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■ I claim that achieving real human-level artificial
intelligence would necessarily imply that most of
the tasks that humans perform for pay could be au-
tomated. Rather than work toward this goal of au-
tomation by building special-purpose systems, I ar-
gue for the development of general-purpose,
educable systems that can learn and be taught to
perform any of the thousands of jobs that humans
can perform. Joining others who have made simi-
lar proposals, I advocate beginning with a system
that has minimal, although extensive, built-in ca-
pabilities. These would have to include the ability
to improve through learning along with many oth-
er abilities.

AI Goes to Work

The long-term scientific goal for many artificial
intelligence (AI) researchers continues to be the
mechanization of “human-level” intelli-
gence—even though reaching that goal may be
many years away.1 Machines as intelligent as
humans should be able to do most of the
things humans can do. In this article, I propose
a way of treating seriously this characterization
of human-level AI. For those willing to contin-
ue toward this goal, in spite of its difficulty, I
make some suggestions about ways to proceed.

Humans can “think,” and so also should any
machine possessing human-level intelligence.
Alan Turing claimed that it was too difficult to
define thinking. Instead he proposed what has
come to be called the “Turing test” (Turing
1950). To pass the test, a machine must be able,
more often than not, to convince human partic-
ipants in suitably staged anonymous dialogues
that they are communicating with a human
rather than with a machine. Many commenta-

tors feel, however, that the Turing test does not
constitute an appropriate or useful criterion for
human-level AI, and modifications, extensions,
and restrictions of it have been proposed. (For a
thorough discussion of the test and the contro-
versies surrounding it, see the online article [Op-
py and Dowe 2003] in the Stanford Encyclopedia
of Philosophy [Zalta 2005].)

Machines exhibiting true human-level intelli-
gence should be able to do many of the things
humans are able to do. Among these activities
are the tasks or “jobs” at which people are em-
ployed. I suggest we replace the Turing test by
something I will call the “employment test.” To
pass the employment test, AI programs must be
able to perform the jobs ordinarily performed by
humans. Progress toward human-level AI could
then be measured by the fraction of these jobs
that can be acceptably performed by machines.

Let me be explicit about the kinds of jobs I
have in mind. Consider, for example, a list of
job classifications from “America’s Job Bank.” A
sample of some of them is given in figure 1:2

Just as objections have been raised to the Tur-
ing test, I can anticipate objections to this new,
perhaps more stringent, test. Some of my AI col-
leagues, even those who strive for human-level
AI, might say “the employment test is far too
difficult—we’ll never be able to automate all of
those jobs!” To them, I can only reply “Just
what do you think human-level AI means? Af-
ter all, humans do all of those things.”

Some people will counter that it would be
achievement enough if those jobs requiring
only “knowledge work” (such as a financial ex-
aminer) and not visual/motor coordination
(such as a roofer’s helper) were automated. I
agree, although there are those who claim that
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Meeting and Convention Planner
Maid and Housekeeping Cleaner
Receptionist
Financial Examiner
Computer Programmer
Roofer ís He lper
Library Assistant
Procurement and Sales Engineer
Farm, Greenhouse, Nursery Worker
Dishwasher
Home Health Aide
Small Engine Repairer
Paralegal
Lodging Manager
Proofreader
Tour Guide and Escort
Geographer
Engine and Other Machine Assembler
Security Guard
Retail Salesperson
Marriage and Family Counselor
Hand Packer and Packager

Figure 1. List of Job Classifications from “America’s Job Bank.”

vision, locomotion, and manipulation abilities
are prerequisite even for knowledge work. Let’s
grant that point and include all jobs in the
strong version of the employment test.

Others might say that achieving human-level
intelligence is an inappropriate (perhaps even an
unachievable) goal for AI. Many AI researchers
prefer to work instead toward what has come to
be called “weak AI”—which is focused more on
building tools for helping humans in their work
rather than on replacing them. To be sure, build-
ing machines that help humans is a laudable and
important enterprise and motivates much excel-
lent AI research. Still, achieving human-level AI
(or “strong AI”) remains the ultimate goal for
some AI researchers.3

Finally, people might argue that complete
automation of most human jobs won’t ever
happen even if it might someday be possible in
principle. Dissenters might cite economic argu-
ments (it would cost too much, and there are
plenty of human workers anyway) or societal
arguments (people need work to earn a living
and to feel fulfilled).4 Furthermore, many of to-
day’s jobs will likely disappear—just as manu-
facturing buggy whips did. Nevertheless, the
scientific goal of mechanizing true human-level
intelligence implies at least the potential of
complete automation of economically impor-
tant jobs (even if for one reason or another the
potential is never activated). 

The Challenge
For the purposes of the employment test, we can
finesse the matter of whether or not human jobs
are actually automated. Instead, I suggest, we can
test whether or not we have the capability to au-
tomate them. One way to decide that matter
would be to have machines take examinations
in vocational courses designed to teach and test
the skills needed by the jobs in question. 

There are correspondence schools offering
online courses and exams matched to many
jobs. One such school is “Education Direct.” Its
website (Education Direct 2005) lists more than
80 distance learning programs, each of which
offers online exams to measure progress and
competence in the skills taught. A passing
grade requires a score of 70 percent or higher
on each exam. 

Passing a specified exam (or group of exams)
by an AI program can be taken as evidence that
the corresponding job can be automated.5 (Be-
cause many of the jobs require perceptual and
motor skills, the exams would have to be aug-
mented to measure these skills also.) As the
number of tests passed by AI programs increas-
es, so correspondingly, I would claim, does AI

progress toward “human-level intelligence.”
Of course, I am not advocating here the use

of any particular correspondence school or of
any particular list of exams. I cite the exams of
Education Direct as only one example that
could be used. Undoubtedly there are many
others that might serve as well or better.

The brute-force way for AI to make progress
toward automating human jobs would be to de-
velop special-purpose programs matched to each
job. Such an approach would require the inven-
tion of hundreds, perhaps thousands, of special-
ized “niche” systems. Computer science has al-
ready produced many such systems, and these
have substantially automated many routine hu-
man jobs. But there are many more to go, and
the remaining ones require increasingly sophis-
ticated levels of human capabilities. Approach-
ing the problem in this brute-force manner
seems inefficient and likely to produce systems
lacking the ability to adapt to changes (which is
even a requirement for some of the jobs).



Habile Systems
Humans who perform these various jobs aren’t
born with the skills their jobs require. They have
to learn them—perhaps by taking courses from
correspondence schools or by on-the-job train-
ing. Ignoring for the moment the fact that hu-
mans are born with different aptitudes and dif-
ferent inherent abilities to acquire “intelligence,”
we can nevertheless think of humans as being
more-or-less general purpose—able to learn any
of a wide variety of different skills. Analogously,
I think AI should strive toward building a small
number of general-purpose machines that are
able to learn and to be taught skills (and to im-
prove on them) rather than programming a
much larger number of machines each possess-
ing a different individual skill set from the start.
In an earlier paper, I called such general-purpose
machines “habile systems” (Nilsson 1995).6 Ed
Feigenbaum (2003) called for something similar
in his “Grand Challenge Number 2.” We would
expect habile systems to be able, for example, to
take and pass vocational correspondence courses
from schools like Education Direct.

If we take this habile-system path toward the
main goal of achieving human-level AI, we are
immediately confronted with the subgoal of
building AI programs that can learn job skills.
The subgoal is no easier than the main goal,
but at least we have to build only one such sys-
tem (perhaps a few) rather than having to build
a separate one for each of the thousands of dif-
ferent jobs. Working on this subgoal would in-
volve a major shift in direction for long-term AI
research. Instead of “applying AI” to the many,
many problems for which some of its well-
honed techniques are suited, some researchers,
at least, would be focusing their efforts toward
building habile systems.

Before discussing the prospects for building
habile systems, it’s worth reminding ourselves
about the variety and difficulty of the things
such systems must be able to learn. Education
Direct’s course on “Small Engine Repair,” for
example, claims to teach its students how to
troubleshoot and repair engine components
and systems; work with engines, ignition sys-
tems, and electrical circuits; inspect and repair
small engine fuel systems; and disassemble and
rebuild all types of small engines, including
two-stroke, four-stroke, outboard, and riding
mower engines. Its course on “Paralegal Stud-
ies” claims to teach its students about legal ter-
minology and thinking skills, interpersonal
communications and ethics, legal writing, re-
search, and civil and criminal litigation, family
law, real estate law, and wills and estates. A tall
order? Yes, but we said we were striving toward
human-level AI, didn’t we?

As I have defined them, habile systems
should be able to be taught to perform various
human jobs. I don’t expect building habile sys-
tems to be easy or that they will be achievable
in the next several years. They will take much
research and experimentation. We will have to
use our best intuitions about what pretutoring
abilities they will need to have. 

The fact that habile systems will need to
learn to become specialists suggests that per-
haps we should try the strategy of teaching
somewhat less capable systems to become the
habile systems we are seeking. Perhaps it will be
easier to program the less able systems. Sup-
pose, for example, that we were able to build a
system that could take and complete high
school or college courses. Thus educated, the
resulting system could go on to take one of the
specialized courses I mentioned earlier. Let’s
continue in this vein. If building systems capa-
ble of taking high school courses proves to be
too difficult, as I suspect it will be, why not try
to build systems that would be able to benefit
from primary education?7 And so on, all the
way back to teaching an infant.

I don’t mean to imply that, after achieving a
system at any one of these developmental lev-
els, we should rely only on that system’s expe-
rience, its learning abilities, and human tutor-
ing to progress to the next level. AI has
produced some very sophisticated and power-
ful techniques for perception, knowledge repre-
sentation, language analysis, planning, search,
learning, and reasoning. And, we can expect
more to come. Such of this technical apparatus
as researchers think appropriate and useful
should be inserted at those stages of system de-
velopment best able to utilize them. Indeed, re-
searchers will want to examine the state of a
system at any stage and debug and reprogram
aspects of it as needed.

That is, we don’t need to slavishly follow the
developmental/tutoring approach. At any stage
we can add, by programming, abilities we
know will be important. We can skip steps. We
can ignore abilities we think aren’t needed for
the ultimate goal. (We can backtrack to add
these if we guess incorrectly.) Because the de-
veloping human is an existence proof of what
we are trying to accomplish, we can always go
back to it as reference.

The “Child Machine”
Human learning and skill acquisition begin at
birth (perhaps before). The process feeds on it-
self. We learn how to learn, and we acquire
skills that are employed in the service of acquir-
ing more skills, and so on. Some of this learn-
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man-level AI. I think the outer layers of the
onion would be even harder for us to program
directly than will be the core. To appreciate the
scale of effort and difficulties we would face in
these outer layers, we need only look at the
CYC project (Lenat 1995)—one of the few at-
tempts to program anything like a human-level
commonsense knowledge base. 

Core Suggestions
The core we are looking for must have many
built-in capabilities. It will be the first task of
this line of research to figure out what these
should be and to begin trial implementations.
John McCarthy’s thoughtful memo (McCarthy
1999) provides some foundational ideas. An ar-
ticle by Marvin Minsky, Push Singh, and Aaron
Sloman (2004) reports on a symposium devot-
ed to architectures for human-level intelli-
gence. I do not pretend to have expert advice
on this matter but will nevertheless offer some
observations and cite some work that looks to
me like it’s on the right path. 

Sensory-Motor System
The core sensory-motor system should include,
at least, capabilities similar to those possessed
by a typical human infant or child. The inputs
should include visual, tactile, audio, and haptic
sensory mechanisms. A suite of basic perceptu-
al programs, perhaps influenced by a suite of
built-in goals, must be provided to process
these inputs. Motor outputs should include
manipulation, vocalization, visual display, and
locomotion. A suite of basic activation pro-
grams—suitably responsive to the perceptual
system and goals—will provide the initial
means to control these outputs. Early experi-
ence in a suitable environment will provide op-
portunities for a learning system to add to
these built-in abilities.

Some might ask, why not include additional,
nonhuman, sensory modalities and motor ca-
pabilities, such as infrared, x-ray, laser beams,
arc welding, and so on? After all, many human
jobs require apparatus such as these. My an-
swer is that, in the spirit of the enterprise, we
need include only those basic abilities that will,
with experience, practice, and elaboration, be
sufficient to enable an agent to operate, as
tools, any needed additional sensory and mo-
tor systems—much as humans do.

The sensory system must also be able to re-
member generalized versions of frequently oc-
curring perceptual ensembles as “patterns” and
to build programs that can recognize these pat-
terns when it encounters them in the future.
Human development of such pattern-recogni-

ing is by imitation, some by trial and observa-
tion of consequences, some by being taught,
and some by listening to and reading what oth-
ers have to say. The more we know and the
more skilled we are, the more we can learn. 

Here is how I look at this process: The “intel-
ligence” of a mature adult develops in layers,
like those of a growing onion. At the core is a
set of very sophisticated and powerful, let us
say hard-wired, basic mechanisms provided by
our evolutionary heritage. This core is able to
build the next layer—providing the core is im-
mersed in an appropriate environment. To-
gether, they build the next layer, and so on. 

If building “outer-layer” systems directly
proves too difficult, perhaps building the core
will be easier. First, we must decide what goes in
it, and then we let this core loose in the world
and teach and program it through the various
stages I have already mentioned. This idea is
not new with me. Ben Wegbreit,8 Rod Brooks
(1996), John McCarthy (1999), Jeff Hawkins
(Hawkins and Blakeslee 2004), and perhaps oth-
ers, have suggested or discussed similar ap-
proaches. It is interesting to recall, that at the
end of his famous 1950 paper, which described
his eponymous test, Alan Turing proposed what
has come to be called “the child project.” Here
is what he said (1950, p. 456):

Instead of trying to produce a programme to
simulate the adult mind, why not rather try to
produce one which simulates the child’s? If this
were then subjected to an appropriate course of
education one would obtain the adult brain….
Our hope is that there is so little mechanism in
the child-brain that something like it can be eas-
ily programmed. The amount of work in the ed-
ucation we can assume, as a first approximation,
to be much the same as for the human child.

We have thus divided our problem into two
parts. The child-programme and the education
process. These two remain very closely connect-
ed. We cannot expect to find a good child-ma-
chine at the first attempt. One must experiment
with teaching one such machine and see how
well it learns. One can then try another and see
if it is better or worse.

Turing’s hope that something like the child-
brain “can be easily programmed” was, obvious-
ly, overly optimistic. I believe the initial core will
be quite complex indeed. Furthermore, the core
and subsequent layering must be “subjected to
an appropriate course of education.”

Turing was more prescient when he said “we
cannot expect to find a good child-machine at
the first attempt.” AI is in for many years of tri-
als and experiments. Even so, I have concluded
that coming up with a serviceable core, appro-
priate educational environments, and inspired
programming provides the best path to hu-



tion abilities, in its earliest stages at least, ap-
pears to involve building, rewiring, and per-
haps ablating neural circuitry. Analogous
processes may be useful in the development of
habile systems.

Hierarchies of Perception, 
Representation, and Action
The core system should have the means to rep-
resent abstraction hierarchies of relational
models (using a vocabulary of basic and
learned perceptual predicates) and hierarchies
of motor routines. I have in mind here some-
thing like the real-time control system (RCS) of
James Albus (1997), blackboard systems (Engel-
more and Morgan 1988), and my triple-tower
architecture (Nilsson 2001). What is needed is
the ability to generate automatically such hier-
archies based on experience and teaching. Gary
Drescher (1991) proposed some interesting
ideas for producing Piagetian hierarchies; Karl
Pfleger (2002) has done work on generating
perceptual hierarchies; and Jeff Hawkins
(Hawkins and Blakeslee 2004) claims that his
proposed model of the human neocortex can
build perception/action hierarchies. I think
work along these lines is quite promising.

Presumably much of the early experience of
the core habile system will involve perception
of spatial attributes (such as adjacent, above,
inside, and so on) and motor actions in space
(grasp, move forward, turn, and so on). Many
of the needed higher-level perceptual predi-
cates and motor routines might then best be
represented in a way that exploits analogies to
these spatially grounded basic experiences.
(George Lakoff and Mark Johnson [1980] ob-
serve that sentences such as “We hit a peak last
year, but it’s been downhill ever since” indicate
that human abstract notions exploit such low-
er-level “orientational” metaphors, along with
many others.)

Predicting and Planning
The core system needs the ability to make pre-
dictions of future perceived states that will re-
sult from proposed actions taken in present
states. These predictions form the basis for
making plans of actions to achieve goals. A sys-
tem for learning to predict the effects of its ac-
tions and for making plans based on these pre-
dictions was developed by Scott Benson (1996).
The ability to make predictions is a critical
component of intelligence and is a key feature
underlying Hawkins’s model of the cortex
(Hawkins and Blakeslee 2004). Differences in
the reward values of states predicted and states
actually encountered are fundamental to tem-
poral-difference learning methods for improv-

ing prediction accuracy both in machines (Sut-
ton 1988) and in animals (Montague, Dayan,
and Sejnowski 1996). 

Regarding planning, McCarthy (1999) spec-
ulates that infants have a built-in capacity for
recognizing that the preconditions for an ac-
tion that achieves a goal should be pursued as
subgoals. He calls this “goal regression.” Goal
regression is fundamental to many AI plan-
ning systems. 

Learning
The essence of a habile system is its ability to
grow and change by learning, through imita-
tion, experience, practice, and education—aug-
mented by being reprogrammed when that is
convenient. Turing (1950, p. 457) anticipated
the need for what we now call reinforcement
learning (Sutton and Barto 1998):

We normally associate punishments and re-
wards with the teaching process. Some simple
child-machines can be constructed or pro-
grammed on this sort of principle. The machine
has to be so constructed that events which
shortly preceded the occurrence of a punish-
ment-signal are unlikely to be repeated, where-
as a reward-signal increased the probability of
repetition of the events which led up to it.

At some stage in the development of a habile
system, its reinforcement learning mechanisms
must be able to work with the perceptual, rep-
resentation, and action hierarchies mentioned
earlier (Barto and Mahadevan 2003) and with
relational descriptions of states (Dzeroski, De
Raedt, and Driessens 2001). These remain im-
portant areas for future research. 

Reasoning and Representation
Representation of knowledge and reasoning
with that knowledge has engaged the attention
of AI research since its beginnings. We know
that sound and complete reasoning using logi-
cal methods is intractable if it is to proceed
from the large collection of statements required
to represent all of the knowledge a competent
human must possess. Yet, many human tasks
require effective reasoning. One strategy for
dealing with an otherwise impracticably large
knowledge base is to divide it into weakly inter-
acting, semi-independent parts. Eyal Amir
(2002) is one of those who has proposed ways
to do this. 

AI has had rather impressive success with
reasoning systems limited to specialized areas
of knowledge—areas that McCarthy calls
“bounded informatic situations” (McCarthy
1996). McCarthy claims that in order to realize
human-level artificial intelligence, reasoning
systems will have to deal with the “common
sense informatic situation—in which the phe-
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salaries and benefits. Even if jobs are not auto-
mated for economic, social, or other reasons,
we can nevertheless measure progress toward
human-level AI by having candidate systems
take performance tests that measure the requi-
site abilities for these tasks.

Considerable effort in AI and computer sci-
ence has already been devoted to crafting spe-
cialized systems for automating some human
jobs. Along the way, some very powerful and
general AI technologies have been developed.
Yet, chipping away in this manner seems an in-
efficient way to proceed toward automating all
human jobs.

There is an alternative approach, namely the
development of general-purpose systems that
can be adapted to the different specialized
tasks. My version of this alternative is to build
“habile systems,” ones that can learn and be
taught to perform the tasks that humans can
perform. The plan would be to create the re-
quired specialized systems by subjecting a ha-
bile system to a training regime, much as a hu-
man learns needed skills by professional or
vocational training.

Again, there are options. We could attempt
to build such a habile system directly. At some
point in the future, researchers may feel capa-
ble of doing that. But because the habile system
must be educated anyway, why not educate
“less mature” versions of a habile system—ones
that need to be subjected to the equivalent of a
high school or college education before being
able to benefit from vocational training.
Proceeding another step or two down this spec-
trum, how about building systems capable of
elementary and preschool training?

Carrying this notion to its extreme, various
researchers have suggested building a system
that has the same built-in facilities for learning
that human infants have and carrying on from
there.9 My guess is that this so-called child ma-
chine will be the easiest starting place along
this spectrum—although still very difficult. 

Of course, the habile-system approach to-
ward human-level AI can be entered at whatev-
er level or levels researchers feel confident
about. Perhaps multiple entry points should be
tried. And, of course, the skills and knowledge
gained by a system’s education and experience,
anywhere along the spectrum, can be augment-
ed (or maybe even overshadowed) by whatever
the then-current AI technology can provide.
One can also hope that attempts to broaden
the expertise of specialized systems beyond
their “bounded informatic situation” will pro-
duce useful components of habile systems.

If the research program I have outlined is fol-
lowed successfully, the performance of human

nomena to be taken into account in achieving
a goal are not fixed in advance.” Such systems,
he says, must be capable of (among other
things) nonmonotonic reasoning, introspec-
tion, and reasoning about contexts and with
approximate concepts. Designers of a child ma-
chine will need to decide what seeds of these
abilities must be built in.

Many of the conclusions humans draw de-
pend on uncertain knowledge. AI has made ma-
jor progress, again in limited domains, in rea-
soning with uncertain information. Perhaps
further study of how humans represent knowl-
edge and come to conclusions will provide use-
ful hints for building the representation and rea-
soning capabilities required by habile systems. 

Language
Linguistic abilities will be needed for several
purposes: for communication among habile
agents, for communication with humans, for
learning by reading, and (perhaps) for internal
representation and reasoning. And, of course,
for taking the courses and the exams! Explicit
information given by linguistic commands or
suggestions gives more precise direction than
that given implicitly by rewards and punish-
ments. Turing (1950, p. 457) predicted: 

The use of [a symbolic] language will diminish
greatly the number of punishments and re-
wards required.

Just how much of the apparatus underlying
human language ability is built-in and how
much is learned is still debated. Researchers in
natural language processing by computers sim-
ilarly argue about the potential for machine-
learning techniques in their work. Perhaps in
the early period of habile systems research, an
invented language with unambiguous syntax
and semantics will suffice. Because our strategy
depends on education by humans and by hu-
man-generated course materials, we will have
to hope for progress by natural language pro-
cessing researchers. Much of that progress
might well depend on the success of habile sys-
tem research.

Conclusions
I have proposed specific, testable criteria for hu-
man-level artificial intelligence. Systems with
true human-level intelligence should be able to
perform the tasks for which humans get paid. I
don’t see any reason, in principle, why such
systems cannot be built, although they may be
many years away. In any case, people will con-
tinue attempts to automate human jobs be-
cause hardware and software to perform them
will ultimately be less expensive than human



jobs by machines might not, in the end, be as
important as what the results of this research
tell us about our own intelligence. Do I want to
see all human jobs automated? Not necessarily.
I’m not as interested in manufacturing intelli-
gence as I am in understanding it. But I think
we’ll need to manufacture it before we can un-
derstand it.

Turing’s conclusion to his 1950 paper (1950,
p. 460) seems equally fitting here:

We can only see a short distance ahead, but we
can see plenty there that needs to be done.
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Notes
1. Ed Feigenbaum concludes that “computational in-
telligence” is the “manifest destiny” of computer sci-
ence (Feigenbaum 2003).

2. There are more than 1,500 jobs in the complete
list, which is available at www.jobsearch.org/help/
employer/SSONetJobCodeListbyCategory2.html.
Doubtless there are many other such lists.

3. The terms weak (or cautious) and strong AI were first
used (slightly differently) by John Searle: “According
to weak AI, the principal value of the computer in the
study of the mind is that it gives us a very powerful
tool…. [According to strong AI] the appropriately pro-
grammed computer really is a mind.” (Searle 1980). 

4. For a discussion of some of these issues, see Nilsson
(1984). 

5. An anonymous referee noted that passing a voca-
tional exam does not necessarily imply that the asso-
ciated job can be performed by the person or ma-
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Figure 2. “Sometimes I Ask Myself, ‘Where Will It Ever End?’”

Charles Addams, The New Yorker, 2/9/1946. © Tee and Charles Addams Foundation. Used with permission.
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