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1 Introduction

Things almost never go exactly as we plan or hope;
deviations from the ideal are a fact of life. As Her-
aclitus noted almost 2,500 years ago, “only change
endures”. Though Heraclitus was silent on whether
the inevitable change will be good or bad, Murphy’s
Law tells us to expect the worst. Given the perva-
sive and often perverse nature of the unexpected, it
is not surprising that humans are adept at dealing
with it—we would not have survived and flourished
otherwise. This facility with the unexpected may ac-
count for our annoyance when our automated systems
break in situations that we could deal with easily. It is
then we need to remember that such failures account
for much of the progress in AI, since—as this special
issue attests—these annoying surprises goad us into
insights and thus to improvements in the underlying
algorithms.

But one can also view this phenomenon in an-
other light. Instead of our having to rebuild the al-
gorithms when—in an unanticipated situation—they
make “stupid” mistakes that we could easily have
dealt with, why not build them to do what we do:
deal with the mistakes on their own? This is a tall
order, and not a new one: it requires addressing the
so-called brittleness problem (cf. [5]). In this article,
we present our own approach to this problem. First
we describe the conceptual focus—which we call the
metacognitive loop (MCL)—that is guiding our work;
then we present a number of domain-specific imple-
mentations of MCL, which we think provide signifi-
cant evidence that MCL is a general-purpose method-
ology for building flexible (non-brittle) programs in
specific domains; and finally we discuss our current
efforts toward a domain-independent implementation
of MCL.

2 MCL Systems

Our starting point is to ask what mechanisms hu-
mans use when dealing with the unexpected. Our
contention is that people learn what to expect, no-
tice when an expectation fails, and then decide what

to do about it.1 More specifically humans tend to
(and machines ought to):

N: Note when an anomaly occurs
A: Assess it
G: Guide a response into place.
Looping through this NAG cycle—the basic form

of MCL—leads to remarkably positive results when
people do it, from noting a successful behavior in one
domain (e.g., swinging a cricket bat) utterly fails in
another (baseball) and is best jettisoned and a new
one learned from scratch rather than tweaking the
old, to noting and correcting a misunderstanding in
conversation, to trying a new approach to a prob-
lem (e.g., on the final exam in light of failures on
the midterm). Moreover, asking for help or giving
up are in fact among the most important things in
the human repertoire of repairs, for, as the saying
goes: if you find yourself in a hole, the first thing
to do is stop digging. Our work suggests that MCL
can at the very least give machines the same sim-
ple wisdom, which would have been quite useful to
the DARPA Grand Challenge robot that continued to
push against a fence it could not see, burning out its
motors; or to the NASA satellite that, having obeyed
instructions to turn away to point at another part of
the sky, was thus rendered unable to receive further
instructions and so stayed in that useless position un-
til natural orbital forces re-oriented it.

Noticing that there is a difference between what ac-
tually happened and what was expected to happen—
that something has gone wrong—is the key step
required to get MCL started. So, central to our
approach is building systems that don’t simply do
things, but know what they are supposed to be
achieving. That is, they should have specific expec-
tations for their own performance and the outcomes
of their actions. Knowing may be half the battle, but
it is only half; the next steps are also crucial. Rather
than simply recognize problems, report them, and
wait for human system designers to fix them, MCL
systems are also self-diagnosing and self-repairing.

1This intuitive characterization of human problem solving is
also supported by work in cognitive psychology. See [16, 13, 14]
for more information.

1



Repairs can be as simple as trying a failed action
again; or trying a new plan for the same goal, dy-
namically learning new operators; or using trial and
error; or taking advice from a human; or embarking
on self-training; and so on.

It is perhaps this aspect of our approach that
is most distinct from the relevant prior work on
which we are building, including case-based reasoning
in general, and introspective reasoning and learning
from expectation failure in particular [9, 10, 11, 18].
For instance, MCL systems don’t just use expectation
failures to trigger a single learning strategy such as
the refinement of planning operators, but can choose
this option from among several; nor are MCL systems
limited to selecting among multiple learning strate-
gies (as with [6]), but can implement any of multiple
disparate options for addressing anomolies. In addi-
tion, MCL systems don’t just wait for a response plan
to complete and then re-measure performance on the
original task; rather they monitor the response just
as they would any other action taken by the system,
and can intervene if the repair itself appears to be fail-
ing. Finally, the MCL systems we envision don’t just
work in a single domain with specialized knowledge,
but across many different domains, using ontologies
capturing general coping strategies.

Imagining such systems is quite different from
building them. To test the viability and domain gen-
erality of this approach, we have added MCL com-
ponents to a number of otherwise self-ignorant sys-
tems. This work has convinced us that MCL is indeed
a powerful approach for endowing automated sys-
tems with the flexibility needed to deal with surprise.
While these implementations are domain-dependent
and differ significantly in various respects, they share
some common features that serve to characterize the
key aspects of MCL.2

We can briefly indicate some of these common fea-
tures. Noting an anomaly amounts to noting a mis-
match between an expectation Exp(E) and an ob-
served outcome Obs(¬E). This is the basis for the
Note stage in all our implementations and domains.3

The Assess stage identifies the anomalous E and ¬E
(in some current context C) as being of some type
T: Type(E,¬E,C,T). Here T might turn out to be

2For a more in-depth look at MCL and the motivation be-
hind it, see [4].

3In the case of logic-based domains, an anomaly often takes
the form of a direct contradiction, E and ¬E. This is the case,
for instance, not only in the nonmonotonic reasoning domain,
but also in the natural-language domain discussed below. For
these, we employ active logic [7], a time-sensitive inference
engine specifically designed to allow an automated agent to
reason in real time about its own ongoing reasoning, noting
direct contradictions rather than inadvertently using them to
derive all sentences.

highly domain specific (e.g., sensor error, if the do-
main and context are sufficient to determine that),
or very general (e.g., simple logical contradiction). In
addition, the Assess stage has, for each anomaly-type
T, a prioritized list of possible responses. Finally, the
Guide stage enacts responses from that list; if a given
response fails, another is selected. Response failure
can also lead to recursion if the NAG cycle is trig-
gered by an anomaly in the attempt to guide a re-
sponse. There is the danger here of non-terminating
recursion, with repairs applied to failed repairs ad in-
finitum. However, as these repairs to repairs accumu-
late, the expected time to completion of the original
task will move farther into the future, forcing MCL
ultimately to fall back on a response such as asking
for help (which may be costly but powerful) or sim-
ply giving up and moving on to something else. One
final point: expectations themselves can be learned,
as well as modified, by experience, and this is one of
the most powerful aspects of MCL. Thus, not only is
a particular instance of an anomaly dealt with by an
MCL-endowed system, but the system’s future ex-
pectations may change as a result. MCL can deal
with learned expectations that are unreliable by ei-
ther gathering more data to further refine them or by
simply abandoning them altogether.

We have implemented these ideas in highly var-
ied domains, including natural-language human-
computer dialog, robot navigation, nonmonotonic
reasoning, reinforcement learning, and a tank game.
Three of these systems are described below, af-
ter which we will describe our efforts to implement
domain-general MCL.

2.1 MCL-Enhanced Reinforcement
Learning

Reinforcement learning (RL) is an established
methodology that works very well in many settings,
notably ones in which the reward structure is static
or nearly static. But when that structure is changed
suddenly and significantly, the performance of RL de-
grades severely and recovers excruciatingly slowly. In
essence, RL algorithms need to “unlearn” what they
have learned, step by step, since they have no way
to recognize that the reward structure has changed,
let alone assess what can be done about it. Yet it is
clear that, given a drastic change that makes previous
learning useless, the best policy is simply to throw it
out and start over.

Using a variety of reinforcement learning algo-
rithms (Q-learning, SARSA, and prioritized sweep-
ing) we experimented with a simple 8× 8 grid world
with rewards in cells (1, 1) and (8, 8). The learner
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was trained for 10,000 steps, then the rewards were
switched, and learning continued for another 10,000
steps. We compared the performance of standard RL
algorithms to MCL-enhanced versions of the same al-
gorithms. The MCL-enhanced RL algorithms main-
tained and monitored expectations about such things
as average reward per step, value of future rewards,
and average time to next reward. When these expec-
tations were violated, the enhanced algorithms as-
sessed the nature of the violation and, using a simple
decision tree, chose one of the available repairs (which
included: ignoring the problem, adjusting the learn-
ing parameter, or throwing out the current action
policy and starting over).

Figure 1: Learning curves for a standard Q-learner
versus an MCL-enhanced Q-learner in the face of
changes to the reward structure.

A typical result is shown in Figure 1. The horizon-
tal axis is the step number, and the vertical axis is
average reward. Performance rises sharply and levels
off until step 10,000 when the reward-switching oc-
curs. At that point, performance falls dramatically
and then begins to recover. However, the standard
RL algorithms (in this case, Q-learning, seen as the
lower curve) recover far more slowly and far less com-
pletely than the MCL-enhanced versions (the higher
curve) of the same algorithms. Though given enough
experience both variants will asymptote to the same
point, in our experiments we found that the greater
the degree of change in reward (such as swapping re-
wards for penalties, and vice versa), the greater and
longer lasting were the transient benefits of MCL [3].

2.2 MCL-Enhanced Human-
Computer Dialog

Another application area for MCL is natural language
human-computer dialog. Natural language is com-
plex and ambiguous, and therefore, communication

always contains an element of uncertainty. To man-
age this uncertainty, human dialog partners continu-
ally monitor the conversation, their own comprehen-
sion, and the apparent comprehension of their inter-
locutor. Human partners elicit and provide feedback
as the conversation continues, and make conversa-
tional adjustments as necessary. We contend that
the ability to engage in this meta-dialog is the source
of much of the flexibility displayed by humans when
they engage in conversation [17]. We have demon-
strated that enhancing existing dialog systems with
a version of MCL that allows for meta-dialogic ex-
changes improves performance.

In one specific case tested, a user of TRAINS-96
[1], a simulation of a national train network that is
controlled by natural language, tells the system to
“Send the Boston train to New York.” If there is
more than one train in Boston, the system may well
choose the wrong one to send—the user may have in
mind the train that runs regularly between Boston
and New York and so might respond: “No, send
the Boston train to New York!” Whereas the orig-
inal TRAINS-96 dialog system responds to this ap-
parently contradictory sequence of commands (Send,
Don’t send, Send) by once again sending the very
same train, our MCL-enhanced version of TRAINS
notes the anomaly (i.e., the contradiction in com-
mands) and, by assessing the problem, identifies a
possible explanation in its choice of referent for “the
Boston train”. The enhanced system then chooses a
different train the second time around, or if there are
no other trains in Boston, it will ask the user to spec-
ify the train by name. The details of the implemen-
tation, as well as a specific account of the reasoning
required for each of these steps, can be found in [20].

More recently we have built another dialog system,
ALFRED4, that uses the MCL approach to resolve a
broader class of dialog anomalies. The system estab-
lishes and monitors a set of dialog expectations re-
lated to time, content and feedback. For example, if
the user says “Send the Metro to Boston”, ALFRED
notices that it doesn’t know the word ‘Metro’ (a fail-
ure of the expectation that it will find input words in
its dictionary). Alfred’s first response is to try to de-
termine what it can about the unknown word. Since
Alfred knows the command “send” and its possible
arguments, it is able to determine that “Metro” is a
train. If it cannot determine from this which train the
user is referring to, it will request specific help from
the user, saying: “Which train is ‘Metro’?” Once
the user tells the system that ‘Metro’ is another word
for ‘Metroliner’, it is able to correctly implement the

4Active Logic For Reason Enhanced Dialog
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user’s request [12].

2.3 A Bolo Player

Bolo is a multi-player tank game which takes place
in a world that contains various terrain types (roads,
swamps, walls, etc.), refueling bases, and pillboxes.
There are three types of pillboxes: neutral pillboxes
fire on all tanks, friendly pillboxes fire only on other
players’ tanks. and dead pillboxes pose no threat and
can be captured to make them friendly. An important
strategy in Bolo is to capture pillboxes, make them
friendly, and then use them either offensively or de-
fensively. Figure 2 shows a Bolo tank approaching a
neutral pillbox.

Figure 2: A Bolo tank approaching a neutral pillbox
beyond the trees with a refueling station behind the
walls to the left of the tank.

Bolo can be played by humans, but it can also be
played by programs. Such artificial Bolo players tend
to play quite poorly and are easily fooled when un-
expected complications arise (change of terrain, more
dangerous pillboxes, etc). Thus Bolo provides a good
challenge domain in which to test MCL.

Our MCL-enhanced Bolo player is controlled by
a simple Hierarchical Task Network (HTN) planner
with primitive actions that ground out in controllers.
It maintains a variety of expectations, the primary
one being that the tank it controls will not be de-
stroyed.5 The initial HTN allowed the player to lo-
cate and capture dead pillboxes. However, the player
did not have a plan to deal with hostile pillboxes,
which fire on the tank, and so it was destroyed in
its first such encounter. At this stage—when an ex-
pectation fails—MCL has a suite of actions to choose
from, including means-ends analysis and operator re-
finement [10, 22]. In one scenario, our MCL-enhanced

5When the tank is destroyed, it reappears at a random lo-
cation on the map.

Bolo player was able to discover that firing on pill-
boxes offered a solution to the problem, even though
it had no previous knowledge of the effect of that par-
ticular action. More precisely, the MCL component
searched through its past experience to try to locate
salient differences in the conditions under which it
succeeded in taking pillboxes, and those in which it
failed. It found that only pillboxes with intact armor
destroyed the tank, so the next step was to see if it
had any actions that could reduce the armor of a pill-
box. If it had known about an action that would do
that, it would have tried the action immediately. In
the case we tested, it had no such knowledge. Thus,
it used a heuristic to rank all its actions according to
how likely they were to have the desired effect, and
then tested them until it found one that worked. Note
how MCL turns failure into opportunity: in each case
the system learned more about what effects its ac-
tions did and did not have, and in a way organized
to support its ongoing mission.

3 Toward a Single Domain-
Independent MCL Imple-
mentation

Humans are good at dealing with surprise (employing
the NAG cycle) not only in a few specific domains,
but generally. This, together with the successes we
have seen with executing MCL in highly varied do-
mains, suggests to us that a single, generalized MCL
implementation might also be able to negotiate sur-
prise across domains.

The idea of a domain-general MCL is this: there
can be a general-purpose MCL-based implementa-
tion such that any given automated host system S
that (as is typical) exhibits considerable brittleness
can be interfaced with that implementation, allow-
ing the latter to monitor and (when needed) guide S
into significantly improved performance with respect
to unanticipated situations, without the usual human
recoding.

To achieve this goal, we are now building such a
general purpose MCL that encodes domain-general
knowledge about anomalies in three ontologies, as
shown in Figure 3. There is one ontology for each
phase of the NAG cycle.6

The note phase of the NAG cycle uses an ontol-
ogy of indications, which are sensory or contextual

6Although the ontology-based view of MCL described here
is still in the process of being implemented, it cleanly captures
the more ad hoc implementations of the various MCL-enabled
systems that we have developed.
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Figure 3: The three MCL ontologies: Indications,
Failures and Repairs

cues that something is wrong. Within this ontol-
ogy, host-specific nodes at the lowest levels encode
expectations about the behavior of sensor, state, and
other values. Violations of these expectations acti-
vate domain-general nodes that characterize anoma-
lies. For example, a reinforcement learning (RL) host
system may maintain expectations about receiving
rewards in certain states which, when violated, will
trigger a domain-general indication such as missing
datum.
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Figure 4: Fragments of MCL’s failure and response
ontologies which are used by the assess and guide
phases of the NAG cycle, respectively.

Figure 4 shows fragments of the MCL failure (on
the left) and response (on the right) ontologies, which
are used by the assess and guide phases of the NAG
cycle, respectively. In the former, dashed arrows are
inter-ontological links coming from the indications
ontology. That is, indications are linked to the types
of failures they suggest. To continue our example of
an RL host system, a missing datum could be due
to a sensor failure or a model error (i.e., the
expectation itself is wrong). These failure types can
be generalized or specialized by moving up or down
links within the failure ontology.

Failure nodes are linked to candidate courses of ac-
tion in the response ontology, again denoted with
dashed arrows. For example, if there is in fact a
model error, and the model in question is a pre-
dictive model, one possible response is to modify
predictive models. This response is abstract, so
it must be made concrete in terms of the host sys-
tem by following downward links in the ontology. In
the case of an RL host based on a Q-learning algo-
rithm, a Q-table represents expectations about fu-

ture rewards, and can be adapted by increasing ex-
ploration, increasing the learning rate, or, if all else
fails, reseting the Q-table and starting from scratch.
The host specific response node (the shaded nodes in
the response ontology in the figure) with the highest
expected utility is chosen and implemented.

4 Related Work

As has been noted already, the brittleness problem
is not new, and autonomous systems have always
needed mechanisms to deal with the unexpected. Sys-
tems as early as Shakey [8] were able to re-plan in
light of failures or unmet preconditions. In recent
years there has been a great deal of work in such
areas as reactive computing, machine learning, plan-
ning and re-planning, and fault detection, isolation
and recovery (FDIR); see [15, 23, 21, 19] for just
a brief sampling, and [2] for a general overview of
metacognitive approaches to reasoning and learning.

One thing that is distinctive about our approach
is its insistence on the general applicability of the
NAG cycle, along with an architecture that encapsu-
lates the metacognitive components, engaging them
only when an expectation has been violated. This
has advantages over some approaches—for instance,
many reactive/adaptive systems (such as reinforce-
ment learners) deal with change by continually train-
ing. This requires continual exploration, or deviation
from the optimal action policy, whereas MCL systems
can act optimally until they notice that something is
wrong and then take remedial actions focused on the
problem at hand.

For instance, although FDIR is clearly motivated
by the same concerns as MCL—and has the same tri-
partite structure as the NAG cycle: (FD), (I), (R)—
it typically takes an expert-systems or model-based
approach to the issue that imposes significant limi-
tations on the types and range of available diagnoses
and repairs, often limiting the options to specific so-
lutions known in advance to fix specific problems.
By including the possibility of generating novel hy-
potheses about the causes of its performance, and
learning new models, operators or action policies to
deal with failures, MCL greatly increases the range of
possible responses the system could implement. This
is in line with our general preference (which we ad-
mit may not be appropriate for every domain) for
increasing the agency and autonomy of our systems,
and especially their freedom of action in responding
to problems, rather than limiting it and hoping that
circumstances do not stray from the anticipations of
the system designer. Again, this increased freedom is
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highly focused, coming into play only when anoma-
lies are noted that directly impact the performance
of the system, about which expectations are main-
tained and monitored. MCL systems are self-aware,
self-guided learners, able to decide whether, what,
when, and how to learn; this combination of reason-
ing and learning, in which each can guide the other
under the direction of the system itself, is one of the
distinctive elements of the MCL approach.

5 Conclusion

Humans confront the unexpected every day, deal with
it, and often learn from it. AI agents, on the other
hand, are typically brittle—they tend to break down
as soon as something happens that their creators
didn’t plan for. Brittleness may be the single most
important and most difficult problem facing AI re-
search. It is difficult because it is impossible to pre-
pare an AI system for every possible contingency. It
is important not only because brittle systems become
unproductive when they fail, but also because if the
goal is human level intelligence, then systems must
exhibit human-like flexibility.

We believe that it is possible to replicate human-
like behavior by furnishing AI systems with one of
the methods that humans use to deal with the unex-
pected, namely the Note-Assess-Guide cycle. In order
to do this, we must enable AI systems to help them-
selves; they must establish expectations and monitor
them, note failed expectations, assess their causes,
and then choose appropriate responses.

We have, in fact, implemented this method in
several distinct types of systems: a reinforcement
learner, a human-computer dialog agent, a tank
game, a robot navigation system and a commonsense
(non-monotonic) reasoner. In each case, the perfor-
mance of the system was enhanced by MCL mecha-
nisms. This, we believe, is promising enough to war-
rant our next step: domain-general MCL. Our vision
of this single, domain-independent implementation of
MCL is that it can be interfaced with any brittle au-
tomated system and thereby improve its performance
in unexpected situations.
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