleanCRM still would have
identified them as being duplicate because of inex-
act matching. The three duplicates records flagged
as 7.1, 7.2, and 7.3 show how the robust inexact
matching works, including the handling of non-
ASCII character sets. The first names include
Ývonne and Yvonne. In both duplicate sets a final
record is shown that displays to the user what the
final record will look like in the CRM system. 

The grid in figure 3 also enables the user to edit
the final record manually after standardization and
merging. Any record that has been standardized
shows up in the grid, highlighted accordingly, and
the user can toggle the record to see the values
before and after standardization. At this point any
standardization values can be discarded. Because
the software performed most of the difficult work
of identifying duplicates and applying appropriate
standardizations, the user is left with simply
reviewing and overriding as necessary. If more spe-
cific standardizations or merging is needed, then
plug-ins can be provided for an extra level of
automation. Specific business logic can be applied
resulting in a very streamlined and automated
data-cleansing process with the user being able to
adjust the results accordingly. A balance is provid-
ed between full automation and appropriate man-
ual intervention. 

Data Quality upon Migration 
CleanMove is a data-quality solution for assisting
the migration of customer data from a previous,
legacy CRM system to a new system. It expedites
the data-migration process by applying a series of
data-cleansing rules to customer data that verify
the quality, integrity, and format of the data. Rules
include verifying unique data in database key
fields; referential integrity checking; phone,
address, and date formatting; finding and merging
duplicates; and other processing. Some CRM sys-
tems, like Oracle CRM On Demand, put strict con-
trols upon the format of data before it can be
imported. If data like phone, addresses, and pick-
list values are not formatted properly, the database
will reject the data. In other words, if the data is
not clean then the customer cannot even import
the data. When millions of records are being
brought into such systems, the value provided by
CleanMove is very significant. Several months of
either manual work or custom coding can be saved
by using CleanMove. 

Figure 1. Results of Real-Time Inexact Matching.



A Data-Quality Platform 
All three solutions are built on a platform for rap-
idly building data-quality applications: an inte-
grated set of APIs, algorithms, 64-bit Linux servers,
ontologies, specialized databases, and third-party
data sets. For performance reasons low-level algo-
rithms are coded in C or Cython; business logic,
application logic, and ontologies are encoded in

Python. User interfaces are coded in standards-
based, cross-browser HTML and JavaScript, with
data being transferred as XML, JSON, or YAML. 

Intelligent Matching and Retrieval 
ActivePrime leverages AI-related techniques in
three broad categories: lightweight ontologies,
search-space reduction (SSR), and query optimiza-
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Figure 2. Results of Standardization of Address Data during Batch Processing. 

Figure 3. Results of Duplicate Identification during Batch Processing.



tion. The use of lightweight ontologies has been
described elsewhere (Bidlack 2009). In summary,
lightweight ontologies are deployed as modules
and classes in the Python programming language,
enabling rapid, iterative development of ontolo-
gies using a popular scripting language. The
ontologies also benefit from the large repository of
built-in Python operators. Sophisticated opera-
tions on ontologies can be performed with just a
few lines of code. 

SSR techniques are utilized when performing
inexact matching on larger volumes of data,
when record counts grow into the many thou-
sands and millions. Query optimization tech-
niques allow for real-time detection of duplicate
records when matching one record to a large
remote data base. 

Search Space Reduction 
Robust inexact matching algorithms, comparing
the closeness of two strings, have been in circula-
tion for at least four decades (Levenshtein 1965)
and remain an active area of research (Navarro
2001, Chattaraj and Parida 2005). The challenge
today is how to perform such matching on larger
volumes of data, very quickly. Inexact matching is
important in many data-cleansing operations
including normalization, searching for duplicates,
and performing record linkage (Dunn 1946). In
such situations the computational cost of compar-
ing each record in the large data set to every other
record is prohibitive, especially given that each
inexact string comparison operation itself is
expensive, being O(n m) to compare strings of
length n and m. Thus, a brute-force comparison of
all pairs among K strings, each of length n, would
take O(K2 n2). Clearly this complexity is unaccept-
able in many data-cleansing operations where
there are millions of records, that is, K > 106. In
addition, if matching is being performed on z fields
on each record, then the complexity is O(K2 n2 z).
Processing time with modern hardware would
most likely be measured in years. 

To provide solutions with acceptable computa-
tional complexity, four types of SSR techniques are
leveraged. First, many data-quality operations
involve matching strings, where matches are
defined as those strings within some acceptable
threshold of one another. Therefore, candidates
outside the threshold can be pruned without com-
puting an exact edit distance. The histogram-based
pruning technique does this by quickly computing
a bound on the edit distance between two strings.
Second, search-based pruning uses the acceptable
distance threshold to terminate the edit-distance
computation as soon as the threshold is reached.
Third, inexact indexing facilitates rapid inexact
matching on large volumes of data. Finally, for
conjunctive queries over multiple fields, choosing

an intelligent query-field ordering can produce
dramatic performance improvements. 

Histogram-Based Pruning 
Histogram-based pruning is a technique to rapidly
identify whether two strings are beyond an accept-
able edit-distance limit. Pruning of inexact string
comparisons can reduce run time, sometimes by
well over 70 percent, by decreasing the number of
exact edit-distance operations being performed.
Exact edit-distance calculations are rather expen-
sive (quadratic time), and histogram-based prun-
ing cheaply identifies many instances where such
operations are unnecessary. The histogram com-
putation is itself on average much better than O(n
+ m). 

Histogram-based pruning works by computing a
global histogram-based metric on the strings being
compared. The metric provides a lower bound on
the distance between two strings. If the metric is
greater than T, the acceptable difference threshold
between the two strings, then there’s no need to
perform the computationally expensive edit dis-
tance. 

An alphabet histogram H is computed by mak-
ing a one-time scan over the two strings being
compared, S1 and S2. H contains N cells, where N
is the number of letters in the alphabet B and B has
all possible characters in the alphabet. For
instance, N = 36 for an alphabet of case-insensitive,
alphanumeric ASCII characters. For each character
C1 in S1, increment H[C1] by one, and for each
character C2 in S2, decrement H[C2] by one. If a
character C appears equally often in both strings,
then H[C] = 0. Define H+ as the sum of all positive
numbers in H, with H– the sum of all negative
numbers in H. The magnitudes of H+ and H– each
provide a lower bound on the edit distance
between the two strings. Thus if the absolute value
of either H+ or H– is greater than T, then the strings
cannot be similar to one another. 

Search-Based Pruning 
The edit distance between two strings can be
defined as the shortest path in a graph of strings,
where edges represent edit operations. Standard
edit-distance algorithms calculate the distance by
finding the shortest path. Since we do not care
about the exact distance if the match is unaccept-
able, we can often terminate the search early, once
we have ruled out all paths of length T or less. 

Note that just as T can be used to terminate edit
distance computations, T can also be used to ter-
minate histogramming. In many instances the
algorithm can terminate early such that S1, S2, and
H are never fully scanned. The computation is
beyond the acceptable distance, hence the search
for a solution is terminated. Finally, H is most often
a sparse array, hence with proper accounting, while
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computing H+ and H–. only nonzero elements in H
need to be accessed, providing a further practical
speedup of the algorithm. 

Inexact Indexing 
Indexing can enable speedups in processing of sev-
eral orders of magnitude. Indexing is viewed as a
way to reduce processing by grouping the records
into a large number of buckets, and then any spe-
cific string comparison searches only over the data
in a small number of relevant buckets, effectively
pruning the search space. The creation of buckets
is possible by mapping strings (keys) such that all
potentially similar strings map to the same bucket.
Then when performing a search, a string is
matched against only the records in the appropri-
ate buckets. 

A main engineering challenge with inexact
indexing is developing the appropriate mapping.
The ActivePrime matchers use several different
mappings. Two of the most common are length-
based mapping and starts-with mapping. 

Length-based mapping simply puts each string
into a bucket based on its length. For example, if
400,000 records are to be indexed and the string
lengths range from 3 to 43 characters, then on
average there will be 10,000 strings per bucket. If T
(the acceptable threshold) is on average four edits,
then on average the number of buckets to search in
will be four and the computations can be reduced
by a factor of 10. 

Starts-with mapping can potentially segment
data into a very large number of buckets, depend-
ing on how many characters are used for mapping.
All strings that start with the same N characters are
put into the same buckets. Given a case-insensi-
tive, alphanumeric ASCII alphabet, for N = 2, then
the number of buckets is 1296 (36 squared). How-
ever, this mapping will result in missing some
inexact matches: those with discrepancies within
the first N characters. One way to significantly
reduce incidence of such misses is to include an
ends-with index and then search on both starts-
with and ends-with. On average, for N = 2, the
search space is reduced by two orders of magni-
tude. 

Querying Field Ordering 
A second way to leverage inexact indexing is to
take advantage of matching on multiple fields
where the user expects to conjoin (AND) the
results together, which is the case for most data-
quality applications. Data-quality applications
almost always require matching on multiple fields,
and search times vary greatly on different fields,
depending on the data itself as well as the match
threshold being applied to the field. Because of
varying search times, the order of querying can be
adjusted to take advantage of these differences by

dynamically detecting the optimal field search
order. This ordering effectively tiers the searching
of indexes. 

After indexes are created for each field, a small
random selection of queries is applied to each
field’s index to rank the field indexes from fastest
to slowest. Then all future queries are applied to
the field indexes in the selected order. The edit-dis-
tance computation is being applied to a progres-
sively smaller number of the total records (pro-
gressive reduction). Each field index value stores
the unique record identifiers. Identifiers are the
row numbers of the records in the original data-
base. For instance, a database with 1000 records
will have unique identifiers from 0 to 999. Pro-
gressive reduction is possible because matching is
an AND operator (intersection of records). For
instance, assume a database of 1000 records, and
with two fields being queried, fields F1 and F2 with
the F1 field index being faster and thus always
being queried ahead of the F2 field index. When
comparing strings S1 and S2 to F1 and F2, S1 is
queried in F1, and the subset of records returned is
U1 and is 1000 records or less, and most often
much less than 1000. Then S2 only needs to be
compared to the subset of records in U1 on the F2
field index. Therefore, if U1 reduces 1000 to 20, the
total number of edit-distance computations is
1020, 1000 on the fastest field index F1, and 20 on
the slower field index F2. Statistical evidence
shows that with three fields and with the large
variation in the field index performance, the
reduction in processing can often be between one
to two orders of magnitude. 

Query Optimization 
Query optimization is deployed to enable real-time
matching of a record to a remote database. For
instance, with CleanEnter, while entering a new
record into the CRM system, the user first searches
to identify whether the new record already exists.
The user is comparing the one new record to the
entire CRM database, searching for anything that
looks similar. 

The user’s query is analyzed based on the context
of the fields, like company name or state name, and
appropriate domain knowledge is referenced for
expanding the query. For instance, the state Massa-
chusetts may have MA and Mass as synonyms and
the query is expanded appropriately. Besides expan-
sion through domain knowledge, query expansion
occurs using phonetic rules as well as heuristics
around transposition and removal of characters.
The query optimizer effectively constructs a query
that has a high probability of finding potential
inexact matches while only retrieving a very small
subset of the remote database. The subset of records
is then analyzed using SSR techniques to compute
actual inexact matches. 
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Results and Impact 
Over the past several years, experience shows that
the number of duplicate records in corporate CRM
systems range from the low end of 10 percent to a
staggering 70 percent on the high end. In addition
it is common for at least 50 percent of CRM records
to have faulty data, for instance, misspelled cus-
tomer names or address data. 

More specifically, Figure 4 shows average results
for the percentage of errors found in data sets from
eight operational (in production) data sets. The x-
axis represents the percentage of records that are
updated during various data-cleansing operations.
The operations are de-duplication and normaliza-
tion of the specified field names. For instance, on
average 8 percent of all data in the city fields was
normalized in some fashion. The six fields in figure
4 are often candidates for data cleansing in a CRM
system. There are however many more fields that
get cleansed. 

The Title/Dept field in figure 4 corresponds to
fields in the CRM system that represent the title of
the person and the associated department. In
many instances standardization of data in these
fields is important for customer messaging. There’s
a direct correlation between the quality of the nor-
malization and the ability to customize the mes-
saging for a specific person, and that is incredibly
important and valuable from a marketing perspec-
tive. Context-aware messaging always produces
better results. How a company communicates val-
ue to a chief technology officer, for instance, is

much different from how communications are
provided to a financial analyst. Such targeted mes-
saging is possible only with high-quality data. The
title or department of the person must be well
defined (normalized) to perform precise messag-
ing. 

Using a combination of approaches, cleansing
data upon initial migration and then ongoing
cleansing in real-time and in batch processes,
duplicates can be drastically reduced. Typical
deployments reach below 1 percent duplicates and
have a fix rate of up to 90 percent of faulty data. 

Quantification of the business impact includes
customers who have saved their sales representa-
tives up to four hours per week. These savings are
due to less time spent looking for the correct data
and determining where the data should reside
because there are fewer duplicates, as well as
improvement in communication with customers
due to higher-quality account and contact data. 
For large companies, the savings of four hours per
week per sales representative results in very large
financial savings, and more important, more effi-
cient use of the sales force, which directly results in
more revenue. The combination of savings and
extra revenue can quickly reach into the hundreds
of thousands and sometimes millions of dollars. 

Another significant customer benefit is
enhanced reporting and analytics. For large public
companies accurate reporting is very important
due to the increase in securities compliances such
as those required by the Sarbanes-Oxley Act. Fail-
ing to properly report on metrics such as customer
counts and revenues has potential financial penal-
ties that can be rather severe. 

Benefits to Data Mining 
Data-mining uses have clearly expanded in reach
the past decade, broadening out from the corpo-
rate business analytics system to now becoming a
common component of data-intensive, web-based
consumer and business systems (Segaran 2007).
When performing data mining there is often a
requirement to perform analysis on numeric data
with a dependency on associated textual data. For
instance, when deriving analytics or performing
pattern analysis on sales information in the 50
USA states, a significant issue that arises is simply
normalizing the state names so that a small set of
queries can be generated to obtain and prepare the
data for analysis. If the data contains many differ-
ent and unknown means of representing the state
names, then the queries themselves become very
complex. Worse than that, the result of the queries
and hence the results of the analysis become sus-
pect. 

Robust data-cleansing operations as described in
this article can have a significant benefit in data-
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Title/Department 

Address 1 
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Duplicates 33
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Figure 4.

Statistics showing the average percentage of records and fields that are updat-
ed during typical data-cleansing operations. Operations include identifying
duplicates (the first entry) and field standardization (the bottom six entries). 



mining applications. Not only can the
analysis be more automated and
hence operationally efficient, but the
results themselves can be more readily
accepted as valid results. 

Conclusions 
The described products connect to
three of the leading CRM vendor solu-
tions and are in use by more than 150
customers, in more than 40 countries,
representing more than 30 different
languages. Companies as large as
Fidelity and Oracle and as small as
two-person consulting firms use the
products. Important lessons have been
learned over the past few years regard-
ing how to build high-performance
data-quality solutions on distributed,
SaaS systems. 

Integration of domain knowledge
can drastically improve the quality of
results (Bidlack 2009). A key challenge
with this integration is that the search
space is expanded because now more
matches need to be considered. The
domain knowledge expands single
terms out to multiple terms. For
instance, Massachusetts may be
expanded to include MA and Mass.
Now there are three strings to consid-
er when searching instead of just one.
This search expansion adds one more
reason for focusing on high-perfor-
mance inexact matching algorithms. 

AI techniques discussed in this arti-
cle, various search space reduction
techniques and query optimizations,
drastically improve the performance
of inexact matching of textual data on
large volumes. With corporate data-
bases for even midsize companies now
growing into the millions of records,
and the desire for better results as
enabled by domain knowledge inte-
gration, high-performance matching
is becoming critical to user adoption
of any data-quality solution. SaaS-
based systems and other industry
dynamics are also changing user
expectations. Users are expecting great
results with less effort on their part. It
is now clear that AI-based systems will
continue to play an important role in
matching the users’ expectations on
the data-quality front. This article out-
lined a few ways that intelligent algo-
rithms have been leveraged, and it is

expected that future data-quality solu-
tions will continue down this path. 

Acknowledgments 
Creating a successful software compa-
ny requires an enormous effort from
numerous professionals with a diversi-
ty of skills and perspectives. We are
grateful for the effort of not only
everyone within the company but also
for the work of advisors, investors, and
business partners. A special apprecia-
tion is reserved for our customers, who
help to keep us focused on solving rel-
evant problems and providing solu-
tions that make a difference. 

References 
Bidlack, C. 2009. Enabling Data Quality
with Lightweight Ontologies. In Proceedings
of the Twenty-First Innovative Applications of
Artificial Intelligence Conference, 2–8. Menlo
Park, CA: AAAI Press. 

Chattaraj, A., and Parida, L. 2005. An Inex-
act-Suffix-Tree-Based Algorithm for Detect-
ing Extensible Patterns. Theoretical Comput-
er Science 335(1): 3–14 

Dunn, H. L. 1946. Record Linkage. Ameri-
can Journal of Public Health 36(12): 1412–
1416. 

Ernst, T., and Dunham, G. 2006. Software-
as-a-Service—Opening Eyes in ’07; Half the
Market in ’13 (FITT Research). Frankfurt,
Germany: Deutsche Bank AG.

Experian QAS. 2006. U.S. Business Losing
Revenue through Poorly Managed Cus-
tomer Data (Experian QAS Briefing 3/28).
Boston, MA: Experian QAS.

Fellegi, I., and Sunter, A. 1969. A Theory for
Record Linkage. Journal of the American Sta-
tistical Association 64(328): 1183–1210. 

Friar, S.; Zorovic, S.; Grieb, F; and Isenstein,
M. 2007. Getting SaaS Savvy—Successful
Investing in On Demand. New York: Gold-
man, Sachs & Company.

Larman, C., and Basili, V. 2003. Iterative
and Incremental Development: A Brief His-
tory. IEEE Computer 36(6): 47–56. 

Lee, Y. W.; Pipino, L. L.; Funk, J. D.; and
Wang, R. Y. 2006. Journey to Data Quality.
Cambridge, MA: MIT Press. 

Levenshtein, V. I. 1965. Binary Codes Capa-
ble of Correcting Spurious Insertions and
Deletions of Ones. Problems of Information
Transmission 1(1): 8–17. 

Madnick, S. 2009. Overview and Frame-
work for Data and Information Quality
Research. ACM Journal of Data and Informa-
tion Quality Research 1(1). 

Moustakides, G. V., and Verykios, V. S.
2009. Optimal Stopping: A Record-Linkage

Articles

SPRING 2010   73

Approach. ACM Journal of Data and Infor-
mation Quality 1(2). 

Navarro, G. 2001. A Guided Tour to
Approximate String Matching. ACM Com-
puting Surveys 33(1): 31–88. 

Segaran, T. 2007. Programming Collective
Intelligence. Sebastopol, CA: O’Reilly Media,
Inc. 

Wang, R. Y.; Storey, V. C.; and Firth, C. P.
1995. A Framework for Analysis of Data
Quality Research.  IEEE Transactions on
Knowledge and Data Engineering 7(4): 623–
640. 

Winkler, W. 2006. Data Quality: Automated
Edit/Imputation and Record Linkage (U.S.
Census Bureau, Research Report Series, Sta-
tistics 2006–7). Washington, DC: U.S. Gov-
ernment Printing Office.

Clint Bidlack is president, chief technical
officer, and cofounder of ActivePrime. Prior
to ActivePrime, he was the founding chief
executive officer of Viveca, a venture-capi-
tal-backed company that built innovative
electronic catalog software. Viveca was sold
in 2001. Bidlack has been building data-
intensive software systems for almost 20
years, first in the automotive industry, then
in research roles at the University of Ten-
nessee in conjunction with Oak Ridge
National Laboratory, and then at the Uni-
versity of Michigan. In 1992 Bidlack was
part of the team that won the first AAAI
robot competition. 

Michael P. Wellman is a professor of com-
puter science and engineering at the Uni-
versity of Michigan and a technical adviser
to ActivePrime. He received a Ph.D. from
the Massachusetts Institute of Technology
in 1988 for his work in qualitative proba-
bilistic reasoning and decision-theoretic
planning. From 1988 to 1992, Wellman
conducted research in these areas at the
U.S. Air Force’s Wright Laboratory. At the
University of Michigan, his research has
focused on computational market mecha-
nisms for distributed decision making and
electronic commerce. As chief market tech-
nologist for TradingDynamics, Inc. (now
part of Ariba), he designed configurable
auction technology for dynamic business-
to-business commerce. Wellman previously
served as chair of the ACM Special Interest
Group on Electronic Commerce (SIGecom)
and as executive editor of the Journal of
Artificial Intelligence Research. He is a Fellow
of the Association for the Advancement of
Artificial Intelligence and the Association
for Computing Machinery. 



Articles

74 AI MAGAZINE

WORKSHOPS AT THE TWENTY-FOURTH 
AAAI CONFERENCE ON 

ARTIFICIAL INTELLIGENCE (AAAI-10)

Sponsored by the Association for the Advancement of Artificial Intelligence

AAAI is pleased to present the AAAI-10 Workshop program. Workshops will be held Sunday and Monday, July 11–12,
2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program includes 13 workshops cov-
ering a wide range of topics in artificial intelligence. Each workshop is limited to approximately 25 to 65 participants,
and participation is usually by invitation from the workshop organizers. However, most workshops also allow general
registration by other interested individuals. There is a separate fee for attendance at a workshop, and is discounted for
AAAI-10 technical registrants. Registration information will be mailed directly to all invited participants. All workshop
participants must preregister, and must indicate which workshop(s) they will be attending. Workshop reports are
included in the workshop registration fee, and will be distributed onsite during the workshop. In most cases, reports
will also be available after the conference as part of the AAAI Press technical report series.

THE WORKSHOPS
W1 – AI and Fun
W2 – Bridging the Gap between Task and Motion Planning
W3 – Collaboratively-Built Knowledge Sources and Artificial Intelligence
W4 – Goal-Directed Autonomy
W5 – Intelligent Security
W6 – Interactive Decision Theory and Game Theory
W7 – Metacognition for Robust Social Systems
W8 – Model Checking and Artificial Intelligence
W9 – Neural-Symbolic Learning and Reasoning
W10 – PAIR: Plan, Activity, and Intent Recognition 2010
W11 – StarAI — Statistical Relational AI
W12 – Visual Representations and Reasoning
W13 – Workshop on Abstraction, Reformulation, and Approximation

DEADLINES
March 29: Submissions due (unless noted otherwise)
April 15: Notification of acceptance
May 11: Camera-ready copy due
July 11–12: AAAI-10 Workshop Program
AAAI Formatting Guidelines: www.aaai.org/Publications/Author/author.php

SUBMISSION AND FORMAT REQUIREMENTS
Submission requirements vary for each workshop, but most key deadlines are uniform, unless otherwise noted. Sub-
missions are due to the organizers on March 29, 2010, except where noted. Workshop organizers will notify submit-
ters of acceptance by April 15, 2010. Accepted camera-ready copy is due on May 4, 2010. Please mail your submis-
sions directly to the chair of the individual workshop according to their directions. Do not mail submissions to AAAI.
For further information about a workshop, please contact the chair of that workshop. AAAI two-column format is often
required for workshop submissions, and is always required for all final accepted submissions. Links to styles, macros,
and guidelines for this format are located in the publications area of the AAAI website

AAAI Workshop Cochairs
Michael Beetz and Giuseppe De Giacomo

www.aaai.org/Workshops/ws10.php
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