
The late 1990s were a very interesting
time for business enterprise software
in general, and software for opti-

mized supply-chain planning in particu-
lar. The spread of enterprise resource-plan-
ning software, warehouse-management
systems, factory-planning systems, and
other enterprise applications, had the side
effect of moving online much of the raw
data needed to optimize supply chains.
Furthermore, the pace of business change,
increased competitive pressures to react
quickly to this change, and the rapid
development of online commerce forced
businesses to question the week-plus sup-
ply-chain planning cycles that had been
the norm. Finally, the year 2000 (Y2K)
problem caused an across-the-board
replacement of enterprise software, allow-
ing many businesses to update their
approach to supply-chain planning.

The end result of all of these factors was
a huge upswing in demand for supply-
chain planning tools from i2 Technologies
and other vendors. When I joined i2 in
1996 as optimization architect, the com-
pany had around 250 employees and
roughly $100 million in annual revenues.
At its peak in around 1999, i2 had grown
to have a market capitalization of over $13
billion, had over 600 customers, and was
listed on the Nasdaq 100.

This rate of growth brought into sharp
relief two critical technical challenges in
supply-chain management. First, the data
required to manage supply chains was
indeed online, but it was inevitably inac-
curate and incomplete. Further, it resided
in a host of incompatible and disconnect-
ed databases. Second, and equally impor-
tant, supply-chain planning and opti-
mization were a perpetual challenge.

There are solid theoretical reasons why
supply-chain planning and optimization
are hard. Technically the underlying opti-
mization problem is either NP or P-space
complete (depending on the details of the
domain). Furthermore, the problem mixes
a dozen or so classic optimization prob-
lems from AI and operations research (OR),
and much of the expected savings from
global supply-chain optimization are lost if
these problems are treated independently.

This article describes our experience
from four years of solving supply-chain
planning and optimization problems
across industries, and some of the lessons
we learned.

Supply-Chain Modeling
In its broadest form, a supply chain con-
sists of every activity performed by a man-
ufacturing company from the time it pur-

Articles

SUMMER 2008 51Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Lessons Learned
Delivering Optimized

Supply-Chain Planning
to the Business World

James Crawford

� The late 1990s saw a huge upswing in
the demand for supply-chain management
software. The rapid commercial adoption
of these tools brought into sharp relief the
complexity of automating supply-chain
planning and optimization. This article
summarizes four years of real-world expe-
rience in combining AI and operations
research (OR) techniques, balancing repre-
sentational power against planning com-
plexity, and understanding the practical
implications of nondeterministic polyno-
mial time (NP)-completeness.

AI Magazine Volume 29 Number 2 (2008) (© AAAI)

chases raw materials to the time it sells finished
goods. This includes purchasing, storage, trans-
portation, assembly or manufacture, testing, pack-
aging, and delivery. The broad outlines of what
makes a supply chain are common across many
industries including semiconductor manufacture,
wine production, furniture manufacture, steel pro-
duction, oil refining, clothing, shoe manufacture,
consumer packaged goods, and others.

During my time at i2, my team worked on prob-
lems from all of these industries. Further, some of
our customers had reached an amazing degree of
vertical integration across the extended supply
chain. For example, one leading food manufactur-
er we worked with has a supply chain that starts
with the production of special potato seeds, which
are shipped to the farmers, and ends with vendor-
managed inventory on the store shelves. Similarly,
a large wine manufacturer we worked with has a
supply chain that begins with the production of
glass for the bottles and ends on the store shelf.

The language i2 developed to represent the con-
straints and optimization criterion in a supply
chain was based on three primitive concepts:
buffers, operations, and resources. “Buffers” cap-
ture the general notion of physical points in the
supply chain at which a kind of good can be
stored. This modeling object is used to represent
bottles of wine in a wine cellar, screws in a bin by
a machine, pallets of laptops on a warehouse floor,
rods of steel, tanks of oil, and so on. A number of
constraints are placed on buffers including size
limitations, flow policies (for example, first in first
out), safety stock policies (for example, that the
buffer must always contain enough material to
cover the next week of anticipated demand), and
so on.

Certain buffers, generally at the end of the sup-
ply chain, hold finished goods—often goods that
have been successfully delivered to customers’
loading docks. At these buffers, optimization met-
rics are placed that measure, for example, lateness
or shortness (lateness meaning that goods arrived
into the finished goods buffer later than the date
they had been promised to the customer and
shortness meaning that an insufficient quantity of
finished goods arrived).

The second primitive was the operation. “Oper-
ations” are any activity that turns one or more
kinds of goods, taken from a set of buffers, into one
or more kinds of goods, (which are again placed
into a set of buffers). Operations could be anything
from running a lathe on a factory floor, to assem-
bling a computer, to loading pallets onto a truck,
to a refining step in a chemical process, and so on.
As with buffers, a number of constraints can be lay-
ered on top of operations, including lot size con-
straints, run times, start and stop times, efficien-
cies, and resource constraints.

“Resources” are the final basic primitive.
Resources include any person or object needed to
perform an operation. This could be anything from
a particular machine, to a truck, to a special tool,
to a trained operator, and so on. As with the other
primitives, a large number of constraints could be
placed on resources including capacity limits,
availability calendars, and so on.

In some cases i2 developed very large supply-
chain models. The general form of these models
was a tree of operations and buffers fanning out
from the finished goods up to the raw materials
required for their production. Some of these trees
could become 10, 20, or more levels deep and
involve factories and warehouses spread across the
world. Others could involve tens, or even hun-
dreds of thousands of different finished goods,
requiring interacting operations and resources for
their production.

To i2’s credit, i2’s modeling language was rich
and flexible enough to allow the company to mod-
el the flow of goods, the constraining resources,
and the optimization metrics for supply chains
across a very rich set of industries. Furthermore,
unlike a linear or integer programming model, the
models built using i2’s language were directly
accessible and intuitive to domain exerts and could
be inspected graphically for accuracy and com-
pleteness. Finally, the models, together with the
data imported into them to support supply-chain
planning, provided a previously unknown level of
visibility into the customers’ supply chains—in
many cases this visibility alone provided signifi-
cant business value by allowing problems and bot-
tlenecks in the supply chain to be much more
quickly identified.

Supply-Chain Planning
and Optimization

Unfortunately, there is a well-known trade-off
between the power of a representation language
and the complexity of constrained optimization of
problems defined in the language (see for example,
Helmert [2003]). i2’s first successful commercial
product was a factory planning product with
restricted representational power and a set of
heuristics-based optimization algorithms. The
driving need that i2 addressed in designing its sec-
ond-generation supply-chain planner was to create
a system that could represent the much more com-
plex constraints and optimization criterion in sup-
ply chains. However, insufficient thought was ini-
tially given to the problem of optimization over
this new, more expressive language. This proved to
be a significant challenge over the next several
years.

Various reasons were given for thinking that
supply-chain planning and optimization would

Articles

52 AI MAGAZINE

not be “too difficult.” First, it was argued that on
large planning problems the human mind is as
much at sea as an automated planner. Thus an
automated planner need only reach a quality level
better than a human planner. This sounded good
in theory, but in practice we found that for many
domains there were humans who had literally
spent their lives learning how to optimize a partic-
ular part of the supply chain. While it may be true
that they could not work on the entirety of the
supply chain, they could certainly understand
their part and were able to find flaws in the plans
generated by our planner by proving that we were
missing “obvious” optimizations.

A second, similar, argument was that global opti-
mization, in the literal sense of creating a provably
optimal plan, was not important. Many people
argued that what was important was getting to a
“pretty good” plan, and the last few percent of
optimization were not worth the cost (in compute
time or algorithmic complexity). This argument is
almost right, and our successful approaches to sup-
ply-chain planning were approximate algorithms
that generally did not yield provably optimal
plans.

However, there are two considerations that any
nonoptimal plan must address. First, as noted
above, any plan must pass the test of not having
flaws that are obvious to human experts. Since any
plan that is not mathematically optimal will have
flaws, this is sometimes a matter of trial and error.
Further, real-world problems do have structure,
and in many cases that structure seemed to con-
spire to cause our planner to generate materially
suboptimal plans—that is, plans that, if not cor-
rected, would cost our customers money.

To take just one example, many problems
include a secondary, or often tertiary, optimization
metric called “fairness.” Intuitively fairness means
that the plan distributes the “pain” of lateness or
shortness “fairly” across customers instead of, for
example, completely shorting one customer and
making a full delivery to another. From a global
perspective, fairness on one particular end item
might seem to be a minor detail. However, if Wal-
Mart and Target both order 100 pallets of PlaySta-
tions, but the plan ships 100 pallets to Wal-Mart
and 50 to Target, then there may be major impacts
on customer relations. A “fair” plan, by contrast
would ship 75 pallets to each. This plan flaw may
yield an extremely small difference in the global
optimization metric, but could cause Target to can-
cel the contract. In other more complex cases,
minor decisions upstream can interact with lot
size, or timing constraints on operations, and yield
major differences in the amount of material
shipped to the end customers (or the timing of that
shipment).

A third argument was that in the real world

there is no such thing as planning—only replan-
ning. That is, there is always a plan and the job of
the “planning” system is to revise that plan in
minor ways to account for some set of changes. In
each such replanning event relatively little work
will be needed because most of the plan will
remain as it was. This line of thinking led i2 to ini-
tially focus heavily on repair-based approaches to
planning.

Again this argument sounds great in theory.
However in practice we ran into a number of prob-
lems. First, the first thing each customer wanted to
see was for our system to generate a plan for meet-
ing some set of customer orders. They seemed
unconvinced that this was not going to be the nor-
mal mode of interacting with the system. Thus we
were inevitably forced to confront the “from
scratch” planning problem in nearly every
account. Second, replanning for supply chains
turns out to be every bit as hard as planning. The
details are beyond the scope of this article, but the
technical core of the problem is that the supply-
chain planning problem, under most obvious hill-
climbing metrics, has extremely large plateaus over
which the metric does not change at all. These
plateaus make it challenging to utilize hill-climb-
ing or other repair methods. Intuitively these
plateaus arise because optimization metrics are
generally measured at the end of the supply chain
(on the finished goods buffers) but most of the
interesting decisions are made upstream when
allocating time on critical resources in any of sev-
eral factories.

Finally, the size of problems that we needed to
address took all of us by surprise. At one point my
research team developed a set of data structures
that allowed us to perform extremely fast plan gen-
eration. We hoped that these data structures would
allow us to execute thousands or, ideally, hundreds
of thousands, of repair actions on our plans.
Instead our sales force took our prototype and used
it to solve problems involving literally millions of
separate activities on worldwide supply chains.
The good news was that we were able to solve
problems larger than almost all of those attacked
previously using optimization technology. The bad
news was that the problems were so large that we
could not run the plan builder enough times to get
any meaningful optimization through local search
(this was partially due to the fact that we were able
to create very good heuristics to guide the con-
struction of the initial plan).

As a result of these challenges, in around 1997
our teams at i2 were looking for creative solutions
for some of the supply-chain planning problems
we faced. The approach that worked best, unsur-
prisingly, was to develop highly procedural algo-
rithms on a customer-specific basis. This was done
using a combination of heuristics and domain-spe-

Articles

SUMMER 2008 53

cific algorithms (many drawn from operations
research). In addition, i2 began to use linear pro-
graming to solve a number of subproblems in sup-
ply-chain planning—for example in logistics and
for certain steps in the supply chain (such as down-
binning in semiconductor manufacture).

While these methods were largely successful,
they were not obviously scalable due to the custom
work required on each account.

Fortunately, we fairly quickly began to recognize
broad patterns of which kinds of algorithms were
applicable to which supply chains. This led us to
develop templates for each industry. This started
with computer manufacture (at this point i2 had

huge presence in the computer manufacture seg-
ment) and semiconductor manufacture, but even-
tually spread to apparel, steel, consumer packaged
goods, and other industries. The development of
industry templates was an extremely important
step for i2. It not only helped us address the opti-
mization problem, but also greatly simplified the
problem of modeling each customer’s supply chain
(since the template included a model of a typical
supply chain for each industry) and encapsulated
best-practices in supply-chain planning for each
industry (which was a major source of value to our
customers). Finally, we were able over time to
rearchitect the core of the software to make it rela-

Articles

54 AI MAGAZINE

Often, It’s Not
about the AI

Neil Jacobstein

Narrowly focused task- and domain-specific AI has been applied successfully for more than 25 years and
has produced immense value in industry and government. It doesn’t lead directly to artificial general
intelligence (AGI), but it does have real problem-solving value. It is useful to note that many of the
reasons some otherwise meritorious AI applications fail have nothing to do with the AI per se but rather
with systems engineering and organizational issues. For example, the domain expert is pulled out to
work on more critical projects; the application champion rotates out of his or her position; or the
sponsor changes priorities. A system may not make it past an initial pilot test for logistical rather than
substantive technical reasons. Some embedded AI systems may work well for years on a software
platform that is orphaned, and porting it would be prohibitively expensive. A system may work well in
a pilot test, but it might not scale for huge numbers of users without extensive performance
optimization. The core AI system may be fine, but the user interface could be suboptimal for a new set
of users. The delivered application system might work well, but it could be hard to maintain internally.
The system may work according to the sponsor’s requirements, but it might not be applied to the part
of the problem that delivers the largest economic results; or the system might not produce enough
visible organizational benefits to protect it in subsequent budget battles. Alternatively, the documented
results may be quite strong, but might not be communicated effectively across organizational
boundaries. All software projects, with or without embedded AI methods, are vulnerable to one or more
of these problems.

Neil Jacobstein is president and chief executive officer of Teknowledge Corporation in Palo Alto, California, and a
visiting scholar in the MediaX Program at Stanford.

tively easy for industry-specific development teams
to develop and support the optimization algo-
rithms in each template.

Interesting, these templates often mixed proce-
dural planning algorithms, linear programming,
integer programming, and plan repair. They also
generally involved running a series of algorithms
on different parts of the supply chain. Finally, the
hardest problems, in domains such as chemical
manufacture, often involved a deep interaction
between liner programming and discrete opti-
mization (for example discrete decisions around
lot sizing and campaign planning coupled with
linear optimization for each step in the campaign).
Nevertheless, in each industry we were able to,
over time, develop largely successful planning and
optimization approaches.

Lessons Learned
In retrospect we can see several interesting lessons.

First, many, if not most, of the optimization
problems we encountered eventually required a
combination of AI and OR techniques. This may
not be a major surprise today since the two com-
munities have been working increasingly closely
over time (see for example, Kautz and Walser
[2000]; Van den Briel and Kambhmpati [2005]; Van
den Briel, Vossen, and Kambhmpati [2005]; and
Vossen et al. [2001]), but it was an important les-
son at the time.

Second, it turned out to be important to separate
the data structures for modeling from the data
structures for optimization algorithms. The overall
supply-chain planning problem must be repre-
sented in a way that is holistic and natural for the
user (and that roughly matches the ontology of the
data coming in from other systems and going out
to other systems). However, we found that both AI
repair algorithms and linear programming solvers
could be efficient only if they could use their own
ontology and data structures. This forces a certain
amount of translation back and forth (especially
when the solvers must work together), but all of
our attempts to avoid this cost were unsuccessful.

Third, as mentioned above, generic modeling
languages inevitably mean complex optimization.
Limited languages, such as linear programming,
support provably optimal polynomial time solvers.
Other restricted problems, such as “traveling sales-
man” or “job-shop scheduling,” have been well
studied and can be solved near-optimally up to
fairly large problems. However, supply chains are
complex, and any attempt to restrict the modeling
language led to cases where we could not model
the customer’s situation with sufficient precision
(leading to hugely suboptimal or infeasible plans).

In a real sense, the power of the industry tem-
plates was that they limited modeling flexibility at

a semantic level. They fixed, for example, a basic
structure of buffers, operations, and resources that
was common across semiconductor manufacture
(and the general constraints on each object). This
allowed each template to have its own heuristic
optimization algorithms that would not work on
all supply chains but would work on supply chains
having the structure given in the template.

Finally, our overall experience gives a new per-
spective on the meaning of NP-completeness. We
came to appreciate the use of linear programming
not because it was necessarily faster or more opti-
mal than AI methods, but rather because it was
more predictable. When linear programming
worked on small test problems it generally also
worked on larger production problems (no surprise
there). Further, when it worked on one customer,
or for one time period, it generally also worked on
others. Search-based, or repair-based, techniques,
by contrast, had to be watched much more close-
ly. When the problem size changed, the data set
changed, or the field consultants made innocuous
changes, algorithms that had been working would
suddenly either run unacceptably long or would
generate obviously flawed plans (which again
makes sense given the theoretical results). In the
business world, the ability to scale solutions, to test
and deploy solutions that we know to work, and
not to require Ph.D.-level assistance in every
account is extremely important. Otherwise costs
and schedules cannot be accurately estimated, and
it is difficult to run a profitable operation. These
considerations turn out to be much more impor-
tant than the generation of provably optimal solu-
tions.

Conclusion
The late 1990s saw an interesting collision between
the needs of the business world to solve hard opti-
mization problems, such as supply-chain plan-
ning, and the computational complexity of these
problems. In the end, developing general-purpose,
fully dependable solutions that worked across all
industries proved an elusive goal. A number of les-
sons were learned including the practical implica-
tions of NP-completeness.

In response to these lessons, a set of industry-
specific algorithms was developed and deployed
broadly with good results. i2, in particular, was
arguably the most successful company in the
industry in providing optimized, though not prov-
ably optimal, plans across a very rich set of indus-
tries. These algorithms combined heuristics with
OR techniques and AI techniques. The end result
was a measurable increase in supply-chain effi-
ciency including decreased inventory and
increased flexibility and resource utilization.

Articles

SUMMER 2008 55

References
Helmert, M. 2003. Complexity Results for Standard
Benchmark Domains in Planning. Artificial Intelligence
143(2): 219–262.

Kautz, H., and Walser, J. P. 2000. Integer Optimization
Models of AI Planning Problems. Knowledge Engineering
Review 15(1): 101–117
(www.cs.rochester.edu/u/kautz/papers/kerilp.ps).

Van den Briel, M., and Kambhmpati, S. 2005. Optiplan:
A Planning System That Unifies Integer Programming
with Planning Graph. Journal of Artificial Intelligence
Research 24: 919–931.

Van den Briel, M.; Vossen, T.; and Kambhmpati, S. 2005.
Reviving Integer Programming Approaches for AI Plan-
ning: A Branch-and-Cut Framework. In Proceedings of the
International Conference on Planning and Scheduling, 310–
319. Menlo Park, CA: Association for the Advancement of
Artificial Intelligence.

Vossen, T.; Ball, M. O.; Lotem, A.; and Nau D. S. 2001.

Applying Integer Programming to AI Planning. Knowledge
Engineering Review 16(1): 85–100.

James Crawford is vice president of engineering at Com-
posite Software, an enterprise software startup in the San
Francisco Bay Area. Prior to working at Composite, Craw-
ford spent three years as the area lead for autonomy and
robotics at NASA Ames Research Center. Among many
other projects one of his teams delivered the optimized
activity planner used throughout both of the Mars rover
missions. Prior to joining NASA, Crawford was optimiza-
tion architect for the Supply Chain Planner at i2 Tech-
nologies and led i2’s optimization team. Before that, he
worked at AT&T Bell Laboratories and cofounded the
Computational Intelligence Research Laboratory (CIRL)
at the University of Oregon. Crawford has authored over
15 papers in referred journals and conferences, and holds
five patents. He holds a Ph.D. and master’s degree in
computer science from the University of Texas at Austin
and a B.A. in mathematics and computer science from
Rice University.

Articles

56 AI MAGAZINE

Please Join Us for AIIDE this Fall!
The Fourth Annual Artificial Intelligence

and Interactive Digital Entertainment Conference (AIIDE-08)
October 22–24, 2008

Stanford University, Stanford, California

Sponsored by the Association for the
Advancement of Artificial Intelligence (AAAI)

AIIDE'08 is intended to be the definitive point of interaction
between entertainment software developers interested in AI and academic

and industrial AI researchers. AIIDE'08 will include invited speakers, research
and industry presentations, project demonstrations, and product exhibits.

aiide08@aaai.org � www.aaai.org/aiide08.php

Conference Chair
Michael Mateas (University of California, Santa Cruz).

