
� A hybrid fuzzy knowledge-based system with crisp
and fuzzy rules as well as numerical methods was
developed for multiobjective optimization of pow-
er distribution system operation. The development
process and knowledge-acquisition process for the
fuzzy knowledge-based system are described in
detail. Fuzzy sets are defined for recent tempera-
ture trend, line section loading, transformer aging,
voltage-level guidelines, and the degree of desir-
ability of a proposed switching combination. After
a heuristic preprocessor proposes a list of switch
openings that would seem to reduce system losses,
network radiality rules consider whether to open a
particular switch and find a corresponding switch
that can be closed to maintain radiality. Network
parameter rules determine whether the proposed
switching combination will violate network
integrity. Network performance rules find the
degree of desirability of proposed switching combi-
nations for enhancing multiple objectives. All
operational aspects of power distribution systems
are considered, and a solution is still found in real
time.

Ahybrid fuzzy knowledge-based system
was developed for multiobjective opti-
mization of power distribution system

operation (Gonen 1985). This system provides
a very powerful solution methodology by per-
mitting the inclusion of both crisp and fuzzy
rules as well as a coupling with numerical or
algorithmic methods. The algorithmic meth-
ods provide updates to the system status

through approximation formulas; these are
internal to the knowledge base. Fuzzy logic
(Gupta, Jin, and Homma 2003) is used to
resolve multiple conflicting objectives, model
soft constraints, and model expert knowledge
of system behavior that cannot be quantified.
This article will focus on the development
process and overall design of the intelligent
optimization system.

Certainty and precision have much too
often become an absolute design requirement
in engineering problems. The excess of preci-
sion and certainty in engineering and scientific
research and development often provides unre-
alizable solutions. Fuzzy logic, based on the
notion of relative graded membership, can deal
with information that is uncertain, imprecise,
vague, or without sharp boundaries. Fuzzy log-
ic allows for the inclusion of vague human
operator assessments (Sarfi and Solo 2002a).
Also, it provides a means for conflict resolution
of multiple criteria and better assessment of
options. This leads to greater adaptability,
tractability, robustness, a lower cost solution,
and better rapport with reality in the develop-
ment of intelligent systems for decision mak-
ing, identification, recognition, optimization,
and control. 

The tolerance of imprecision and uncertain-
ty in fuzzy logic can be effectively used in intel-
ligent optimization of power distribution sys-
tem operation (Sarfi and Solo 2005a). However,
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Sarfi, Salama, and Chikhani (1994a) as well as
Sarfi and Solo (2002c) demonstrate that fuzzy
logic is not an asset in all power systems plan-
ning and operation scenarios. Some rules do
not involve any uncertainty or can be repre-
sented better without fuzzy generalizations.
Every application must be thoroughly reviewed
to ensure that the best methods are employed. 

Knowledge-based or numerical methods can
be used in optimization of power distribution
system operation. An extensive study of soft-
ware tools used in real-time power system
applications concluded that electric utility
companies were not satisfied with convention-
al approaches based on numerical methods in
50 percent of the cases examined (Sarfi, Sala-
ma, and Chikhani 1994a). Dissatisfied parties
cited two major shortcomings in techniques
based on numerical methods: (1) lack of flexi-
bility in system modeling, and (2) exclusion of
operators’ input in the decision-making
process. While algorithmic numerical methods
will generally offer superior system-optimiza-
tion results, their solution times are often
excessive. The algorithmic model may not
include crucial system-dependent information
that can be described only with linguistic rules. 

Knowledge-based methods are an efficient
means of optimizing power distribution system
performance (Sarfi, Salema, and Chikhani
1994a and Sarfi, Salama, and Chikhani 1996a.
A knowledge-based method offers the advan-
tage that it employs heuristic and factual infor-
mation derived from knowledge of the system
behavior. From an engineering perspective, the
integration of heuristic rules into the proposed
reconfiguration method bridges the gap
between abstract theory and an industrially
viable tool. However, there is a serious short-
coming of knowledge-based methods in an
application such as optimization of power dis-
tribution system operation. An exhaustive
search procedure such as a branch-and-bound
strategy is typically employed to obtain a solu-
tion. An exhaustive search procedure to opti-
mize performance of even a small distribution
network would require a considerable amount
of time. System-optimization techniques based
solely on knowledge-based methods suffer
from numerous shortcomings: examination of
branch exchange is fast but will most likely
offer only a poor local optimum, and efforts to
retain a radial network may limit the permuta-
tions and combinations of switching opera-
tions that can be considered.

Through a coupling of knowledge-based and
numerical methods (Sarfi and Solo 2005b), the
shortcomings of the individual techniques are
overcome. A hybrid fuzzy knowledge-based

system with a coupling between knowledge-
based and numerical methods combines the
advantages of both methods for multiobjective
optimization of power distribution system
operation. In addition to including existing
numerical methods, it embodies all existing
qualitative knowledge of the system. One must
wonder why the hybrid fuzzy knowledge-based
system is not more widespread in industry. 

The hybrid fuzzy knowledge-based system
effectively optimizes a power distribution net-
work for multiple system-performance objec-
tives, including system loss reduction, trans-
former load balancing, reduction of trans-
former aging to decrease the failure rate and
increase continuity of service, maintenance of
a satisfactory voltage profile throughout the
network, reactive power compensation, and
conservative voltage reduction (CVR) practice
to achieve peak shaving.

The intelligent optimization system offers
several means of control: automated tie and
sectionalizer switches, transformer tap chang-
ers, and switched capacitor banks.

The optimized network complies with a
comprehensive list of constraints: network
radiality, line section and equipment capacity,
maintenance of acceptable fault current levels,
and service priority for critical customers.

Development of a Fuzzy 
Knowledge-Based System

The typical development process for a commer-
cially viable fuzzy knowledge-based system is
as follows (Millington 1981): (1) project selec-
tion, (2) investigation, (3) analysis, (4) design
specification, (5) implementation, (6) evalua-
tion, (7) monitoring, and (8) maintenance. The
work described has traversed all stages of this
framework up to and including the implemen-
tation. Evaluation and monitoring are only
possible once one analyzes the subtle charac-
teristics of system performance. Prior to
describing the fuzzy knowledge-based system,
the knowledge-acquisition process is described
to show the complexity of defining a knowl-
edge base. The effectiveness of the knowledge-
based application relies heavily on the success-
ful conceptualization of rules.

Utility Knowledge 
Acquisition for a Fuzzy 

Knowledge-Based System
Knowledge acquisition and conceptualization
are formidable tasks. For this reason, end users
(that is, distribution operators or plant person-
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nel) should be actively involved in the devel-
opment process and not merely employed as a
source of knowledge. As operational personnel
become more involved in the development of
the fuzzy knowledge-based system, they will
become more familiar with the type of infor-
mation that must be recorded in the knowl-
edge base. As the user interface on fuzzy knowl-
edge-based system software tools becomes
more user friendly, in-house development of a
complex knowledge base will become feasible.

Having established that a proactive involve-
ment of operational personnel is necessary, the
engineer or knowledge-based system developer
directs the knowledge-acquisition process.
Knowledge can be acquired from computerized
data collection, formal or informal interviews
and information collection sessions, or written
questionnaires. Automated intelligent knowl-
edge-acquisition tools (Clancy 1985) have the
ability to pose increasingly appropriate ques-
tions to build a better knowledge base. Written
questionnaires permit inclusion of a larger
number of people in the search process but will
yield considerable redundant information.

The interview process by the engineer
should involve more than merely meeting with
the expert in the confines of an office. The
knowledge-acquisition process should be per-
formed at the site of the proposed fuzzy knowl-
edge-based system. Interview subjects should
be aware that this technology will not threaten
their jobs, but rather permit them to perform
daily tasks with increased ease and safety. It is
important that the appropriate terminology is
employed. As the fuzzy knowledge-based sys-
tem is based primarily on qualitative descrip-
tions, use of the proper vernacular will give any
developments added credibility.

Figure 1 shows the groups of people that
must be involved in development of the
knowledge base and how their expertise is
employed in this process. The knowledge-
acquisition process starts with discussions with
management to identify both written and
unwritten objectives of the proposed fuzzy
knowledge-based system development. Once
the mandate of the development effort is
understood beyond the scope of the written
proposal, the engineer can direct the effort
toward the desired goals. All personnel who
may be familiar with the process or system
behavior should be queried through some
means. The dashed line in figure 1 symbolizes
the fact that all operations, maintenance, engi-
neering, and planning personnel of all levels of
experience possess some type of expert knowl-
edge and should be involved in the knowledge-
acquisition process. In the review process, the

engineer finds the most applicable methods of
knowledge acquisition. This review is an ongo-
ing process until the fuzzy knowledge-based
system is developed to the stage that it can be
integrated into operations. After each revision
of the knowledge-acquisition process, the
approach is modified to assure that knowledge
is complete. 

Once a preliminary knowledge base has been
acquired and processed, software implementa-
tion of the rules can proceed. Introduction of a
preliminary prototype to potential users will
yield further insight into system behavior. The
development process never ceases. Once oper-
ations personnel are comfortable with the
fuzzy knowledge-based system, it may be used,
but maintenance will continually be required
to account for changes in the system or opera-
tional practice. Prior to implementation, a rig-
orous validation procedure should be followed,
as described in detail in Gupta (1991).

The core of the multiobjective optimization
system relies on a knowledge base determined
from an expert appreciation for system behav-
ior. While the subject of knowledge engineer-
ing may at first appear to be somewhat intu-
itive, identification and definition of a
complete set of rules quickly becomes a formi-
dable task. A structured knowledge-acquisition
procedure is essential to defining a knowledge
base that accurately represents the network.
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Structure of a Hybrid Fuzzy
Knowledge-Based System

A good starting point is obtained from a heuris-
tic preprocessor based on network partitioning
theory like that described in Sarfi, Salama, and
Chikhani (1996b) and Sarfi et al. (1993). The
good starting point is a list of switch openings
that would seem to reduce total system losses.
The hybrid fuzzy knowledge-based system has
a four-level rule hierarchy. Network radiality
rules in the first level are used in considering
whether to open a particular switch. If a switch
can be opened, then network radiality rules in
the second level of the hybrid fuzzy knowl-
edge-based system are used in finding a corre-
sponding initially open switch to close to
assume the load transfer that would be necessi-
tated by the switch opening. If there is a
switching combination that will preserve radi-
ality, then network parameter rules in the third
level of the hybrid fuzzy knowledge-based sys-
tem examine whether the switching combina-
tion will violate network operational con-
straints. If the operational integrity of the
network will not be violated by the switching
combination, then network performance rules
in the fourth level find the degree of desirabil-
ity of proposed control operations for enhance-
ment of multiple objectives. 

Regardless of the outcome of a candidate
switching-operation analysis, the subsequent
recommended switch opening on the good
starting point list is examined. After the load is
transferred, numerical methods are used to
update network parameters. Once the list of
candidate switches has been completely exam-
ined, the system performance is considered
optimized. While determination of algorithm
completion is based on examination of switch-
ing strategies, manipulation of switched capac-
itors and transformer tap changers is per-
formed within the rules. 

The heuristic rules in the hybrid fuzzy
knowledge-based system are summarized later.
Where there is a coupling between knowledge-
based and numerical methods, the integration
of numerical methods is described. The net-
work radiality rules are described in greater
detail in Solo and Sarfi (2005b). Network para-
meter rules are described in greater detail in
Sarfi and Solo (2002c) as well as Sarfi and Solo
(2006). Network performance rules are
described in greater detail in Sarfi and Solo
(2002c). The extremely powerful FuzzyCLIPS
language (Orchard 2004) was used in the devel-
opment of the fuzzy knowledge-based system. 

Fuzzy Set Definition
Fuzzy sets that describe fuzzy variables are rep-
resented by trapezoidal, Z-, and S-shaped mem-
bership functions. Z- and S-shaped functions
assign a membership value to all possible fuzzy
domain values, even those below the lower
limit and above the upper limit. The nonlinear
Π function is perhaps the most logical parallel
to the human thought process, but the linear
trapezoidal membership function is an accept-
ed compromise (Sarfi, Salama, and Chikhani
1996a). A linear function such as the trape-
zoidal function reduces solution time consider-
ably and is a good piecewise linearization of
the Π function. It is our belief that the normal-
cy condition should be employed as the basis
for any membership function definition, as it is
best understood. In the fuzzy variables defined
later, normal or moderate is represented by a
trapezoidal membership function. 

Linguistic qualifiers by themselves can be
restrictive in describing fuzzy variables, so lin-
guistic hedges are used to supplement linguis-
tic qualifiers through numeric transformation.
For example, a very hedge can square the initial
degree of membership μ in a fuzzy set: 

μvery high(T) = [μhigh(T)]2. 

These other standard linguistic hedges
(Orchard 2004), which accurately model the
human reasoning process, are used too: not,
somewhat, more or less, extremely, above, and
below. Linguistic qualifiers and hedges are
interpreted with the FuzzyCLIPS language
(Orchard 2004).

Fuzzy Antecedents
Fuzzy variables are defined to describe the fol-
lowing inputs or antecedents: (1) recent tem-
perature trend, (2) line section loading, (3)
transformer aging, and (4) voltage-level guide-
lines.

Recent Temperature Trend
Fuzzy logic is employed to describe short-term
temperature trends. For the fuzzy sets describ-
ing temperature to maintain some physical sig-
nificance, seasonal average temperature is used
as a characteristic value. While historical tem-
perature information is logged by distribution
operators for peak forecasting, it is more appro-
priate to represent recent trends in temperature
deviation from the seasonal average by a lin-
guistic qualifier: normal, cold, or hot.

Ambient and ground temperature affect the
capacity of equipment. Lower temperatures
permit higher loading. An example of the fuzzy
set definition of temperature for winter condi-
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tions is shown in figure 2. Once implemented
by a utility, it may be necessary to calibrate the
membership function parameters to best
approximate system behavior.

Normal Temperature Trend. A fuzzy set model-
ing normal temperature trends should be based
on the seasonal average for the geographic
region. The trapezoidal membership function is
chosen to represent normal temperature trends
for the winter season. Unity membership
occurs in the domain of –5°C to 13°C. There is
a small overlap in normal with cold and hot.
Overlap in fuzzy sets shows imprecise knowl-
edge of the temperature, but it is reasonable to
interpret temperature variation in this manner,
as an operator would report trends in ambient
atmospheric temperature. The temperature
range of normal corresponds to that which is
considered a normal operating temperature.
The fuzzy set provides a range of possible tem-
peratures to overcome any inconsistencies in
the temperatures throughout the system. Mem-
bership function bounds for cold and hot are
selected based on the definition of normal.

Cold Temperature Trend. The cold function is
modeled with a Z-shaped fuzzy membership
function. Cold decreases from a membership
value of 1 to 0 with slope m = –0.5 and normal
increases from 0 to 1 with slope m = 1. The mag-
nitude of the slope of the leading edge of nor-
mal is greater than the magnitude of the slope
of the trailing edge of cold. This biases member-
ship toward the normal set. This membership
bias contributes to a conservative line-loading
policy, as line sections can tolerate less loading
at higher temperatures. Cold has a unity degree
of membership for temperatures less than –6°C.

Hot Temperature Trend: Hot is modeled with
an S-shaped fuzzy membership function so no
upper bound is assigned. As normal decreases
from 1 to 0 with slope m = –0.5, hot increases in
membership with slope m = 1. Membership is
biased toward the hot set, thereby contributing
to a conservative line-loading policy. It is our
belief that from an operational perspective, it is
desirable to err within a safe operating zone.
Hot has a unity degree of membership for tem-
peratures greater than 14°C.

Line Section Loading
Figure 3 shows the fuzzy membership func-
tions that represent line section loading for a
sample system. The pu loading is determined
by taking the quotient of the calculated line
section current and the seasonal rating of the
line section. The linguistic qualifiers associated
with line section loading are as follows: normal,
low, high, and excessive.

Normal Loading: In figure 3, the line section

loading of 1.0 pu corresponds to loading at the
recommended seasonal limit. Under normal
operating conditions, a utility will load line
sections to 133 percent (1.33 pu) of the line
section’s thermal limits; this widely accepted
operational practice is based on utility experi-
ence. It is our belief that the lower bound on
normal loading should be approximately 65
percent (0.65 pu) of the equipment rating.
Therefore, the normal fuzzy set has unity mem-
bership in the domain of 0.7 pu to 1.3 pu. The
distribution network should normally operate
within this domain.
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Low Loading: Low line section loading identi-
fies conditions when line section current is well
below what is normally witnessed. Low is repre-
sented by a Z-shaped function; this is the stan-
dard type of function used for representing lower
operating regions. Membership function slopes
are selected to bias membership toward the nor-
mal set over the low set, thus ensuring a conser-
vative loading policy. A unity degree of member-
ship occurs for every pu loading less than 0.6. 

High Loading: When seasonal temperature is
well below average, loading guidelines can be
somewhat relaxed; the high fuzzy membership
function applies to such situations. The magni-
tude of the slope of the leading edge of high is
less than the magnitude of the slope of the
trailing edge of normal. The selection of slopes
in this manner biases the inference process
slightly toward the normal condition. This is
permissible because the loading guidelines per-
mit operation to 133 percent, but the normal
fuzzy set has been defined so that unity mem-
bership stops at 130 percent. A high condition
is only permitted for loading slightly higher
than the 1.3 pu limit imposed on normal. For
this reason, there is a unity degree of member-
ship only from 1.4–1.45 pu. 

Excessive Loading: Excessive line section load-
ing is considered unacceptable under any cir-
cumstances. Operation in excess of 155 percent
of equipment rating is considered unsafe.
Excessive is represented by an S-shaped func-
tion to ensure that loadings greater than 155
percent belong to this fuzzy set. The magnitude
of the slope of the leading edge of excessive is
greater than the magnitude of the slope of the
trailing edge of high. This ensures that member-

ship in this domain is biased toward excessive
to enforce conservative loading policy. 

Transformer Aging
The fuzzy membership functions for the trans-
former aging variable are shown in figure 4.
The following linguistic qualifiers are used: nor-
mal, low, high, and excessive.

Normal Aging: The qualitative description of
normal is centered about the maximum daily
recommended operating limit: 0.0369 percent
for a power transformer with rating between
500 kVA and 100 MVA.1 Based on discussions
with utility engineers, it is apparent that aging
rarely meets the maximum allowable value, so
normal is limited to approximately 110 percent
of the maximum amount. 

Low Aging: The low aging qualifier, represent-
ed by a Z-shaped function, is the region in
which the transformer typically ages. This
qualifier is designated as low to match the ter-
minology expressed in the standards. Low
aging occurs for values less than 80 percent of
the daily recommended amount. A utility’s
desire to preserve transformers for longer than
the period identified in the standards is reflect-
ed in the definition of rules, which tend to
favor low aging.

High Aging: High is defined as a very narrow
region in which operation is permitted only
during emergency conditions. Beyond a daily
aging of 130 percent of the daily recommended
maximum, it is believed that the risk of exces-
sive aging is far too great to permit operation.
A trapezoidal function is employed for this lin-
guistic qualifier.

Excessive Aging: Excessive aging, represented
by an S-shaped function, is employed to deci-
sively eliminate an operation that loads a trans-
former beyond the 130 percent threshold.
Aging to the high or excessive level will most
probably violate the capacity of some piece of
line equipment. The operation would likely be
deemed undesirable (defined later) for other cri-
teria prior to the activation of transformer
aging heuristics. 

Voltage-Level Guidelines
The voltage level is fuzzified in accordance with
the membership functions described in figure
5. The following linguistic qualifiers are defined
to represent the voltage-level domains: unac-
ceptable, emergency, range B (tolerable zone), range
A (favorable zone), and overvoltage.

All slopes of membership functions are
selected to draw voltage assessments into the
lower voltage range. This is necessary for a con-
servative voltage policy, thus assuring a quality
supply.
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The range A, range B, and emergency voltage
levels are based on ANSI loading guidelines.2

Utility operation is typically in the domain of
either range A or range B. While operation in
range A is certainly more favorable, no adverse
effects will result from operation in range B. No
operational constraints are placed on a utility
by the standards when operating in range B. The
fuzzy sets describing these conditions are based
on guidelines established within the standards:
Range A is from 96–110 percent of nominal
voltage, and range B is roughly from 90–95 per-
cent. Operation in the emergency domain is per-
mitted only during emergency conditions for a
short time. The emergency region lies between
80–90 percent of nominal voltage.

ANSI standards do not define unacceptable
and overvoltage conditions, as operation within
these regions is not permissible. Unacceptable is
represented by a Z-shaped membership func-
tion so all voltages below the unacceptable
region are identified as undesirable (defined lat-
er). Overvoltage conditions are unlikely to
occur, particularly if a conservative voltage-
reduction (CVR) policy is practiced. The para-
meters of the overvoltage condition are selected
to ensure that any voltages greater than range A
values are deemed undesirable.

Fuzzy Consequents: A 
Standardized Degree 

of Desirability
All fuzzy variables that describe an outcome or
consequent use the same fuzzy sets called the
standardized degree of desirability. By using
the same fuzzy sets, there is an effective means
of comparison when aggregating the results to
obtain a single description of the desirability of
the solution. This is particularly important
when trying to resolve multiple conflicting
objectives. 

In fuzzy rules, the outcome or consequent is
described by a standardized degree of desirabil-
ity that is arbitrarily defined. For those rules in
which the fuzzy set represents a physical quan-
tity, membership function definition is not
arbitrarily assigned. By assigning a different
scaling factor to the membership function
describing the degree of desirability of a partic-
ular rule, either higher or lower preference can
be given to optimizing a particular objective. If
all outcomes were assigned the same degree of
desirability, then all objectives would have
equal preference. Following implementation in
a utility, it may be necessary to calibrate fuzzy
membership functions describing the degree of
desirability to ensure that utility objectives are
assigned the desired order of preference. 

Figure 6 shows fuzzy sets for different
degrees of desirability of a consequent. The fol-
lowing linguistic qualifiers expressing the
degree of desirability are employed: moderate,
undesirable, low, and high.

Moderate Desirability: As shown in figure 6,
moderate is defined to have a degree of mem-
bership of 1 over the domain of 0.4 through
0.7. Moderate has the largest range of values to
assure greater conservatism in the solution
strategy. In the subsequent definition of the
fuzzy rules, the outcome will lie within the
moderate region in most cases. A moderate
assessment indicates that a switching combina-
tion will neither violate network integrity nor
enhance a performance objective for network
parameter and performance heuristics. 

Undesirable: Undesirable is represented by a Z-
shaped membership function and has a degree
of membership of 1 over the domain of 0
through 0.1. Only undesirable, not low, indicates
that an operation is unacceptable. In the case of
network parameter rules, an undesirable assess-
ment indicates that the proposed operation vio-
lates network integrity and should not be pur-
sued further. For network performance rules, an
undesirable outcome indicates that one of the
performance objectives is seriously degraded
and the operation should not be considered.

Low Desirability: Low is represented by a
trapezoidal fuzzy set like moderate, but its
domain is much smaller. Having a degree of
membership of 1 over the domain of 0.2
through 0.3, it is apparent that outcomes with-
in this region are thought to occur over a small-
er domain space. Low desirability does not indi-
cate that an option is clearly undesirable, but
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rather that the option may not have as high a
degree of desirability as would be expected
with respect to the objective in question. For
network parameter rules, low indicates that a
large operational margin will no longer exist,
but operation in that region remains viable. For
network performance rules, this outcome
means that an objective may not be improved
or may even be slightly compromised, but
there will be no serious adverse effects.

High Desirability: High is represented by an S-
shaped membership function and has a degree
of membership of 1 over the domain of 0.8
through 1.0. The high assessment applies in sit-
uations where the indices very clearly identify
a favorable condition. In the case of network
parameter rules, it is very clear that network
integrity will not be violated and a large oper-
ational margin exists. For network perfor-
mance rules, a high outcome indicates that per-
formance objectives will be substantially
improved by the proposed control action.

Network Radiality Rules 
for Opening an Initially 

Closed Switch
Network radiality heuristics identify a pair of
switching operations that will preserve radiali-
ty. A branch exchange is performed in which
opening one line section results in the closing
of another. A branch exchange can be some-
what inefficient in terms of solution time if not
initialized by a good starting point but can be
employed in knowledge-based methods. 

The radiality rules are entirely crisp in
nature. Switch status is a binary variable; it is

either open or closed, so there is no uncertain-
ty associated with the status of switches that
are employed in switching operations being
analyzed. Also, there is no fuzziness about the
outcome of a proposed switching combination;
the proposed configuration is either radial or
not radial. Therefore network radiality heuris-
tics are not suited to fuzzification because of
the crisp nature of their function.

Heuristic 1.1: Line Section Previously Switched
during an Interval in Distribution System Opti-
mization. If the line section was previously
switched in distribution system optimization
during an interval, then the line section is not
a candidate to open.

Heuristic 1.2: Source Line Section. If the line
section is a source line section, then the line
section is not a candidate to open.

Heuristic 1.3: Terminal Line Section. If the line
section is a terminal line section, then the line
section is not a candidate to open.

Heuristic 1.4: Intermediate Line Section with
No Switch. If the line section is an intermediate
line section and does not have a switch, then
the line section is not a candidate to open.

Heuristic 1.5: Intermediate Line Section with
Open Switch. If the line section is an interme-
diate line section and has an already open
switch, then the line section is not a candidate
to open.

Heuristic 1.6: Intermediate Line Section with
Initially Closed Switch—Redundant Measure. If
the line section is an intermediate line section
and has a closed switch, then the line section is
a candidate to open.

Network Radiality Rules for 
Closing an Initially Open Switch
Every switch has an upstream (supply) side and
downstream (demand) side. When opening a
switch, its upstream terminal switch will
remain supplied with electricity. However, for
the switch’s downstream node, it is necessary
to transfer the load to another substation. A
breadth-first search is performed to determine
what line sections are connected to the down-
stream node. The breadth-first search starts
from the downstream node of the line section
being cut and continues until a line section
that meets all criteria has been found. If no
viable line section is found during examination
of the line sections connected to the down-
stream node of the switch being cut, then the
hybrid fuzzy knowledge-based system will con-
tinue its breadth-first search by sequentially
examining line sections connected to the end
bus of each line section with no switch or a
closed switch. If a switching combination is
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identified that will preserve network radiality,
then network layout tables are updated to
ensure that network modifications are consid-
ered during subsequent analysis.

Heuristic 2.1: Line Section Previously Switched
During an Interval in Distribution System Opti-
mization. If the line section was previously
switched in distribution system optimization
during an interval, then the line section is not
a candidate to close and this search path is dis-
qualified.

Heuristic 2.2: Source Line Section. If the line
section is a source line section, then the line
section is not a candidate to close and this
search path is disqualified.

Heuristic 2.3: Terminal Line Section. If the line
section is a terminal line section, then the line
section is not a candidate to close and this
search path is disqualified.

Heuristic 2.4: Intermediate Line Section with
No Switch. If the line section is an intermediate
line section and does not have a switch, then
the line section is not a candidate to close, but
this search path is not completely disqualified.

Heuristic 2.5: Intermediate Line Section with
Closed Switch. If the line section is an interme-
diate line section and has a closed switch, then
the line section is not a candidate to close, but
this search path is not completely disqualified.

Heuristic 2.6: Intermediate Line Section with
Initially Open Switch—Redundant Measure. If
the line section is an intermediate line section
and has an initially open switch, then a poten-
tial switching combination has been identified.

Heuristic 2.7: Supply to the Initially Open
Switch—Redundant Measure. If the start bus of
the initially open switch has supply, then a
potential switching combination has been
identified.

Heuristic 2.8: Formation of an Isolated Loop. If
the source trace from the start bus of the initial-
ly open switch does not cross the search path,
then a successful switching combination has
been identified.

Network Parameter Rules
Network parameter rules ensure that no net-
work operational constraints are violated by a
candidate switching combination.

Heuristic 3.1: Ensure Acceptable Fault Current
Levels. If the switching operation includes
existing switches, then the fault current level
remains acceptable.

Heuristic 3.2: Line Section Capacity. If the line
section loading is excessive, then the switching
combination is undesirable. If there is an emer-
gency condition and line section loading is low,
normal, or high, then the switching combination
has high desirability. If the temperature trend is
cold and line section loading is low or normal,

then the switching combination has high desir-
ability. If the temperature trend is cold and line
section loading is high, then the switching com-
bination has low desirability. If the temperature
trend is normal or hot and line section loading is
low, then the switching combination has high
desirability. If the temperature trend is normal or
hot and line section loading is normal, then the
switching combination has moderate desirabili-
ty. If the temperature trend is normal or hot and
line section loading is high, then the switching
combination is undesirable.

Heuristic 3.3: Equipment Capacity. While the
fuzzy membership functions representing line
section conductors or equipment loading are
different, identical guidelines are employed to
define the loading limits of other line section
and equipment types. The fuzzified rules are
identical and the linguistic qualifiers associated
with different loading conditions are identical
for all types of line sections and equipment. For
this reason, it is only necessary to provide one
set of rules. 

Heuristic 3.4: Transformer Aging Due to Tem-
porary Transformer Overloading. If there will
be a temporary transformer overload and trans-
former aging will be low, then the switching
combination has high desirability. If there will
be a temporary transformer overload and trans-
former aging will be normal, then the switching
combination has moderate desirability. If there
will be an emergency condition and temporary
transformer overload and transformer aging
will be high, then the switching combination
has moderate desirability. If there will be a tem-
porary transformer overload and transformer
aging will be excessive, then the switching com-
bination is undesirable.

Heuristic 3.5: Daily Transformer Aging. If
transformer aging will be low, then the switch-
ing combination has high desirability. If trans-
former aging will be normal, then the switching
combination has moderate desirability. If trans-
former aging will be high, then the switching
combination has low desirability. If transformer
aging will be excessive, then the switching com-
bination is undesirable.

Heuristic 3.6: Minimum Voltage Require-
ments. A voltage-update routine is employed
that either steps up the transformer taps for
voltage correction or steps down the trans-
former taps for CVR until the desired objective
is attained. Bus voltages are updated using the
ladder network technique. If the voltage level is
unacceptable or emergency, then invoke the volt-
age-update routine. If the voltage level is over-
voltage, then invoke the voltage-update routine
with CVR policy set. If the voltage-update rou-
tine is executed and the voltage level is range B,
then the switching combination has moderate
desirability. If the voltage-update routine is exe-
cuted and voltage level is range A, then the
switching combination has high desirability. If
the voltage-update routine is executed and
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there is an emergency condition and the volt-
age level is emergency, then the switching com-
bination has moderate desirability. If the volt-
age-update routine is executed and there is a
normal condition and the voltage level is emer-
gency or unacceptable, then the switching com-
bination is undesirable.

Heuristic 3.7: Adjustment of Reactive Power
Compensation. If the load is transferred to the
substation and the main feeder is equipped
with switched capacitors, then switch in capac-
itors according to 2/3 rule (Sarfi and Solo
2002b). If the load is shed by the substation and
the main feeder is equipped with switched
capacitors, then switch out capacitors accord-
ing to 2/3 rule (Sarfi and Solo 2002b).

Heuristic 3.8: Service Priority. If a priority cus-
tomer is supplied by several service entrances,
then the customer is to be supplied by two dif-
ferent utility substations.

Network Performance Rules
Following the successful completion of net-
work radiality and parameter heuristics, net-
work performance heuristics are activated. Net-
work performance heuristics assess the
capability of a proposed switching operation to
optimize specific objectives. If either network
radiality or operational parameters are violated
in the lower two levels of the rule hierarchy,
then the switching option is rejected. For net-
work performance rules, the consequents will
not automatically cause a candidate option to
be eliminated. When assessing the perfor-
mance of proposed network modifications, the
integrity of the network has already been
assured; consequently, even modest improve-
ments in service can be accepted. To offer a
standard basis of comparison, all network per-
formance heuristics except heuristic 4.2 use the
standardized degree of desirability to express
the benefit of the outcome.

Heuristic 4.1: Loss Reduction Assessment
through Voltage Drop (the heuristic of Civanlar
et al. [1988]). If Δvsub 1-a > Δvsub 2-b, then the
transfer of bus A to substation 2 has moderate
desirability. If Δvsub 1-a > Δvsub 2-b, then the trans-
fer of bus A to substation 2 is undesirable where
bus A is connected to substation 1, bus B is con-
nected to substation 2, Δvsub 1-a is the voltage
drop from substation 1 to bus A, and Δvsub 2-b is
the voltage drop from substation 2 to bus B.

Heuristic 4.2: Conservative Voltage Reduction
(CVR). The voltage level is lowered while main-
taining a reasonable quality of service to cus-
tomers. For CVR operation, tap changers lower
the voltage level until it is slightly higher than
the lower region of the tolerable zone. If the
voltage at the transfer point or voltage-critical
bus lies within the favorable zone, then the

voltage-update routine is invoked to lower tap
settings until the voltage is in the tolerable
zone. If the voltage is already in the tolerable
zone, CVR operation will not be performed.
These voltage levels are based on ANSI loading
guidelines.2 If the voltage level is range A or
overvoltage and system status is not emergency,
then invoke the voltage-update routine with
CVR option.

Heuristic 4.3: Heuristic Indices. Sarfi, Salama,
and Chikhani (1994b) defined two heuristic
indices that calculated the desirability of a
switching operation based on voltage, power
flow, and impedance parameters from both the
open and closed switches of the switching pair.
Indices C1 and C2 represent the most desirable
and least desirable switching operations,
respectively. An index value of 0 identifies an
undesirable switching operation. An index val-
ue of 1 identifies the most desirable switching
operation. If C1 < 0.25, then the switching com-
bination is undesirable. If C2 > 0.75, then the
switching combination has moderate desirabili-
ty.

Heuristic 4.4: Overall System Loss Reduction.
If the aggregated assessment of losses is low,
moderate, or high, then losses are reduced with
the degree of desirability of the aggregated loss
assessment and the candidate switching combi-
nation is accepted. If the aggregated assessment
of losses is undesirable, then losses are reduced
with the degree of desirability of the aggregated
loss assessment and the candidate switching
combination is not accepted.

Heuristic 4.5: Conversion Criteria. If the aggre-
gated assessment of losses is moderate or high
and all network radiality and network parame-
ter rules are satisfied, then losses are reduced
with the degree of desirability of the aggregated
loss assessment and the overall system-opti-
mization procedure is accepted. If the aggregat-
ed assessment of losses is unacceptable or low,
then losses are reduced with the degree of desir-
ability of the aggregated loss assessment and
the overall system-optimization procedure is
not accepted.

If all system constraints are satisfied and the
reduction in losses is at least moderate in desir-
ability, then the proposed system changes are
validated by conducting a load flow analysis to
ensure that network integrity is not violated.
This validation is a redundant measure for
greater reliability, and a utility may choose to
bypass the validation to reduce solution time.

Fuzzy Inference Mechanism

Fuzzy variables possibly modified by linguistic
hedges can be defuzzified using the center of
gravity defuzzification formula to obtain a sin-
gle crisp representative value. In equation 1 for
center of gravity defuzzification, μ is the degree
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of membership, x is the domain value, A is the
membership function possibly modified by lin-
guistic hedges, and x0 is the single crisp repre-
sentative value. 

In addition to being able to model imprecise
knowledge, a key advantage of fuzzy logic is its
inherent ability to resolve conflicts. An exam-
ple is provided to highlight the benefits of the
fuzzy inference process for conflict resolution
when input stimuli lie in a gray area. Consider
the following criteria: (1) recent temperature
trend is normal, and (2) line section loading fol-
lowing load transfer is 0.675 pu.

As illustrated in figure 3, a line section load-
ing of 0.675 pu is a member of two line section
loading sets: low with a degree of membership
of 0.25, and normal with a degree of member-
ship of 0.5. The degree of membership of nor-
mal is slightly higher than that of low. The
fuzzy rules described in heuristic 3.2 assign two
possible solutions for the input stimuli
described: high desirability with a degree of
membership of 0.25 [MIN(0.25, 1)], and moder-
ate desirability with a degree of membership of
0.5 [MIN (0.5, 1)]. There is greater membership
in the moderate fuzzy set, so the final conse-
quent is moderate desirability with a degree of
membership of 0.5 [MAX (0.25, 0.5)].

Validation and Simulations

The intelligent optimization system was vali-
dated and simulated on a subsystem of an actu-
al 4.4-kilovolt radial-distribution network with
approximately 70 load points including 14
major customers of the commercial, industrial,
or multiunit residential types. The network was
supplied by two substations, each equipped
with an identical 5 MVA transformer. The net-
work was equipped with 31 switches of which
20 were to be employed in the system-opti-
mization method. An extensive validation of
the intelligent optimization system during the
time of highest system demand on the test net-
work indicated that system constraints were
never violated by the optimization system soft-
ware and all performance characteristics were
enhanced. There was an improved voltage pro-
file, reduced line section loading, and dimin-
ished transformer aging. 

Extensive simulations were performed cover-
ing operation of the power distribution system
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over a year including summer weekdays, sum-
mer weekends and holidays, winter weekdays,
and winter weekends and holidays. Residential,
commercial, industrial, and mixed-load types
were represented in the simulations. Simula-
tions showed that the optimization of power
distribution system operation can be signifi-
cantly enhanced through the use of automated
tie and sectionalizer switches, transformer tap
changers, and switched capacitor banks. Simu-
lations further revealed that optimization solu-
tions are found in a time-efficient manner
while significantly enhancing performance,
achieving all objectives, and producing signifi-
cant monetary savings. 

Conclusion
After a heuristic preprocessor identifies several
switch openings that would reduce system loss-
es, network radiality and parameter heuristics
identify those switch closures that would pre-
serve radiality and system operational criteria,
respectively. Network performance heuristics
assess the capability of a proposed operation to
optimize specific objectives. Both qualitative
and quantitative rules are in cluded in the pro-
posed system-optimization technique to en -
sure that proposed system changes will not
compromise the integrity of the network or
violate principles of sound en gineering prac-
tice. All operational aspects of power distribu-
tion systems have been considered in the pro-
posed system-optimization method and a
solution is still obtained in real time. 

The development of this hybrid knowledge-
based system employing knowledge-based and
numerical methods to perform a multiobjec-
tive optimization of power distribution system
operation is a giant leap forward in the research
literature (Sarfi, Salama, and Chikhani 1994a
and 1996a). Previously published approaches
do not optimize for as many objectives, offer as
many means of control, comply with as many
network constraints, and combine knowledge-
based and numerical methods. The definition
of heuristic rules for network radiality, network
parameters, and network performance is in
itself a substantial contribution to power sys-
tems theory. This is illustrated by the descrip-
tion of complexity in utility knowledge acqui-
sition and conceptualization. Another distinct
advantage associated with this synergetic per-
formance optimization method is that no
aspect of system performance will be worsened
under any circumstances. 

These optimization methods based on the
synergy of knowledge-based and numerical
methods can decrease system energy losses,
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thus resulting in a more energy-effi-
cient system. The approach described
will also improve system reliability.

Notes
1. See IEEE C57.92-1981. IEEE guide for
loading mineral oil–immersed power trans-
formers up to and including 100 MVA with
55°C or 65°C average winding rise.

2. See ANSI C84.1-1995. Electric Power Sys-
tems and Equipment—Voltage Ratings (60
Hertz).
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