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B The infrastructure of modern society is con-

trolled by software systems that are vulnerable
to attacks. Many such attacks, launched by
"recreational hackers” have already led to severe
disruptions and significant cost. It, therefore, is
critical that we find ways to protect such sys-
tems and to enable them to continue function-
ing even after a successful attack.

This article describes AWDRAT, a prototype
middleware system for providing survivability
to both new and legacy applications. AWDRAT
stands for architectural differencing, wrappers,
diagnosis, recovery, adaptive software, and trust
modeling. AWDRAT uses these techniques to
gain visibility into the execution of an applica-
tion system and to compare the application’s ac-
tual behavior to that which is expected. In the
case of a deviation, AWDRAT conducts a diag-
nosis that determines which computational re-
sources are likely to have been compromised
and then adds these assessments to its trust
model. The trust model in turn guides the re-
covery process, particularly by guiding the sys-
tem in its choice among functionally equivalent
methods and resources. AWDRAT has been ap-
plied to and evaluated on an example applica-
tion system, a graphical editor for constructing
mission plans. We describe a series of experi-
ments that were performed to test the effective-
ness of AWDRAT in recognizing and recovering
from simulated attacks, and we present data
showing the effectiveness of AWDRAT in de-
tecting a variety of compromises to the applica-
tion system (approximately 90 percent of all
simulated attacks are detected, diagnosed, and
corrected). We also summarize some lessons
learned from the AWDRAT experiments and
suggest approaches for comprehensive applica-
tion protection methods and techniques.

Overview

To the extent that traditional systems provide
for immunity against attack, they do so using
one of two approaches: The first approach uses
a library of known, suspected, or hypothesized
patterns of attack and attempts to match the
observed behavior of the system against pat-
terns in the library. The second approach con-
structs a statistical model of “typical” behavior
then detects statistically anomalous behavior
that deviates from the typical profile. Neither
of these approaches is satisfactory: The first ap-
proach fails in the face of novel attacks, pro-
ducing an unacceptably high false negative
rate; in practice, the advantage goes to the at-
tacker since the attacker can produce novel at-
tacks more rapidly than defenders can respond
to them. The second approach confounds un-
usual behavior with illegal behavior; this pro-
duces unacceptably high false positive rates
and lacks diagnostic resolution even when an
intrusion is correctly flagged (Allen et al. 2000;
Debar, Dacier, and Wespi 1999; Lunt 1993; Ax-
elsson 1998).

In this article, we present a different ap-
proach embodied in AWDRAT, a middleware
system to which an existing application soft-
ware (the “target” system) may be retrofitted.
AWDRAT provides immunity to compromises
of the target system by making it appear to be
self-aware and capable of actively checking
that its behavior corresponds to that intended
by its designers. “AWDRAT” stands for archi-
tectural differencing, wrappers, diagnosis, re-
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covery, adaptivity, and trust modeling. We will
explain each of these facilities in detail later on.

AWDRAT uses these facilities in order to pro-
vide the target system with a cluster of services
that are normally taken care of in an ad hoc
manner in each individual application, if at all.
These services include fault containment, exe-
cution monitoring, diagnosis, recovery from
failure, and adaption to variations in the trust-
worthiness of the available resources. Software
systems tethered to the AWDRAT environment
behave adaptively; furthermore, with the aid of
AWDRAT, these system regenerate themselves
when attacks cause serious damage.

Intended Range of Application

AWDRAT is intended to be a general-purpose
utility that can be applied to a broad class of
target systems. We have experimented with the
application of AWDRAT to both server and in-
teractive application system code.! In general,
AWDRAT is intended to be useful for mission-
critical applications that might be subjected to
attack by malicious outsiders. However, AW-
DRAT does impose some overhead in both per-
formance and space consumption; the most
appropriate targets for its use, therefore, are
large, mission-critical applications that do not
need to meet hard real-time performance de-
mands but that are required to provide useful
services on a continuous basis.

The AWDRAT Approach

Before delving into the details, it’s useful to un-
derstand the general approach taken by AW-
DRAT. AWDRAT can be applied to a “legacy”
system, that is, an existing body of code (which
we’ll refer to as the “target system”), without
modifying the source code of that system. In-
stead, the programmer provides AWDRAT with
a “system architectural model” that specifies
how the program is intended to behave; usual-
ly this description is provided at a fairly high
level of abstraction (this model can be thought
of as an “executable specification” of the target
system). AWDRAT checks that the actual be-
havior of the target system is consistent with
that specified in the system architectural mod-
el. If the actual behavior ever diverges from
that specified in the model, then AWDRAT sus-
pends the program’s execution and attempts to
diagnose why the program failed to behave as
expected. The diagnostic process identifies an
attack and a set of resources (for example, bi-
nary code in memory, files, databases) that
might have been corrupted by the attack to-
gether with a causal chain of how the attack
corrupted the resources and of how the cor-
ruption of the resources led to the observed

misbehavior. AWDRAT then attempts to repair
the corrupted resources if possible (for example
by using backup copies of the resources). Final-
ly AWDRAT restarts the application from the
point of failure and attempts to find a way to
continue rendering services without using re-
sources that it suspects might still be compro-
mised.

In contrast to traditional protection mecha-
nisms mentioned earlier, which focus on in-
trusion detection, AWDRAT's primary concern
is with the detection of misbehavior. AWDRAT
is only secondarily concerned with the vector
by which the attacker gained access to the tar-
get system. Intrusion detection systems have
the advantage of being proactive; when they
work, they prevent the attacker from corrupt-
ing the target system. AWDRAT, on the other
hand, tries to repair the target system once a
misbehavior has been detected. The two ap-
proaches should therefore be seen as comple-
mentary that might both be parts of an overall
“defense in depth” strategy.

Roadmap

The remainder of this article is organized as fol-
lows. First we describe the overall architecture
of AWDRAT, showing both its major compo-
nents and internal models. We then go on to
describe each of the major components of AW-
DRAT. First we describe how AWDRAT synthe-
sizes wrappers that instrument the target sys-
tem and gather data about the target system'’s
execution. Next we decribe “architectural dif-
ferencing,” the process of comparing the actu-
al behavior of the system (gathered by the in-
strumentation we will describe) to the behavior
predicted by the system architectural model. In
the next section we describe how AWDRAT’s
diagnostic system uses a description of the de-
viation between predicted and observed be-
havior to produce a diagnosis. The following
section describes how the AWDRAT framework
for adaptive software allows the application to
provide multiple methods for achieving its
goals while the last of these sections describes
how such adaptive behavior can be used to
avoid using compromised resources during and
after recovery.

In the succeeding section, we describe a se-
ries of experiments we performed in applying
AWDRAT to a particular target system. This sec-
tion details the types of attacks that were sim-
ulated and shows how well AWDRAT per-
formed in detecting, diagnosing and re-
covering from these simulated attacks. Finally,
the last section discusses what additional steps
are needed in order to begin deploying AW-
DRAT on real target systems.
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Figure 1. The AWDRAT Architecture.

The AWDRAT Architecture

The AWDRAT architecture is shown in figure 1.
This architecture includes both a variety of
models maintained by AWDRAT (the round
boxes in the figure) as well as a number of ma-
jor computational components (the square
boxes in the figure). AWDRAT is provided with
a model of the intended behavior of the target
system being protected by AWDRAT (the sys-
tem architectural model in the figure). This
model is based on a “plan level” decomposi-
tion that provides pre- and post- and invariant
conditions for each module of the target sys-
tem. AWDRAT actively enforces these declara-
tive models of intended behavior using “wrap-

per” technology. The Wrapper Synthesis mod-
ule in the figure is responsible for synthesizing
nonbypassable wrappers (shown in the figure
surrounding the target system). These wrappers
instrument the target system and deliver ob-
servations of its behavior to the component la-
beled Architectural Differencer. This module
consults the system architectural model and
checks that the observations of the target sys-
tem’s behavior are consistent with the predic-
tion of the system architectural model, sus-
pending the target system’s execution if they
are inconsistent. In the event that unanticipat-
ed behavior is detected, a description of the dis-
crepancy between expected and actual behav-
iors is send to the AWDRAT component labeled
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Diagnosis in the figure. The AWDRAT Diagno-
sis module uses model-based diagnosis to de-
termine the possible ways in which the system
could have been compromised so as to produce
the observed discrepancy. AWDRAT proceeds
to use the results of the diagnosis to calculate
the types of compromise that may have affect-
ed each computational resource of the target
system. AWDRAT also calculates the likelihood
of each possible compromise. These results are
stored in an internal model, labeled Trust Mod-
el in the figure.

Next, AWDRAT attempts to help the target
system recover from the failure. First it uses
backup and redundant data to attempt to re-
pair any compromised resources (the compo-
nent labeled Recover and Regeneration in the
figure). During and after recovery, AWDRAT
tries to help the target avoid using compro-
mised resources (which would cause the target
system to fail again). In some cases, the target
system may have more than one method for
accomplishing a task; in others, the AWDRAT
infrastructure could provide alternative meth-
ods. For example, the target system might use
a library method for reading image files that is
very fast, but prone to buffer overflow attacks.
However, there is an alternative library that is
slower but immune to these attacks.? The Al-
ternative Method Selection module is responsi-
ble for choosing between such alternative
methods using decision theoretic techniques.
Similarly, even if there is only one possible
method for a task, there is often the possibility
of choosing between alternative resources (for
example, there might be redundant copies of
data, there might be the possibility of running
the code on more than one host). Such choic-
es are also managed by the Alternative Method
Selection component of AWDRAT. Part of the
reasoning involved in making these choices is
guided by the trust model: If a resource is po-
tentially compromised, then there is a possibil-
ity that any method using it will lead to a sys-
tem failure. However, some methods might be
much more desirable than others because they
deliver better quality of service (for example,
because they run faster, or render better im-
ages). The Adaptive Method Selection module,
therefore, attempts to find a combination of
method and resources that makes a good trade-
off, maximizing the quality of service rendered
and minimizing the risk of system failure.

AWDRAT also uses the target system's system
architectural model to recognize the critical da-
ta that must be preserved in case of failure. AW-
DRAT’s Wrapper Synthesizer module generates
wrappers that dynamically provision backup
copies and redundant encodings of this critical

data (labeled Backup Data in the figure). Dur-
ing recovery efforts, AWDRAT uses these back-
up copies to repair compromised data re-
sources; in addition, the AWDRAT Adaptive
Method Selection module may decide to use
the backup copies of data instead of the pri-
mary copy.

Using this combination of technologies, AW-
DRAT provides “cognitive immunity” to both
intentional and accidental compromises. An
application that runs within the AWDRAT en-
vironment appears to be self-aware, knowing
its plans and goals; it actively checks that its be-
havior is consistent with its goals and provi-
sions resources for recovery from future fail-
ures. AWDRAT builds a trust model shared by
all application software, indicating which re-
sources can be relied on for which purposes.
This allows an application to make rational
choices about how to achieve its goals.

Synthesis of Wrappers
and Execution Monitor

One of the key elements of AWDRAT is its use
of wrapper technologies. The AWDRAT archi-
tecture is very general purpose and could in
principle be applied to a variety of target sys-
tems written in a variety of programming lan-
guages for use on a variety of platforms; how-
ever, wrapper technologies are often specific to
a particular programming language or operat-
ing system environment. Our current set of
wrapper technologies limits us to Java and C
programs running in a Windows environment.
Other than this, we make very few assump-
tions about the nature of the target program;
for example, it may be single or multithreaded,
it can be a server or an interactive application
program.

AWDRAT employs two distinct wrapper
technologies: SafeFamily (Balzer and Goldman
2000; Hollebeek and Waltzman 2004) and
JavaWrap. The first of these encapsulates sys-
tem DLL's, allowing AWDRAT to monitor any
access to external resources such as files or
communication ports. The second of these pro-
vides method wrappers for Java programs, pro-
viding a capability similar to “:around” meth-
ods in the Common-Lisp Object System (Keene
1989; Bobrow et al. 1988) or in Aspect-] (Kicza-
les et al. 2001). To use the JavaWrap facility,
one must provide an XML file specifying the
methods one wants to wrap as well as a Java
Class of mediator methods, one for each
wrapped method in the original application.
When a class file is loaded, JavaWrap rewrites
the wrapped methods to call the corresponding
wrapper methods; wrapper methods are passed
a handle to the original method allowing them
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Figure 2. Two Types of Wrappers Used in AWDRAT.

to invoke the original method if desired. To use
the SafeFamily facility, one must provide an
XML file of rules specifying the resources (for
example, files, ports) and actions (for example,
writing the file, communicating over the port)
that are to be prevented. These two capabilities
are complementary: JavaWrap provides visibil-
ity to all application-level code, SafeFamily
provides visibility to operations that take place
below the abstraction barrier of the Java Lan-
guage run-time model. Together they provide
AWDRAT with the ability to monitor the appli-
cations behavior in detail as is shown in figure
2.

The inputs to these two wrapper-generator
facilities (the JavaWrap XML spec, the Java Me-
diator files, and the SafeFamily XML specifica-
tion file) are not provided by the user but are
instead automatically generated by AWDRAT
from a “system architectural model” such as
that shown in figure 3. The system architectur-
al model is written in a language similar to the
“Plan Calculus” of the Programmer’s Appren-
tice (Rich and Shrobe 1976; Shrobe 1979; Rich
1981); it includes a hierarchical nesting of com-
ponents, each with input and output ports
connected by data and control-flow links. Each
component is provided with prerequisite and
postconditions. In AWDRAT, we have extended
this notation to include a variety of event spec-
ifications, where events include the entry to a
method in the application, exit from a method,
or the attempt to perform an operation on an
external resource (for example, write to a file).
Each component of the system architectural
model may be annotated with “entry events,”
“exit events,” “allowable events,” and “prohib-

ited events.” Entry and exit events are de-
scribed by method specifications (and are
caught through the JavaWrap facility); allow-
able and prohibited events may be either
method calls or resource access events (re-
source access events are caught by the Safe-
Family facility). The occurrence of an entry (ex-
it) event indicates that a method that
corresponds to the beginning of a component
in the system architectural model has started
(completed) execution. Occurrence of a pro-
hibited event is taken to mean that the appli-
cation system has deviated from the specifica-
tion of the model.

Given this information, the AWDRAT wrap-
per synthesizer collects up all event specifica-
tions used in the system architectural model
and then synthesizes the wrapper method code
and the two required XML specification files as
is shown in figure 4.

Architectural Differencing

In addition to synthesizing wrappers, the AW-
DRAT generator also synthesizes an “execution
monitor” corresponding to the system archi-
tectural model as shown in figure 4. The role of
the wrappers is to create an “event stream”
tracing the execution of the application. The
role of the execution monitor is to interpret the
event stream against the specification of the
system architectural model and to detect any
differences between the two as shown in figure
5. Should a deviation be detected, diagnosis
and recovery is attempted. Our diagnosis and
recovery systems, far and away the most com-
plex parts of the AWDRAT run-time system, are
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Figure 3. An Example System Architectural Model.

written in Common Lisp; therefore, the actual
“plumbing” generated consists of Java wrap-
pers that are merely stubs invoking Lisp medi-
ators that, in turn, signal events to the execu-
tion monitor, which is also written in Lisp. This
is shown in figure 6.

The system architectural model provided to
AWDRAT includes prerequisite and postcondi-
tions for each of its components. A special sub-
set of the predicates used to describe these con-
ditions is built into AWDRAT and provides a
simple abstract representation of data structur-
ing. The AWDRAT synthesizer analyzes these
statements and generates code in the Lisp me-
diators that creates backup copies of those da-

ta structures that are manipulated by the ap-
plication and that the system architectural
model indicates are crucial.

The execution monitor behaves as follows:
Initially all components of the system archi-
tectural model are inactive. When the applica-
tion system starts up it creates a “startup” event
for the top-level component of the model, and
this component is put into its “running” state.
When a module enters the “running” state it
instantiates its subnetwork (if it has one) and
propagates input data along data flow links
and passes control along control flow links.

When data arrives at the input port of a
component, the execution monitor checks to
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Figure 4. Generating the Wrapper Plumbing.

see if all the required data is now available; if
so, the execution monitor checks the precon-
ditions of this component, and if they succeed,
it marks the component as “ready.” Should
these checks fail, diagnosis is initiated.

As events arrive from the wrappers, each is
checked. (1) If the event is a “method entry”
event, then the execution monitor checks to
see if this event is the initiating event of a com-
ponent in the “ready” state; if so, the compo-
nent’s state is changed to “running.” Data in
the event is captured and applied to the input
ports of the component. (2) If the event is a
“method exit,” then the execution monitor
checks to see if this is the terminating event of
a “running” module; if so, it changes the state
of the component to “completed.” Data in the
event is captured and applied to the output
ports of the component. The component’s
postconditions are checked and diagnosis is in-
voked if the check fails. (3) Otherwise the event
is checked to see if it is an allowable or prohib-
ited event of some running component; detec-
tion of an explicitly prohibited event initiates
diagnosis as does the detection of an unex-
pected event, that is, one that is neither an ini-
tiating event of a ready component or a termi-
nating or allowable event of a running
component.

Using these generated capabilities, AWDRAT
detects any deviation of the application from
the abstract behavior specified in its system ar-
chitectural model and invokes its diagnostic
services.

Diagnostic Reasoning

AWDRAT’s diagnostic service is described in
more detail in Shrobe (2001) and draws heavi-
ly on ideas in deKleer and Williams (1989).
Each component in the system architectural
model provided to AWDRAT is provided with
behavioral specifications for both its normal
mode of behavior as well as additional specifi-
cations of known or anticipated faulty behav-
ior. As explained in the section on Architectur-
al Differencing, an event stream tracing the
execution of the application system is passed
to the execution monitor, which in turn checks
that these events are consistent with the sys-
tem architectural model. The execution moni-
tor builds up a database of assertions describ-
ing the system’s execution and connects these
assertions in a dependency network. Any di-
rectly observed condition is justified as a
“premise,” while those assertions derived by in-
ference are linked by justifications to the asser-
tions they depend upon. In particular, post-
conditions of any component are justified as
depending on the assumption that the compo-
nent has executed normally as is shown in fig-
ure 7. This is similar to the reasoning tech-
niques in Shrobe (1979).

Should a discrepancy between actual and in-
tended behavior be detected, it will show up as
a contradiction in the database of assertions
describing the application’s execution history.
Diagnosis then consists of finding alternative
behavior specifications for some subset of the
components in the system architectural model
such that the contradiction disappears when
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these specifications of off-nominal behavior
are substituted.

In addition to modeling the behavior of the
components in the system architectural model,
AWDRAT also models the health status of re-
sources used by the application. We use the
term resource quite generally to include data
read by the application, loadable files (for ex-
ample, class files), and even the binary repre-
sentation of the code in memory. Part of the
system architectural model provided to AW-
DRAT describes how a compromise to a re-
source might result in an abnormal behavior in
a component of the computation; these are
provided as conditional probability links. Sim-
ilarly, AWDRAT’s general knowledge base con-
tains descriptions of how various types of at-
tacks might result in compromises to the
resources used by the application as is shown
in figure 8. AWDRAT’s diagnostic service uses
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Figure 7. Dependency Graph.

this probabilistic information as well as the
symbolic information in the dependency net-
work to build a Bayesian network and thereby
to deduce the probabilities that specific re-
sources used by the application have been
compromised.

Self-Adaptive Software

Recovery in AWDRAT depends critically on
self-adaptive techniques such as those de-
scribed in Laddaga, Robertson, and Shrobe
(2001). The critical idea is that in many cases
an application may have more than one way to
perform a task. For example, in the experi-
ments that will be described in the section on
experimental methods, we tethered a graphical
editor application to AWDRAT. This applica-
tion loads image files (for example, gif, jpeg)
and, as it happens, there is a vulnerability
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(since fixed) related to loading malformed im-
age files. This is enabled by the use of a “native
library” (that is, code written in C). There is al-
so a Pure Java library that performs the same
task, however, it is slower, handles fewer image
formats, and also produces lower-quality im-
ages in some cases.

Self-adaptive software involves making dy-
namic choices between alternative methods
such as the native and Pure Java image-loading
methods. The general framework starts from
the observation that we can regard alternative
methods as different means for achieving the
same goal. But the choice between methods
will result in different values of the “nonfunc-
tional properties” of the goal; for example, dif-
ferent methods for loading images have differ-
ent speeds and different resulting image
quality. The application designer presumably
has some preferences over these properties, and
we have developed techniques for turning

these preferences into a utility function repre-
senting the benefit to the application of
achieving the goal with a specific set of non-
functional properties. Each alternative method
also requires a set of resources (and these re-
sources must meet a set of requirements pecu-
liar to the method); we may think about these
resources having a cost. As is shown in figure 9,
the task of AWDRAT’s adaptive software facili-
ty is to pick that method and set of resources
that will deliver the highest net benefit. Thus
AWDRAT’s self-adaptive software service pro-
vides a decision theoretic framework for choos-
ing between alternative methods.

Recovery and Trust Modeling

As shown in figure 10, the results of diagnosis
are left in a trust model that persists beyond
the lifetime of a particular invocation of the ap-
plication system. This trust model contains as-
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sessments of whether system resources have
been compromised and with what likelihood.
The trust model guides the recovery process.

Recovery consists of first resetting the appli-
cation system to a consistent state and then at-
tempting to complete the computation suc-
cessfully. This is guided by the trust model and
the use of self-adaptive software. One form of
recovery, for example, consists of restarting the
application and then rebuilding the applica-
tion state using resources that are trustable.
This consists of (1) restarting the application or
dynamically reloading its code files (assuming
that the application system’s language and run-
time environment support dynamic loading, as
does Java or Lisp, for example); in doing so,
AWSDRAT uses alternative copies of the load-
able code files if the trust model indicates that
the primary copies of the code files have possi-
bly been compromised; (2) using alternative
methods for manipulating complex data, such
as image files or using alternative copies of the
data resources; the idea is to avoid the use of re-
sources that are likely to have been compro-
mised; (3) rebuilding the application’s data
structures from backup copies maintained by
the AWDRAT infrastructure.

The trust model enters into AWDRAT's self-
adaptive software infrastructure by extending

the decision theoretic framework to (1) recog-
nize the possibility that a particular choice of
method might fail and to (2) associate a cost
with the method’s failure (for example, the cost
of information leakage). Thus, the expected
benefit of a method is the raw benefit multi-
plied by the probability that the method will
succeed while the cost of the method includes
the cost of the resources used by the method
plus the cost of method failure multiplied by
the probability that the method will fail (that
is, expected cost). The probability of success is
just the joint probability that all required re-
sources are in their uncompromised states (and
the failure probability is just 1 minus the prob-
ability of success). In decision theoretic terms,
the best method is, in this revised view, the one
with the highest net expected benefit.? This ap-
proach allows AWDRAT to balance off the at-
traction of a method that provides a highly de-
sirable quality of service against the risk of
using resources that might be compromised.

Experimentation and Results

AWDRAT's goal is to guarantee that the target
system tethered to it faithfully executes the in-
tent of the software designer; for example, for
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Figure 10. The Trust Model Guides Future Recovery.

an interactive system this means that the sys-
tem should faithfully execute the commands
specified by its user (for example, through an
application GUI), or for a server application
this means that it should faithfully execute the
requests received from its client applications.

To assess AWDRAT we applied it to the de-
fense of a particular application system, the
MAF interactive mission planner—a compo-
nent of the DARPA Demval demonstration sys-
tem, which is in turn based on Rome Labs Joint
Battlesphere Infrastructure (JBI). MAF is an in-
teractive graphical editor for mission plans. Its
basic structure is one similar to many such sys-
tems: User commands are entered as “button
clicks” and in response to each such click the
system invokes a method that handles the
command by updating both the internal data
structures of the program and the correspon-
ding graphical display. It largely follows the
paradigm of a “model-view-controller” system.
MAF also makes requests of the JBI core’s pub-
lish-and-subscribe server; however, the MAF
system itself is not a server that responds to
client program’s network requests. MAF is im-
plemented in JAVA.

Due to its structure and implementation lan-
guage, the MAF system lacks many vulnerabil-
ities common to server systems written in un-
safe languages such as C. The primary

vulnerabilities in MAF arise either through use
of native libraries containing unsafe code or
through an attack that somehow manages to
gain enough privileges to modify the applica-
tion’s class files. AWDRAT’s primary concern is
not with the attack vector, but rather with the
identification and containment of misbehavior
and with the identification of corrupted re-
sources so that the recovery processes can
avoid them. In particular, AWDRAT focuses on
the maintenance of data integrity and data pri-
vacy.

We identified four properties that AWDRAT
should guarantee. First, the data structures
maintained by the application should accu-
rately reflect user requests—each field of each
data structure should be what the GUI request-
ed, no other fields should be present, and all
the fields requested by the GUI should be pres-
ent. Second, the application should not be able
to open a port to any application other than to
those JBI servers that it must communicate
with (that is, the JBOSS server). Third, the ap-
plication should not be able to open a port to
a foreign host. Finally, the application should
not be able to write files except in the specified
set of directories that constitute its temporary
storage areas.

Although these are stated in terms of the
MATF system in the context of the JBI environ-



ment, these properties are rather typical of the
security concerns that one would have for any
program, namely that the integrity of its data
structures should be maintained, that it
shouldn’t divulge internal information except
as authorized, and that it shouldn’t modify ex-
ternal information.

Experimental Methodology

To test the effectiveness of AWDRAT in guaran-
teeing these properties we adopted three dis-
tinct ways of attempting to violate the proper-
ties: modification of class files, random attacks,
and wrapped methods.

Modification of class files. We hand-inserted
attack code into a Java source file, recompiled,
and placed the class file into the appropriate di-
rectory on the Java classpath. This is intended
to simulate the case where an external attacker
gained sufficient privileges to corrupt the class
files.

Random attacks. The AWDRAT controller
launches a parasitic thread on startup. This
thread waits for a random delay and then at-
tempts to violate one of the constraints listed
above (for example, attempts to launch an ap-
plication, to open a port, or to corrupt the da-
ta structures). Which type of violation (and in
the case of data integrity, which field of which
data structure) is chosen randomly; the specif-
ic attack selected is logged for analysis purpos-
es.

Wrapped methods. AWDRAT places wrappers
around a significant number of methods in the
MAF application. The wrappers can be used as
a place from which to launch a simulated at-
tack; for example, by wrapping the “loadIm-
age” method, one can simulate an attack pay-
load that is carried by a corrupted image file
(without actually having to do the very labori-
ous work of constructing such a corrupted im-
age file).

These should be thought of as different ways
of introducing unexpected behavior into the
MAF program; they do not correspond directly
to any particular attacks. Rather they corre-
spond more closely to the effects that a variety
of different attacks might have in corrupting
files used by the target system or in modifying
its binary code in memory. The core AWDRAT
machinery is kept unaware of the attack ma-
chinery. Its goal is to detect and characterize a
violation.

The MAF’s data structures are a relatively
simple tree, built from instances of a few class-
es. Each flight path (mission) is represented by
a “Mission-Builder” that contains a set of
“Events,” “Legs,” “Sorties,” and “Movements.”
An Event is a “Take-off,” a “Landing,” or a

“Waypoint.” For each “Take-Off” event there is
a corresponding “Leg,” “Sortie,” and “move-
ment.” The top-level data structure is an in-
stance of the Mission-Builder class, containing
a hash table for the overall mission data and
four additional hash tables holding the sets of
event, leg, sortie and movement data struc-
tures. Each entry in these tables is an instance
of the appropriate type, containing a hash
table with the data specific to that element of
the mission plan.

When considering data-structure integrity, it
is important to understand that the data struc-
tures can be modified using two different levels
of calls. Each data structure is implemented as
a Java class with accessor methods (for exam-
ple, “setInformation,” “getInformation”). In
addition, Java defines methods on hash tables
(for example, “put,” “get”). The application al-
ways accesses the data structures through its
API using the “getInformation” and “setInfor-
mation” methods. However, attack code might
access the data structures below this level of
API (for example, using the hash table get and
put methods or even using lower-level memo-
ry-accessing capabilities at the native code lev-
el). Thus it is necessary to simulate attempts to
corrupt the data structures using both the API
methods and the hash table methods (AW-
DRAT does not wrap or monitor the hash
table-level methods for both pragmatic and
technical reasons, so modifications at this lev-
el are as opaque as modifications using native
code-level capabilities).

Each of these simulated attack methods has
drawbacks and strengths: The first method al-
lows very precise placement of an attack with-
in the code, but might be criticized for being
overly synchronized to the normal execution
flow of the program; the random attacks have
a dual set of issues. However, our feeling is that
collectively, these tests cover a great deal of the
appropriate space. Although we can’t be par-
ticularly rigorous about this, we observe that
for an attack to be effective it must (1) cause
the target system to divulge information that it
is not intended to; (2) modify information that
itis not intended to; (3) modify its own state in
ways that are not sanctioned by its specifica-
tion; (4) consume resources that starve out oth-
er applications; and (5) fail to meet its intend-
ed performance envelope.

Our tests are aimed at the first three of these
items. Figure 11 shows the tests, conducted by
category, in more detail.

The use of a wrapper to simulate an attack
payload was only employed for the loadlmage
method (to avoid actually building a payload
carrying corrupted image file). The wrapper on-
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1. Modification of class files:
Insert call to write files
Insert call to launch external application
Insert call to open port
Insert code to modify the data structures at the API level
Insert code to modify the data structures below the API level

2. Random delay attacks (through a parallel thread)
Make call to write files
Make call to launch external application
Make call to open port
Attempt to modify the data structures at the API level
Attempt to modify the data structures below the API level

3. Wrapped methods (used only for “loadlmage”)
Make call to write files
Make call to launch external application
Make call to open port

Figure 11. Tests Conducted by Category.
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ly attempts to do the disallowed action when
using the native loadImage library on specific
image files identified in a configuration file;
this is admittedly a bit hokey since the same
wrapper mechanism is used both to launch the
simulated attack and to make the decision as to
whether to use the native or pure Java load
method, but we have tried to keep the two sep-
arate and to run an honest test. In this case we
do not attempt to corrupt the MAF data struc-
tures because loadlmage is only called in the
application during its initialization, which is
before the data structures are created, so image-
based attacks only attempt to open a port or to
write a file.

The second category of violation is launched
from a thread that is started by the initializa-
tion code of the system. This thread waits un-
til the user begins to enter a mission plan, then
picks an arbitrary delay time (less than 4 min-
utes); after that delay time, it either attempts to
open a port, write a file, or to corrupt the data
structures. To do the last of these, it picks an ar-
bitrary element of the MAF data structures and
attempts to either modify an existing field of
the data structure or to add a new field. Strict-
ly speaking, adding a new field to the data
structures is harmless, the application will ig-
nore the extra field. However, the criterion for
success is detecting any deviation of the appli-
cation from the actions requested by the GUI,
so we include these case as well.

Detection Methods

As explained in the sections on wrappers, ar-
chitectural differencing, and diagnostic rea-
soning, AWDRAT picks up violations in one of
three ways: (1) It checks the integrity of the Ja-
va data structures against its internal backup
copy everywhere that the system architectural
model specifies that the data structures should
be consistent. (2) It checks that monitored
methods are called only at points in the execu-
tion sanctioned by the system architectural
model. (3) It receives messages from the Safe-
Family (DLL) wrappers, alerting it to violations
of the access rules imposed by SafeFamily.
Some violations that are conceptually in the
same category (for example, data structure in-
tegrity) are picked up by more than one mech-
anism. For example, an attempt to modify the
MAF data structures using an API-level call is
usually picked up because the call isn’t sanc-
tioned at that point of the execution; however,
using a hash table method on a hash table held
in one of the data structures will be picked up
by the integrity check, since the hash table
methods aren’t wrapped.

Results Summary

The results of our experiments are shown in
table 1. These show that all attempts to launch
an application, write a file other than those
sanctioned, or open an unsanctioned port were
detected. The only exception to this broad
statement is that an attacker can write to a file
in the MAF’s temporary directory or open one
of the ports used by AWDRAT itself (however,
opening such a port would violate the rules of
engagement for the experiments). Almost all
attempts to destroy the integrity of the MAF
data structures were detected; the exception is
when the modification is made using the MAF
API-level calls during the execution of a
method that legitimately uses the same API
call. This occurs only in hand-modified source
code “attacks” (one “random” attack managed
to tickle this case). In principle, it’s possible
that an attack operating below the MAF API
level could modify the MAF data structures and
that the modification could be overwritten lat-
er by the uncorrupted MAF code doing the
right thing. For example:

The GUI requests that the “ALT” field of Event

1 be set to “30000”

The attack code in another thread sets the

“ALT” field of Event 1 to “1” using hash table or

lower-level calls

The MAF method sets the “ALT” field of Event

1 to “30000”

The net effect is that the data structures are
uncorrupted; however, AWDRAT’s machinery



Attack Type Number of Detected Diagnosed Corrected
Attempts

Hand Placed 24 20/83% 20/83% 11/73%
Data MAF API 10 6/60% 6/60% 6/60%
Data lower API 5 5/100% 5/100% 5/100%
Port Opening 3 3/100% 3/100% NA
File Write 3 3/100% 3/100% NA
Application Launch 3 3/100% 3/100% NA

Random 26 25/96% 25/26% 13/92%
Data MAF API 6 5/83% 5/83% 5/83%
Data lower API 8 8/100% 8/100% 8/100%
Port Opening 5 5/100% 5/100% NA
File Write 4 4/100% 4/100% NA
Application Launch 3 3/100% 3/100% NA

Wrapped 9 9/100% 9/100% 9/100%
File Write 3 3/100% 3/100% 3/100%
Port Opening 3 3/100% 3/100% 3/100%
Application Launch 3 3/100% 3/100% 3/100%

Total 59 54/91% 54/91% 33/86%

Table 1. Experimental Results

will never detect the unsuccessful attempt to
corrupt the data structures in this case.

Discussion. The first category of attack in-
cludes hand-inserted attack code. Four of these
included calls to MAF API-level methods inside
other routines that legitimately invoke these
methods. These attacks could have been
caught if AWDRAT had interposed itself at a
higher level in the call tree, specifically at the
boundary between the GUI and the rest of the
MAF application. As it happens, the MAF sys-
tem is not appropriately modularized to facili-
tate this. One of the random attacks managed
by pure chance to run in parallel with an ap-
plication routine that invoked the same MAF-
level API; we thought this was too unlikely to
actually occur, but we were wrong. This slips by
because the current AWDRAT execution moni-
tor isn’t aware of thread structure.

The lesson to be learned is that for AWDRAT
to be effective, the abstract modularity of the

target system should be reflected in its actual
implementation. In particular, since wrapping
takes place at the level of the individual
method, it is important that each method in
the code (that is, Java method for the MAF sys-
tem) should correspond to no more than one
component of the system architectural model
(however, a component of the system architec-
tural model can be implemented by a set of
methods in the code).

Attacks that attempt to open ports, write
files, or launch applications were intercepted
and blocked by the SafeFamily wrappers, pre-
venting any bad effect from being propagated.
This is why the last column is marked Not Ap-
plicable (NA) for these categories of attack. In
fact, AWDRAT does restart the application and
rebuild its data structures in these cases as well.
For the Wrapped cases (that is, those involving
simulated corrupt image files) the last column
is listed because the dominant diagnostic hy-
pothesis in those cases is that an attack was
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launched from payload code embedded in the
image being loaded. In these cases, switching
to the Pure Java method or using a different
format of the image file constitutes successful
recovery. We did not mark these cases as NA,
since there was significant decision making in
the recovery process. In the other cases, the
dominant diagnostic hypothesis was that the
class files (or core image) were corrupted, in
which case the recovery process involved
switching the class path to backup copies of
the JAR files.

Finally we note that there are no false posi-
tives. This is to be expected if the system archi-
tectural model is a reasonable abstraction of
the program.

In addition to these extensive internal tests,
we also subjected AWDRAT to a Red-Team ex-
periment. The Red-Team experimented with a
much broader range of issues than the internal
experiments, many of which involved issues
that AWDRAT was not expected to deal with.
Nevertheless AWDRAT performed at a level
above the programmatic goals of the DARPA
SRS program that sponsored this effort.

Moving Toward Practicality

AWDRAT is still a prototype system and it has
been applied to a single major application sys-
tem; it is not yet ready for full deployment. It is
worth pulling back at this point to assess what
we have learned and to speculate on how the
AWDRAT framework might develop over time.
We will address the following issues in turn: (1)
what is the cost of applying AWDRAT? (2) where
does AWDRAT fail to provide general-purpose
solutions? (3) what is the long term vision for
self-protective and self- regenerative systems?

The Costs of Applying AWDRAT

AWDRAT provides protection and regenerative
services; but at what cost? Would it be easier to
engineer these services into each application
by hand, or is there an advantage to providing
a general framework for self-protection and re-
generation? Is the overhead imposed by the
general framework acceptable?

There are two major costs involved in the
use of AWDRAT: (1) the development cost of
building a system architectural model and (2)
the run-time overhead that AWDRAT imposes
on the hosted application system. In our expe-
rience so far, the second of these costs is negli-
gible. Since we used AWDRAT to defend an in-
teractive application, the key question is
whether the monitoring and checking over-
head slows down the system sufficiently to im-
pair the user’s experience. In the experiment re-

ported on here, we experienced no observable
degradation of user interface performance.
However, for real-time and embedded applica-
tions, the question is certainly still open. At the
least, we will need to be much more judicious
with the use of monitoring wrappers and we
will similarly have to be more cognizant of the
need to contain the cost of checking that the
application is behaving consistently with its
system architectural model.

The development cost of building the system
architectural model depends on two things:
How well understood is the system'’s architec-
ture? How easy is it to build a system architec-
tural model for a well understood architecture?

In the best of cases, the application to be
protected is well understood and reasonably
well modularized. However, this isn’t normally
the case for legacy applications; they are typi-
cally poorly documented. Furthermore, the
documentation that exists is usually out of
sync with the actual system code. In our ex-
periment with the MAF system, we were work-
ing with prototype, demonstration code whose
architecture was not documented; we had to
engage in “software archeology” to gain an un-
derstanding of the system before constructing
its system architectural model. One of the key
tools we used for this effort was AWDRAT's
wrappers, which allowed us to trace the execu-
tion of the application system at the method
call-level and thereby to deduce how it was in-
tended to work.

Once the architecture of the application is
understood, the construction of the system ar-
chitectural model is conceptually straightfor-
ward; however, the actual coding of the system
architectural model in our current plan lan-
guage is rather tedious and might well be more
easily generated from a graphical language (for
example, UML).

To get some understanding of the relative
size of the effort involved, we note that the
core of the MAF system itself is on the order of
30,000 lines of Java code (and we're not sure
that we’ve counted everything). The system ar-
chitectural model that we built to describe it is
448 lines of code. In addition, we added 369
lines of code to implement a backup dumper
for the MAF system’s data, 231 lines to handle
adaptive method selection for image file load-
ing, and about 500 lines of code to handle a va-
riety of minor issues (such as bypassing the in-
teractive “login” part of the MAF program
when AWDRAT restarts the program). In total
the system architectural model and all support
code amounted to 2,199 lines of code or about
8 percent of the target system.

Finally, both the coding effort in building



the system architectural model and the run-
time overhead incurred by architectural differ-
encing are directly proportional to the level of
detail in the system architectural model. There
is a trade-off to be made between this level of
detail in the system architectural model and
the degree of coverage that AWDRAT provides.
A relatively coarse model takes proportionally
less effort to build and imposes less run-time
overhead but provides fewer guarantees of cov-
erage. But perhaps this lower degree of cover-
age is all that is required. At the moment, we
have no way to assess a priori how much cov-
erage is enough; in practice, one designs the
system architectural model in an incremental
and evolutionary process, adding detail until
the coverage seems adequate while the over-
head remains acceptable.

What General Solutions
Are Still Lacking?

A basic assumption underlying the AWDRAT
methodology is that the modularity of the ap-
plication code follows that of its architecture.
This means that we’d like it to be the case that
any significant event in the system architecture
corresponds to an observable event in the code;
for Java (and most other languages) this means
that any significant architectural event should
occur at a method boundary so that a wrapper
can be used to observe the entry (or exit) from
that method. In the MAF system, this was al-
most always the case; but there were cases in
which an architecturally significant event was
buried deep within a block of inline code that
was not observable through the use of wrap-
pers. In these cases, the AWDRAT tool set pro-
vides no general-purpose solution; in practice,
we either rewrote the code (since we had access
to the source code) or simply abandoned the
attempt to observe such events.

A closely related issue is that sometimes it is
necessary to distinguish the context of an
event; a call to a particular method from one
place in the code may be interesting, while a
similar call from another location might be ir-
relevant or at least interpreted differently. In
practice, we dealt with these issues in an ad hoc
manner, capitalizing on the fact that we could
instrument the “plumbing” code that connects
the Java wrappers to the system architectural
model. A more general solution would involve
a system-modeling language that includes a
richer notion of system state and state transi-
tion and a generator that produces an execu-
tion monitor that tracks the system state and
that interprets the raw events delivered by the
wrappers in the context of the system state.

A final issue that we encountered is that, al-

though AWDRAT can capitalize on the avail-
ability of multiple methods for accomplishing
a task, it isn’t often easy to find such alternative
methods. Some application domains that have
been systematically explored have many alter-
native libraries for common tasks; but in the
domain explored, we found few such examples
of the diversity we’d expect to see.

Future Self-Protective
and Self-Regenerative Systems

AWDRAT represents one way to provide for the
protection and self-healing of a critical appli-
cation. AWDRAT gains its power by represent-
ing what the application should be doing and
comparing this to what it actually does. How-
ever, there are other complementary tech-
niques, including strong barriers against intru-
sion, intrusion detection, and variability.

The first of these involves the construction
of new, inherently safer operating systems and
language environments and new hardware.
The combination of these will close off many
of the current routes to penetrating a system
(for example, buffer overflows and similar at-
tacks). However, there will always be routes for
attackers to gain and escalate their privileges;
insider threats, password guessing, “social en-
gineering attacks” (that is, fooling authorized
users into extending privileges to unauthorized
users), and the like will be available as means of
penetration for a long time. Therefore, it will
be necessary to also provide techniques for
tracking possible intrusions and for making it
harder for an attacker who has gained some
privileges to escalate those privileges to a level
where they can do serious damage.

In the long term, we imagine that these tech-
niques will be merged in a common framework
that, like AWDRAT, is driven by models that
guide the synthesis of the actual protective and
healing machinery; however, in this more ex-
tensive environment there will be models and
synthesis tools that deal with these other as-
pects of the problem. For example, vulnerabil-
ity analysis (Shrobe 2002) can be used to de-
velop models of how attackers might attempt
to penetrate a system and escalate their privi-
leges. In effect, these are models of abstract
plans that can be coupled with plan recogni-
tion technology to maintain a constantly
evolving estimate of likely it is that the system
has been penetrated (Doyle et al. 2001b,
2001a). These estimates could enable proactive
deployment of protections that are geared to
the observed attack vector.

Part of the AWDRAT framework involves the
idea that a system should have more than one
method for accomplishing each of its major
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tasks. As we mentioned above, it isn’t always
easy to find natural diversity in software. How-
ever, there have been a number of examples of
systems that induce artificial diversity (Just and
Cornwell 2004) (for example, by adding ran-
dom padding to the stack or by shuffling the
entry vector to a library). By using models of
the places in a system that are subject to “arti-
ficial diversification” together with models of
the threat level the system is facing, a future
AWDRAT-like system could adaptively vary the
amount and kind of diversity that is intro-
duced in order to thwart an attacker.

Finally, we imagine a software design envi-
ronment in which the system architectural
model is captured early (and modified contin-
uously) in the process of designing the soft-
ware. The system architectural model that we
use in AWDRAT is actually “executable specifi-
cations” that can help designers explore possi-
ble different structures for their systems and
that can also help detect design errors long be-
fore actual coding begins; in some cases, code
can be generated automatically from the mod-
els. But in any event, the codesign of system
models and the actual code is a valuable new
methodology that is gaining significant atten-
tion in the software engineering community. If
this trend continues, it means that in the fu-
ture system models that are useful for our ap-
proach of “architectural differencing” will be
available to us for free.

Conclusions

AWDRAT is an infrastructure to which an ap-
plication system may be tethered in order to
provide survivability properties such as error
detection, fault diagnosis, backup, and recov-
ery. It removes the concern for these properties
from the domain of the application design
team, instead providing these properties as in-
frastructure services. It uses cognitive tech-
niques to provide the system with the self-
awareness necessary to monitor and diagnose
its own behavior. This frees application design-
ers to concentrate on functionality instead of
exception handling (which is usually ignored
in any case).

AWDRAT’s approach is cognitive in that it
provides for self-awareness through a system
architectural model that is a nonlinear plan
and through the use of wrappers and plan-
monitoring technology. Discrepancies between
intended and actual behavior are diagnosed us-
ing model-based diagnosis techniques, while
recovery is guided by decision-theoretic meth-
ods.

We have demonstrated the effectiveness of

AWDRAT in detecting, containing, and recov-
ering from compromises that might arise from
a broad variety of attack types. AWDRAT is not
particularly concerned with the attack vector,
since its major source of power is that it has a
model of what the application should be doing
rather than a library of specific attack types.
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Notes

1. In principle, AWDRAT could be applied to operat-
ing system code, but we have never experimented
with doing so.

2. In this case, the second library is a widely avail-
able, open source library that we included as part of
the AWDRAT instrumentation of the target system.
3. There other possible notions that one might want
to optimize. In particular, some people are more risk
averse than others. To accommodate this, it’s possible
to use a different objective function, for example, one
that uses a weighted sum of expected benefit and ex-
pected cost where the weights represent an assessment
of the relative importance of avoiding negative out-
comes versus achieving the highest possible benefits.
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