
� TEXTAL is a computer program that automatically-
interprets electron density maps to determine the
atomic structures of proteins through X-ray crys-
tallography. Electron density maps are traditional-
ly interpreted by visually fitting atoms into density
patterns. This manual process can be time-con-
suming and error prone, even for expert crystallo-
graphers. Noise in the data and limited resolution
make map interpretation challenging. To automate
the process, TEXTAL employs a variety of AI and
pattern-recognition techniques that emulate the
decision-making processes of domain experts. In
this article, we discuss the various ways AI technol-
ogy is used in TEXTAL, including neural networks,
case-based reasoning, nearest neighbor learning
and linear discriminant analysis. The AI and pat-
tern-recognition approaches have proven to be ef-
fective for building protein models even with
medium resolution data. TEXTAL is a successfully
deployed application; it is being used in more than
100 crystallography labs from 20 countries.

Proteins are large and complex macromol-
ecules that are essential to the chemical
processes in living systems. For example,

enzymes are proteins that are responsible for
catalyzing the thousands of metabolic reac-
tions in the living cell. Proteins also play sig-
naling, regulatory, transport, immune-re-
sponse, and mechanical roles in cells. Proteins
are made up of amino acids (also called
residues) that are linked through covalent
chemical linkages known as peptide bonds—the
amino acids form a linear polymeric structure
called a polypeptide chain. Typically proteins

contain 100 to 1,000 amino acids, arranged in
a specific order for a given protein. The average
number of residues in natural proteins is about
300. There are 20 unique amino acids that are
commonly found in nature. 

Knowledge of a protein structure is essential
to understanding how the protein functions,
its role in diseases, and how drugs (for exam-
ple, inhibitors) can be designed. In the past few
years, the genomic sequence databases have
grown phenomenally. The entire genomes of
the human plus those of many other organ-
isms are now known and accessible. Keeping
up the protein structure determination rate
with this growth of genomic information has
become a major challenge. In fact, the ratio of
solved crystal structures to the number of dis-
covered proteins is about 0.15 (Tsigelny 2002).
The structural genomics initiative (Burley et al.
1999) is a worldwide effort aimed at solving
protein structures in a high-throughput mode,
primarily by X-ray crystallography and nuclear
magnetic resonance (NMR) spectroscopy meth-
ods. 

X-ray crystallography is the most widely
used technique to accurately determine the
structure of proteins and other macromole-
cules. It is based on the fact that X rays are dif-
fracted by crystals due to the regular spacing of
molecules in the crystal lattice. X rays are scat-
tered by the electrons around atoms, and this
scattering results in diffraction patterns. 

Crystallographic structure determination in-
volves many steps: first the protein has to be
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isolated, purified, and crystallized. After crys-
tallization, X rays are shone through the crystal
and diffraction data (intensities of diffraction
spots) are collected. The diffraction pattern can
in principle be used to reconstruct a map of the
electron density around the molecule by in-
verse Fourier transform, although phases for
the structure factors (Fourier coefficients) have
to be estimated. This is necessary because the
diffraction spots contain information only
about the amplitudes of diffracted waves; the
phase information, which is also required for
calculating the map, is lost. Approximate phase
information can be obtained by a variety of ex-
perimental techniques, including multiwave-
length anomalous diffraction, multiple isomor-
phous replacement, and molecular replace-
ment (McRee 1999). 

The sample of diffraction spots at which in-
tensities can be collected is limited, which con-
strains the degree to which atoms can be dis-
tinguished from one another. This imposes
limits on the resolution of the map, measured in
Å (or Angstrom, where 1 Å = 10–10 m). The res-
olution is determined by a variety of experi-

mental factors. At 4 Å, the backbone may ap-
pear connected, but side chains might not be
very distinguishable. At 3 Å, it may be possible
to discriminate a few residues. In 2 Å maps, all
residues usually appear quite distinct, and at 1
Å, we can even see the density around individ-
ual atoms. In the majority of cases, data can be
collected only at medium resolution. Thus, the
major focus (and challenge) of automated map
interpretation is for the 2–3 Å resolution range. 

Automated Electron Density
Map Interpretation

The final step in protein crystallography is
model building, or determining coordinates of
atoms from an electron density map. Model
building is typically a two-stage process. First,
the path of the polypeptide chain through the
density is determined. Then, amino acids are
fitted into the density map; each amino acid
has several rotational degrees of freedom and
can adopt various conformations. The direc-
tionality of the chain must also be determined.
Computer graphics programs are widely used
to visualize and manipulate the model as well
as the density in three dimensions. Contoured
meshes are used to portray the density at vari-
ous levels of detail (figure 1). Fitting of maps is
a decision-making process that must take into
account factors like the quality of the electron
density, stereochemistry of amino acids, recog-
nition of secondary structures, and so on.

Once a preliminary structure has been built,
it can often be used to obtain better phase in-
formation and generate an improved map,
which can then be reinterpreted. This process
can go through many cycles, and it may take
weeks or sometimes months of effort for an ex-
pert crystallographer to produce a refined
structure, even with the help of molecular
three-dimensional visualization programs. The
difficulty of manual structure determination
depends on factors like the size of the structure,
resolution of the data, the complexity of the
molecular packing, and so on. There can be
many sources of errors and noise, which distort
the electron density map, making interpreta-
tion difficult. There is also a subjective compo-
nent to model building—decisions of an expert
are often based on what seems most reasonable
in specific situations, based on background
knowledge and experience. 

Various tools and techniques have been pro-
posed for automated protein model building:
treating model building and phase refinement
as one unified procedure using free atom inser-
tion in ARP/wARP (Perrakis, Morris, and
Lamzin 1999), fitting α-helices and β-sheets,

Articles

16 AI MAGAZINE

Figure 1. Example of Electron Density Around a 
Fragment of a Protein Structure. 

The fragment shown consists of two strands of a β-sheet in exocytosis-sensitive
phosphoprotein (PDB ID: 1KFQ). The electron density map has been calculated
from the solved structure at 2.8 Å. This image was generated with PyMOL (W. L.
DeLano, www.pymol.org).



followed by local sequence assignment and ex-
tension through loops in MAID (Levitt 2001),
template matching and iterative fragment ex-
tension in Resolve (Terwilliger 2002), expert
systems (Terry 1983), molecular scene analysis
(Leherte et al. 1997), using templates from the
Protein Data Bank (Jones, Zou, and Cowtan
1991), template convolution and other FFT-
based approaches (Kleywegt and Jones 1997),
and so on. Many of these approaches require
user-intervention or work well only with high
quality data. TEXTAL, however, has been de-
signed to be fully automated and to work with
medium-quality data (around 2.8 Å resolu-
tion). Most maps are, in fact, noisy and fall in
the low to medium resolution category due to
difficulties in protein crystallization and other
limitations of the data-collection methods.

The Architecture of 
the TEXTAL System

TEXTAL combines both AI and non-AI tech-
niques to address the various facets of the com-
plex problem of automated electron density
map interpretation. It takes a real-space pat-
tern-recognition approach to model building.
TEXTAL has been designed to be robust to
noise and has been optimized for medium res-
olution X-ray diffraction data (in the 2.4 to 3.0
Å range). 

TEXTAL tries to mimic the typical strategy
employed by human crystallographers when
they interpret electron density maps. It adopts
a divide-and-conquer, multistage approach to
the problem. First, it builds a set of chains of Cα
atoms representing the backbone. (Cα atoms
are the connection points along the backbone
where the side chains are attached). This is
done by predicting the positions of the Cα
atoms that lie along the backbone trace (medial
axis of the density contours) and connecting
them to form chains of Cαs. This is followed up
by fitting side chains into the density based on
pattern recognition of the local density around
the Cα atoms. A case-based reasoning approach
is used for fitting side chains, where we match
the density regions around Cαs with instances
in a database of regions, retrieve corresponding
residue structures (that is, atomic coordinates)
that best fit the density, and concatenate them
to build a complete structure.

TEXTAL is modular, and different compo-
nents can be used independently or in various
possible combinations. Figure 2 shows the ma-
jor subsystems of TEXTAL. 

Findmol identifies a contiguous biological
molecular unit of the protein in an electron
density map (McKee et al. 2005). The bound-

aries of the repeating asymmetric unit often cut
the molecule into multiple fragments, which
makes map interpretation difficult. Findmol
can identify a contiguous region of density in
which to build by using a combination of clus-
tering and symmetry operations. 

C-alpha pattern-recognition algorithm
(CAPRA) models the backbone (or main chain)
of the protein. It takes an electron density map
as input, and outputs a file in the protein data
bank (PDB) format containing a set of Cα
chains representing the true backbone as accu-
rately as possible. CAPRA itself is made up of
several modules, as described in figure 2. 

Lookup is used to build local models of side
chains attached to each Cα atom using case-
based reasoning and nearest neighbor learning.
Lookup takes spherical regions of density (of 5
Å radius) around the Cα atoms determined in
CAPRA and retrieves their best matches from a
database of solved cases. The known structures
of the matches are used to model the side
chains in a piecewise manner. 

Postprocessing routines refine the initial
model built by Lookup. There are two main
routines in this subsystem: (1) sequence align-
ment, where the sequence of residues in the ini-
tial model produced by Lookup is aligned with
the known sequence of amino acids of the pro-
tein, based on a dynamic programming ap-
proach proposed by Smith and Waterman
(1981). This enables another round of Lookup
to make corrections in the amino acid identi-
ties initially determined; (2) real-space refine-
ment, where slight adjustments in the positions
of atoms are made to better fit the density (Di-
amond 1971). 

Uses of AI Technology
Crystallographers rely heavily on expert
knowledge to make decisions at many steps in
map interpretation. To automate this process,
intelligent methods are needed. AI and pat-
tern-recognition approaches are well suited to
address the various challenges involved. Fur-
thermore, databases of solutions (previously
solved structures) are available that can be ex-
ploited to help solve new structures. 

We now describe the specific ways in which
AI techniques are used in TEXTAL. We empha-
size that many of the AI techniques developed
are novel and potentially applicable to many
other difficult problems, especially those that
share common challenges with TEXTAL: noisy
and high-dimensional data, recognition of pat-
terns in three dimensions, computationally
costly retrieval from large databases, expensive
domain expertise, and so on. 
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LOOKUP: Models Side Chains 

Final output model: Can be 
manually refined, or used to improve 

phases and generate a better map.

Preliminary Model

Database of
regions from 
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solved electron
density maps

local density

side chain

Protein crystal

Identify a contiguous biological molecular unit in the electron density map.

TRACE MAP: Creates a skeleton of the map, that is, finds trace points along the medial axis.

CALCULATE FEATURES: Describes 5 Å spheres around trace points using features.

PREDICT Ca POSITIONS: Uses neural network to predict distances to true Ca atoms.

BUILD CHAINS: Heuristic search to select and link Ca atoms into chains.

PATCH & STITCH CHAINS: Link disconnected chains.

REFINE CHAINS: Improves geometry of chains by considering bond lengths and angles.

Retrieves matching cases from a database and fits these solved side chains for each 
Ca atom determined by CAPRA.

SEQUENCE ALIGHNMENT: Aligns residue sequence from LOOKUP with true sequence.

REAL SPACE REFINEMENT: Moves atoms slightly to improve the fit to the density.

Collect data at synchrotron

FINDMOL

CAPRA: Models the Backbone 

POST-PROCESSING: Refines the Model

X-ray diffraction data

Map with trace points

Ca atoms linked into chains

Map covering 
single molecule

Model of Backbone

Electron density map

X-rays

Crystal

Detector

Figure 2. Architecture of the TEXTAL System.

Shown are the main subsystems: Findmol, CAPRA, Lookup, and Postprocessing. 



Extraction of Rotation-Invariant 
Features that Characterize 
Density Patterns
The fundamental pattern-recognition ap -
proach in TEXTAL is based on extracting nu-
meric features that attempt to capture relevant
information about local electron density for
various purposes (such as identifying Cα
atoms, comparing side chains, or detecting
disulfide bridges). The features were derived
manually based on knowledge about crystal-
lography and have the important property of
being rotation invariant (since the regions that
we want to compare can occur in any three-di-
mensional orientation). Nineteen features have
been defined in TEXTAL (Ioerger and Sacchet-
tini 2003). They can be categorized into four
classes that capture different types of informa-
tion about density patterns: statistical features
related to the electron density distribution, in-
formation on symmetry (as defined by the dis-
tance from the center of the region to its center
of mass), moments of inertia (and their ratios),
and features that try to represent the geometric
shape of the region. These 19 features can be
calculated at different radii. For instance, to
model side chains, we calculate the features
over spheres of size 3, 4, 5, and 6 Å; this is nec-
essary since amino acids vary in shape and size,
and each feature captures slightly different in-
formation for different sizes. In the following
sections, we show how these features are used
in various ways for pattern recognition.

Neural Network to Predict 
Cα Coordinates
To determine the three-dimensional coordi-
nates of Cα atoms, TEXTAL uses a traditional
feed-forward neural network to predict the dis-
tance of various candidate positions (along the
density trace) to the nearest true Cα, and se-
lects the ones that are predicted to be closest
(Ioerger and Sacchettini 2002). The objective of
the neural network is to learn the relationship
between characteristics of electron density pat-
terns around a coordinate and its proximity to
Cα atoms. We use the 19 features (defined at 3
and 4 Å) to characterize the local density; these
features are input to the network, which uses
one layer of 20 hidden units with sigmoid
thresholds and outputs the predicted distance
to a true Cα atom. The network is trained with
a set of coordinates in maps of solved proteins
with known distances to true Cαs, and the net-
work weights are optimized using backpropa-
gation (Hinton 1989). 

Heuristic Search to Build Chains
An AI-based approach is also used to link the

Cα atoms (as predicted by the neural network
described above) into backbone chains. The
primary criterion is based on connectivity in
the density map, although there are often
many alternative branches, creating ambiguity.
Linking Cα atoms into chains is a combinator-
ial search problem; whenever possible, an ex-
haustive search is done to create a solution that
maximizes chain length. When a complete
search becomes intractable, TEXTAL uses a
heuristic function to guide the search for the
best way to connect Cα atoms, based on criteria
that favor better adherence to stereo-chemical
constraints and secondary structures. These
heuristics and decision criteria try to capture
the type of reasoning that experienced crystal-
lographers employ, such as following apparent
α-helices and β-strands. It should be empha-
sized that automation of this process is partic-
ularly challenging because noisy data, such as
breaks in backbone connectivity or close con-
tacts between side chains, can be easily mis-
leading. A more thorough discussion of the
methods used to build the backbone can be
found in Ioerger and Sacchettini (2002).

Case-Based Reasoning to 
Connect Broken Chains 
This is a backbone improvement step that fol-
lows the initial construction of the backbone
chains. It attempts to further connect different
chains, especially in regions of weak density,
for example, where the backbone makes a loop.
A case-based reasoning approach is employed
to “stitch” chains together. Regions of the
structure that probably should have been con-
nected (typically at close extremities of differ-
ent chains) are identified, and a database of
protein structure fragments (constructed from
approximately 100 PDB files) is searched to
find the most plausible fragment that could
connect them. The case matching is done by
superposing all chain fragments (of 7 to 11
consecutive Cα atoms) from the database with
the region under consideration and computing
the root mean square deviation. If the devia-
tion is small enough, and the electron density
in the region is adequately high, then stitching
is justified, which may entail adding new Cα
atoms, guided by the retrieved case. This ap-
proach is necessary to deal with noise in typical
real-world diffraction datasets.

Case-Based Reasoning 
to Model Side Chains
After the backbone is built, the density is fitted
with side chains around the estimated Cα posi-
tions. We adopt a case-based reasoning ap-
proach that, in essence, makes the following
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query: have we seen a region with a similar pat-
tern of density in a previously solved map?
Given a spherical region with a radius of 5 Å
centered on each of the Cα atoms, a database of
about 50,000 previously solved regions (con-
structed from maps of approximately 200 pro-
teins) is searched to identify the best match.
This involves recognition of the unknown pat-
terns of density by comparison to known cases.
The comparison can be made by a density cor-
relation metric based on how well the density
distribution of the two regions superimpose
over each other. However, this objective simi-
larity metric involves computing the optimal
superposition between two three-dimensional
regions for a large number of rotational confor-
mations; this makes the metric expensive and
we cannot afford to run it on the whole data-
base. Thus, we use an inexpensive and approx-
imate feature-based measure of similarity to se-
lect k cases (400, for instance); the selected
cases are then examined by the more expensive
density correlation metric to make the final
choice.

There are two noteworthy issues related to
this approach: (1) a fast and effective similarity
metric has to be defined to do the filtering, such
that as many good matches as possible are
caught in the top k cases filtered. In Gopal et al.
(2004b), we compare various similarity meas-
ures and argue that probabilistic and statistical
measures outperform geometric ones (like those
based on Manhattan or Euclidean distance); (2)
the choice of k is important since it influences
the performance, both in terms of computa-
tional cost and quality of retrievals. In Gopal et
al. (2004a), we empirically and theoretically an-
alyze the choice of a suitable value for k and
provide a model to predict k based on a loss
function that represents the ability of approxi-
mate measures of similarity to rank good
matches (according to the objective metric. 

The two-stage method for case retrieval has
been previously proposed, in different flavors
and application domains. For example, in For-
bus, Gentner, and Law (2001), MAC/FAC (for
“many are called but few are chosen”) is pro-
posed as a general strategy for efficient, similar-
ity-based retrieval. Other similar applications
include a feature-based recognition of residue
environments in proteins (Mooney et al. 2005)
and information retrieval (Jones et al. 2000).

Feature Weighting for 
Pattern Recognition
Features can be noisy, and their relative contri-
butions to the description of local density pat-
terns can vary. Irrelevant features can have a
large (negative) impact on pattern recognition

(Almuallim and Dietterich 1994). Thus, we use
a novel feature-weighting algorithm called
Slider to assign weights to features to reflect
their relevance in comparing regions of density
patterns. Slider can be described as a filter ap-
proach to feature weighting (John, Kohavi, and
Pfleger 1994). It uses a greedy, heuristic search
method that tries to optimize the rank of
matches relative to mismatches. Slider adjusts
weights incrementally, such that, for a given
set of regions, known matching regions are
ranked better than known mismatching ones
(Gopal et al. 2005). In each iteration, we con-
sider only those weights at which matches and
mismatches switch as nearer neighbors to
query instances; these weights can be efficient-
ly computed by solving linear equations. The
classification accuracy is more likely to change
at these particular weights, thereby making the
search fast and effective. This approach is a
more efficient and informed way of finding the
weight values that are most promising candi-
dates for update, thereby circumventing the in-
tractability of exhaustive search over all possi-
ble weight vectors. 

Linear Discriminant Analysis 
to Detect Disulfide Bridges
A pattern-recognition approach is also used to
automatically detect disulfide bridges in elec-
tron density maps (Ioerger 2005). A disulfide
bridge is a covalent bond between the sulfur
atoms of two cysteine residues from different
parts of the polypeptide chain. The residues
with disulfide bridges can be located anywhere
in the chain, and this cross-linking contributes
to the stability of the protein. Disulfide bridges
occur in roughly one out of every four proteins;
localizing them in an electron density map can
facilitate model building, especially since the
presence of a disulfide bridge reveals the posi-
tion of cysteine residues. 

Disulfide bridges are detected by the follow-
ing method: First, local spherical regions in the
electron density map are characterized by 19
numeric features calculated at four different
radii (the same features used for building side
chains). Then a linear discriminant model is
applied to estimate resemblance of the local
density pattern to a disulfide bridge, based on
a training set with known disulfide and
nondisulfide examples. The training cases are
used to determine the parameters of the linear
discriminant. In particular, the Fisher linear
discriminant model is used to optimally maxi-
mize class separation, while minimizing vari-
ance within each class. This classification
method projects the high-dimensional data
onto an optimal line in feature-space, along
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which classification is performed, using a sin-
gle threshold to distinguish between the two
classes. 

Quality of Models
Built by TEXTAL

The payoff of TEXTAL is mostly in terms of
time saved to solve a structure. While a crystal-
lographer may spend several days and some-
times weeks of painstaking effort to interpret a
single map, TEXTAL produces a solution in a
couple of hours, without human intervention.
Even if the model produced by TEXTAL is only
partially accurate, it provides a reasonable ini-
tial solution, which can be manually refined by
the crystallographer to produce a more accu-
rate and complete model. 

The quality of output produced by TEXTAL
depends on the size and complexity of the
structure and the quality of the data. TEXTAL
and its subsystems have been designed to work
for a wide variety of proteins, of different sizes,
with different structural components. TEXTAL
usually outputs a reasonable model even with
average-quality data (that is, around 3 Å resolu-
tion.) Typically CAPRA builds about 80 to 90
percent of the backbone, with less than 1 Å
root mean square distance error. (For perspec-
tive, the average distance between consecutive
Cα atoms in proteins is 3.8 Å). TEXTAL usually
predicts more than 50 percent of the side
chains with the correct identity. In cases where
TEXTAL cannot find the exact amino acid, it
typically places one that is structurally similar
to the correct one. The model produced by
TEXTAL can be manually improved, or used to
generate better phase information and create a
better electron density map, which can be fed
back into TEXTAL for subsequent model build-
ing. For an average-sized protein (300 residues),
TEXTAL’s processing time is about 2 hours. Fig-
ures 3a and 3b show examples of models built
by TEXTAL from experimental data and com-
pare them to the true structures. For a more de-
tailed discussion on the performance of TEX-
TAL, refer to Ioerger and Sacchettini (2002) and
Ioerger and Sacchettini (2003).

Development and Deployment
The TEXTAL project was initiated in 1998 as a
collaboration among researchers at Texas A&M
University. Twenty scientists, students, and
programmers (from both the computer science
and biochemistry and biophysics departments)
have been involved in the project over the
years. The TEXTAL software is about 100,000
lines of C / C++, Python, and Perl code. We use
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Figure 3. Model of Tryparedoxin-I (PDB ID: 1QK8), 
A Monomer of 147 Residues.

The manually built and refined model is shown in gray; the model built by TEXTAL
is shown in white. TEXTAL builds 96 percent of the structure. Figure 3a (top) shows
how TEXTAL builds the α-helices, β-sheets and loops fairly accurately. TEXTAL cor-
rectly identifies 93 percent of the residues; the placement of residues is also accu-
rate, as shown in figure 3b (bottom). The root mean square error over all atoms is
0.859 Å. These images were generated with PyMOL (W. L. DeLano, pymol.org).
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Subversion, or SVN1 for concurrent version
control to coordinate the development of TEX-
TAL. SVN enables tracking of code updates, al-
lows developers to access the latest version of
the code from anywhere, and allows multiple
developers to work simultaneously on the
same code in safety. TEXTAL can be used
through a variety of interfaces, from a web-
based service (WebTex), to a command-line in-
terface and Python scripting, to a graphical
front-end (PHENIX GUI).

Deployment through WebTex
WebTex is a web-based interface to TEXTAL
that allows users to upload data, which is
processed on our local server.2 The first version
of WebTex was made available to the public in
June 2002. Users have to register online for an
account and upload their diffraction data or
electron density maps, specify options through
a simple interface, and submit their jobs. These
are processed on our server (an SGI Origin
2000), and the results are automatically
emailed to the users. Typically it takes a couple
of hours to run TEXTAL on a medium-sized
protein, and around 10 minutes to run CAPRA
by itself. Users can also monitor online and in
real time the progress of their jobs and view
and download all the data files related to each
of their runs. In September 2005, we launched
a new version of WebTex, which included
many new features, such as building a model
directly from structure factors (instead of re-
quiring users to prepare an electron density
map, as in the previous version). Also, users
can run the following modules of TEXTAL in-
dependently: (1) identify a contiguous biologi-
cal molecular unit of the protein in an electron
density map (by the Findmol program); (2) run
CAPRA to find chains of Cα atoms that repre-
sent the backbone of the molecule; (3) build

the complete model, that is, determine and re-
fine the main chain as well as the side chains,
and (4) given a trace of Cα atoms and a file of
structure factors (or an electron density map)
as inputs, determine and refine the side chains.

WebTex is freely available to all users. TEX-
TAL being computationally intensive (Lookup,
in particular), restrictions are imposed on the
size of maps that can be uploaded and on the
number of concurrent jobs that can be submit-
ted. Another practical consideration is our ob-
ligation to maintain confidentiality of users’
data. During the period from June 2002 to May
2006, WebTex has been used by about 150
users from 80 institutions (both academic and
industrial) in 20 countries. 

Deployment through PHENIX
PHENIX (Python-based hierarchical environ-
ment for integrated xtallography) is a compre-
hensive software package for automated X-ray
crystal structure determination, developed as a
collaboration among multiple research groups
in the crystallographic computing community
(Adams et al. 2004).3 The PHENIX software
provides a variety of algorithms to process col-
lected diffraction data into a refined molecular
model, and to facilitate structure solution for
both the novice and expert crystallographer.
The architecture of the PHENIX system is de-
picted in figure 4. The Python scripting lan-
guage4 provides the backbone of the system.
The Boost.Python library is used to integrate
C++ code into Python. On top of this, the data
objects, crystallographic tasks, strategies (or
network of tasks), and finally a graphical user
interface are constructed. The project data stor-
age makes use of the pickle mechanism in
Python to store data on the file system. 

The main components and developers of the
PHENIX system include the following:
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Figure 4. Architecture of the PHENIX System.
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on the Nelder-Meade Simplex algorithm;
(2) identification of noncrystallographic
symmetry through pattern recognition
in real-space (that is, electron density),
which can be used to improve phases;
and (3) the use of selenium sites from
seleno-methionine MAD experiments
to enhance side chain building and se-
quence alignment through identifica-
tion of methionine residues. We are al-
so exploring the use of similar pattern-
recognition techniques to identify and
build nucleic acids (RNA and DNA)
and other macromolecules in electron
density. 
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Notes
1. subversion.tigris.org.

2. textal.tamu.edu.

3. www.phenix-online.org.

4. www.python.org.

5. cctbx.sourceforge.net.

6. www-ructmed.cimr.ac.uk/phaser/in-
dex.html.

7. www.lanl.gov.

8. textal.tamu.edu:12321.

9. textal.tamu.edu:12321.
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