
■ Research on semantic web services promises
greater interoperability among software agents and
web services by enabling content-based automated
service discovery and interaction and by utilizing .
Although this is to be based on use of shared on-
tologies published on the semantic web, services
produced and described by different developers
may well use different, perhaps partly overlapping,
sets of ontologies. Interoperability will depend on
ontology mappings and architectures supporting
the associated translation processes. The question
we ask is, does the traditional approach of intro-
ducing mediator agents to translate messages be-
tween requestors and services work in such an
open environment? This article reviews some of
the processing assumptions that were made in the
development of the semantic web service model-
ing ontology OWL-S and argues that, as a practical
matter, the translation function cannot always be
isolated in mediators. Ontology mappings need to
be published on the semantic web just as ontolo-
gies themselves are. The translation for service dis-
covery, service process model interpretation, task
negotiation, service invocation, and response in-
terpretation may then be distributed to various
places in the architecture so that translation can be
done in the specific goal-oriented informational
contexts of the agents performing these processes.
We present arguments for assigning translation re-
sponsibility to particular agents in the cases of ser-
vice invocation, response translation, and match-
making.

Semantic web services are to the semantic
web what current-day web services are to
the web, as we know it now. Tim Berners-

Lee, Jim Hendler, and Ora Lassila’s vision of the
semantic web (Berners-Lee, Hendler, and Lassi-

la 2001) was of a future web populated by pages
enriched by their association with sharable se-
mantic representations, which describe both
content and, in the case of services, functional-
ity. Semantic web services will publish ma-
chine-interpretable descriptions of their capa-
bilities and interaction models so other
software agents can find and use them without
prior built-in knowledge about how to call
their application program interfaces (APIs).
They will soon support the development of
personal software agents or semantic web
clients for such things as comparative shop-
ping, information discovery and travel plan-
ning, and compositions of those services. Less
glamorously, but perhaps more importantly,
these techniques may soon enable business-to-
business interactions that are more dynamic,
support semiautomated service composition
on the scientific computing grid, and enable
mobile, wireless devices to interact seamlessly
with the services discovered as they move
about.

To fulfill these promises, published semantic
service descriptions must be used in a variety of
ways. Services will be discovered by agents
matching a client’s service requirements
against service capabilities. Clients will invoke
services by deducing from their descriptions
the content of the messages required to request
those services and interpret their responses,
which may range from straightforward ac-
knowledgements to indications of failure to re-
quests for additional information. Finally, by
using these descriptions of each service’s effects
and usage constraints, agents may compose
multiple services, roughly the way classical AI

Articles

SPRING 2005 71Copyright © 2005, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2005 / $2.00

Ontology Translation
for Interoperability
Among Semantic

Web Services
Mark H. Burstein and Drew V. McDermott

AI Magazine Volume 26 Number 1 (2005) (© AAAI)

Ontology Web Language for Services (OWL-S)
is a set of ontologies, developed in OWL, for
writing machine-readable semantic descrip-
tions of web services such as those whose APIs
are described using the Web Service Descrip-
tion Language (WSDL) (Christensen et al.
2002).

In this article, we review the basic elements
of OWL-S and its intended use model and then
discuss the role that ontology mapping and
translation must play in interactions between
clients and services that use different domain
ontologies. We will argue why, in practice, we
expect particular agents will need to be respon-
sible for translating the content of messages
produced at different stages of their interaction
and why it may at times be difficult for media-
tors to relieve the functional agents (services
and clients) of this responsibility.

Communities Sharing Ontolo-
gies and Ontology Mappings

Although this article is about semantic transla-
tion of service requests, OWL-S is useful even
when clients and services use the same ontolo-
gies. Clearly, service interactions are simpler
when one doesn’t have to translate the mean-
ing of messages sent between agents, so one
might ask why not just share a single consis-
tent set of ontologies? When ontologies are
shared within a community of people and soft-
ware services, then major barriers to efficient
and timely information sharing are removed.
This is why businesses and governments have
spent millions of dollars in recent years trying
to unify ontologies and database schemas to
the largest extent possible. Unfortunately,
these efforts have also demonstrated that there
are also costs associated with ontology or
schema merging that grow with the number of
disparate systems and modeling perspectives
being combined. At some point, the level of de-
tail in the unified representational model is
greater than that needed by any of the individ-
ual applications, increasing the complexity of
maintaining all of them. An alternative sug-
gested by Uschold and Gruninger (2002),
among others, is to share ontologies within
tightly integrated communities, while allowing
for mediated interaction with other communi-
ties. Each community can develop some of its
own ontologies and share or extend other
widely shared concepts, maintaining locally
more detailed models within communities
with special responsibilities.

When two communities are going to inter-
act, their ontology developers must define at
least partial mappings between the ontologies

planners use planning operators. We use the
word agent for these clients to emphasize the
goal of giving them the ability to reason about
the services they deal with.

Internally, semantic web service clients must
be able to determine when to outsource an in-
ternal goal or function to a remote service, se-
lect among some suggested candidate services,
and reason about how to interact with the se-
lected service based on the service’s published
description and the clients’ own internal goals
and knowledge. This includes decisions about
how to provide ancillary information the ser-
vices may require (such as credit information,
access certificates, and so on). Since services
may require extended interactions, service de-
scriptions may include interaction protocols
that these clients must be able to follow. A
noteworthy example is failure-recovery proce-
dures.

A number of auxiliary semantic web agents
can help in achieving these aims. Semantic
matchmakers (Paolucci et al. 2002a) that act
like web search engines or intelligent universal
description, discovery, and integration (UDDI)1

web service registries may assist with automat-
ed service discovery by cataloging and recom-
mending services to clients. Authentication
and policy authorization services may assist
both clients and servers to know who they are,
and what kinds of interactions they can have.
Ontology and mapping registries may help to
ensure that agents have consistent and com-
plete sets of concepts, relations, and rules for
service-related reasoning.

Semantic service descriptions are developed
using a mix of domain ontologies and shared,
general-purpose ontologies, such as those
defining the structures for representing service
capabilities. OWL-S,2 formerly DAML-S (Anko-
lenkar et al. 2002), is a semantic web ontology
developed by a group of researchers in the De-
fense Advanced Research Projects Agency’s
(DARPA) DARPA Agent Markup Language
(DAML) program to address these latter, struc-
tural aspects of service descriptions. The World
Wide Web Consortium (W3C) has formally rec-
ommended the Resource Description Frame-
work (RDF) (Lassila and Swick 1999) for build-
ing web-compatible structured semantic
descriptions and the Ontology Web Language
(OWL) (Dean et al. 2003) for publishing on-
tologies (web documents) defining structured
classes and relations. OWL is a semantic de-
scription language with a formal semantics and
an extensible markup language (XML) / RDF
syntax. By leveraging features of RDF, OWL on-
tologies can be shared, combined, and extend-
ed simply by publishing web documents. The

Articles

72 AI MAGAZINE

each uses. They may also need to extend the
original ontologies so that messages that previ-
ously had no translation can be translated into
the recipients native ontology. Although there
is a sizable literature on automated and semiau-
tomated techniques for developing mappings
(see Rahm and Bernstein [2001], Noy and
Musen [2002], and Kalfoglou and Schorlemmer
[2003] for surveys), we anticipate it will require
at least some involvement of people familiar
with each of the ontologies involved for some
time to come. RDF and OWL are designed to
enable semantic web communities to share a
syntactic language for defining ontological
terms and communicating semantic descrip-
tions. We submit, though, that ontology map-
pings3 will also need to be published using a
similarly standardized language, and agents
will also need to interpret these mappings
when communicating with “foreign” agents.
OWL, as a terminological description language,
is not powerful enough to describe all of the
kinds of mappings between the concepts that it
can be used to define. In our own recent work,
we have used first-order logical rules (Dou, Mc-
Dermott, and Qi 2002, 2003) to define these
mappings and have previously explored the
controlled application of second-order rules to
generate translation programs (Burstein et al.
2003). In this article, we focus on the question
of how to use mappings, once published, to in-
teract with services that use different ontolo-
gies.

The OWL-S Ontologies for
Semantic Web Services

OWL-S is a collection of “upper ontologies” for
describing web services from two primary per-
spectives, advertising and discovery, and plan-
ning and execution. It does not address (or
need to address) specific domain issues (such as
product taxonomies, taxonomies of types of in-
puts, and so on) as these ontologies can devel-
oped, shared, and adapted by communities of
service providers. OWL-S service models con-
sist of three abstract components. The service
profile ontology is used to describe service “ad-
vertisements” suitable for use by a semantic
web service matchmaker. It includes an exten-
sible set of properties for describing the pur-
pose of a service (as defined in a service hierar-
chy), its input types, output types, and other
features that might be relevant discriminators
between services from the perspective of poten-
tial users of that service.

An OWL-S matchmaker (Paolucci et al.
2002a) accepts advertisements from services
and queries from clients looking for services. It

finds candidate services for clients by matching
queries described by partial service profiles
against the profiles registered by services.4 Sev-
eral OWL-S matchmakers have been devel-
oped, including one that extends the web ser-
vice registry system UDDI (Paolucci et al.
2002b).

The OWL-S service process model includes
concepts for describing in detail the interfaces
and functional properties of atomic services,
namely, their inputs, preconditions, condition-
al outputs, and effects. It also includes a vocab-
ulary for process composition so service
providers can describe how clients should exe-
cute sequences of services and their associated
data flow. The most recent release of OWL-S
treats process specifications as named individ-
uals with complex descriptions, in a manner
consistent with the activity model in the
Process Specification Language (PSL) (Schlenoff
et al. 2000). Preconditions, postconditions, and
effects are represented using encapsulated log-
ical expressions.

The OWL-S process model ontology is also
based in part on traditional representations of
classical AI planning operators, as exemplified
by the PDDL language used in the annual AI
planning competition (Fox and Long 2003).
The premise here is that the reasoning required
to identify and invoke an appropriate service is
essentially the same as selecting from among a
set of planning operators to achieve a goal and
then executing it. Input parameters represent
the information required to invoke the service,
and output parameters represent the informa-
tion that is returned by the service. Precondi-
tions, and conditional service effects, whose
ranges are logical formulas, are to be interpret-
ed by the client reading the service description
as additional constraints on the inputs it must
provide, with the effects also describing how
the service changes the state of the world in a
way consistent with the client agent’s goals.
Many planning systems have been used to im-
plement OWL-S service clients, including those
described in McIlraith and Son (2002), Paolucci
et al. (2003), and Wu et al. (2003).

There is good news and bad news about ap-
plying traditional planning algorithms to the
semantic web service problem. The bad news is
that the assumption that the state of the world
is completely known at all times is obviously
wrong. In fact, a large fraction of the actions
taken on the web are to gain information (Mc-
Dermott, Burstein, and Smith 2002). The good
news is that there are a number of planners
that can handle simple contingent planning
with partial state knowledge and information
acquisition goals (see the survey published in

Articles

SPRING 2005 73

termines how to make a request to the selected
service by unifying its goals and preferences
with the effects specified in the service process
model, in order to determine a semantically
valid set of inputs to the server. These inputs
are then mapped onto a WSDL input message
pattern using the OWL-S service grounding,
and the resulting message is sent (6).

The service receives the request and deter-
mines whether it can perform the request. It
may acknowledge the request, send an error, re-
quest additional information, or (generally, on
completion) send a reply stating the service re-
sults (7). Whatever reply is sent is parsed using
a WSDL error or output message template. This
message is then mapped (using the process out-
put grounding) into a semantic description of
the output parameters of the OWL-S process,
from which the agent determines which of the
published processes’ effects occurred and
whether the agent’s goal has been accom-
plished (8).

Viewed abstractly, this process bears some re-
semblance to the web service use model envi-
sioned for UDDI-WSDL-SOAP, except that it
does not involve a programmer querying UD-
DI, reading the WSDL models found there, and
implementing those interfaces. The client soft-
ware agent is responsible for the interaction
with the matchmaker, the interpretation of
which candidate services are most appropriate,
the determination of the information required
to invoke each service, and the interpretation
and response to messages returned by the ser-
vice.

Variations on this execution model for OWL-
S have been implemented by a number of aca-
demic and industrial researchers (see, for exam-
ple, Gaio, Lopes, and Botelho [2003]; Paolucci
et al. [2003]; and Sirin, Parsia, and Hendler
[2004]). These implementations have finessed
the ontology translation issue by assuming a
shared set of ontologies. However, as suggested
above, we cannot assume that agents always
share ontologies. Translation will be required
to achieve the broad interoperability envi-
sioned for semantic web services, and so we
need an architecture that supports it.

Service Invocation Reasoning
across Different Ontologies

The central questions we discuss here are
Where does translation fit into an architecture
supporting the OWL-S use model? and How do
the goals and knowledge of specific agents in-
fluence the decision about which agents can or
should do translation? The traditional ap-
proach to inserting translators into distributed

this magazine by Weld [1999]), and the stan-
dard notation for action definitions actually fits
the web pretty well. Actions are invoked and
monitored by messages, and the effect of a
message often does consist of changing a few
things discretely. Our own work has been based
on extending the estimated regression planner,
Optop (McDermott 2002, 2003), to do contin-
gent planning with OWL-S process models.

The last part of the OWL-S model, the service
grounding, describes the relationships between
the inputs and outputs of atomic processes and
the elements of a particular message transport
model. Specifically, the grounding ontology
represents mappings of process parameters on-
to portions of WSDL message specifications.
The OWL-S notion of an atomic process can be
viewed as an abstract representation of a WSDL
operation that provides additional semantics
for it. Although WSDL is rapidly becoming the
standard XML language for describing web ser-
vices, it has no internal means for specifying
the semantics of a service’s message patterns.
WSDL message parameters have XML data-
types, whose semantics must be interpreted by
the client program, by virtue of its programmer
having read the accompanying documenta-
tion.

The OWL-S ontology thus adds the semantic
elements necessary for agents to reason dy-
namically about the relationship between their
internal goals and the types of information re-
quired to formulate service requests and inter-
pret service responses. Once the information
required to create a request has been identified,
OWL-S provides a mapping to WSDL (the
grounding) to enable the request to be turned
into a Simple Object Access Protocol (SOAP) or
hypertext markup language (HTML) format.

OWL-S Usage Model
The basic use model envisioned for OWL-S, il-
lustrated in figure 1, consists of the following
steps, not all of which are required in all cases.
Services first advertise themselves by sending
their service profiles to a matchmaker and by
publishing service process models on the web
so clients can read them (1). Agents requiring a
service to achieve goals pose queries to the
matchmaker consisting of a partial or abstract
description of the service it requires, including
nonfunctional or quality of service require-
ments (2). The matchmaker compares these ab-
stract descriptions to its library of service pro-
files and returns URI references for candidates
that could be used (3). The querying agent then
reads each candidates’ published service de-
scriptions and selects one to use. The agent de-

Articles

74 AI MAGAZINE

architectures is to insert a middle agent be-
tween client C and server S to translate mes-
sages from language LC into language LS and
vice versa. We will argue that this works only
when the sender can construct a well-formed
message and the target ontologies and ontol-
ogy mappings are known. It doesn’t work, or
work well, when a translator needs information
that is local to a client or service provider,
rather than just the ontologies used by the
agent receiving the translation.

Consider the difference between a client’s in-
ternal goal and a well-formed request to a ser-
vice. For example, to request a purchase, a ser-
vice may require specific information about the
requestor (such as login identification, valid
means of payment) and the manner of accom-
plishing the goal (for example, shipping
method). The request message must be con-
structed dynamically by reasoning about the
relationship between internal client goals and
the required input parameters specified in a
published service description. The first transla-
tion task is therefore the translation of domain
elements of the service description from the

ontologies used in the published service de-
scription into ontologies used by the client. We
have developed a model showing how the
client can handle this translation task as it
plans how to construct a service request, by
reading the service description in its original
form along with the ontology mappings need-
ed to interpret the constraints on request input
parameters. In an environment with all of
these axioms, the client’s plan reasoning will
effectively translate the parts of the service de-
scription it needs to find the needed informa-
tion in its own knowledge base.

Figure 2 sketches a typical situation in which
a personal semantic web agent, which we will
call MyAgent, is tasked by user Mark to buy a
book about XML from an unspecified book
sales service on the web. MyAgent knows a
number of things about Mark, and it knows
how to contact commercial semantic web ser-
vices. MyAgent first queries a matchmaker to
find a suitable service and discovers there is one
called Books4Sale, with an OWL-S process
model as shown. The Books4Sale process mod-
el states that, when correctly invoked, it has

Articles

SPRING 2005 75

Requesting
Agent A

Service
Provider

B

OWL-S Matchmaker

(1) Advertise Service Profile(2) Issue Service Query
(Profile for Goal A)

(3) Return Match Candidates
(Profiles with Service Model URIs)

World Wide Web

(1) Publish Service Model B(5) Get Service Model B

(6) Construct, Issue Request (Goal or Query)

Service Model B Ontology OB
Ontology OA

OWL-S Ontology

(3) Find Candidate Profiles

(4) Select Service

(7) Perform Service, Generate Reply

(8) Interpret Reply

Figure 1: Basic OWL-S Semantic Web Service Use Model.

standard book numbers [ISBNs]), each with an
associated quantity in stock, while instances of
the MyStuff Book class represent individual
books, each assigned an inventory number by
the owner when purchased. These differences
illustrate the kinds of problems that arise when
various developers design ontologies for related
but different purposes.

Table 1 summarizes the partial mappings be-
tween terms in the two ontologies. The two
concepts can be related for the purposes of the
transaction as long as the key descriptive prop-
erties of the Book class (needed as service in-
puts) have mappings to the corresponding de-
scriptive properties of the Item class and the
bridging axioms capture the condition that an
Inventory:Item description with qty = 1 can re-
fer to the same entity as a description of a
MyStuff:Book.

By expressing these mapping rules as addi-
tional axioms in the planner’s knowledge base,
the required inputs to the BuyBook process as-
sociated with the client’s goal can be identified

the effect that the client will own an Item with
the specified title and author. MyAgent can
plan to achieve its goal by determining a set of
inputs to this service that will produce an effect
matching its goal and by then using the accom-
panying OWL-S service grounding to execute
the action by formulating a WSDL message
that can be passed to the Books4Sale service.

The Books4Sale process model specifies as re-
quired inputs an item title and author, a credit
card number and expiration date, and a ship-
ping address, described using terms from its do-
main ontologies. It produces as output an order
confirmation number and shipping tracking
number (not shown). The problem is that
MyAgent uses an ontology (MyStuff) different
than that used by Books4Sale. MyStuff includes
a Book class with a by property for the author
and a name property for the title that is used to
represent the object of its goal. Furthermore,
instances of the Item class in the Books4Sale
service ontology represent different sets of
books (identified internally by international

Articles

76 AI MAGAZINE

Books4Sale.comMyAgent

Current Goal:

(Owns :owner Mark
 :item <Book :name “XML for Dummies”
 :by “FatParens”>)
KB:
(User MyAgent
 <Person Mark :fullname “MarkB”…>)
(Owns Mark <VHS :name “X Files”>)
(ccardOf Mark
 <MC cc1 :ccno “9876” :exp 06/06>)
(ccardOf Mark
 <VISA cc2 :ccno “1234” :exp …>)
(Residence Mark
 <Address :line1 “44 Sunny Ln”…>)
Using ontologies:
mylife.owl, mystuff.owl, owl-s.owl
 econ101.owl

Econ101.owl Defines OWNS, axioms for PURCHASE transactions
Owl-S.owl Defines Service Profile, Process, Grounding

mystuff-inventory-map.owl
Book ~> Item (qty 1)
name ⇔ title
by ⇔ author

mylife-ccard-map.owl
CC ~> CreditCard
Holder. fullname ⇔ name
ccno ⇔ idno

Publishes:
Process: BuyBook
LocalVars: ?item : <Item>,
 ?ccard : <CreditCard>

Inputs:
Title: string = ?item.title
Author: string = ?item.author
Qty: int = ?item.qty
Ccname: string = ?ccard.name
Ccnum: string = ?ccard.idno
Shipto: a postalAddress
Effects:
 (Owns :owner ?client :item ?item)
 (Shipped :item ?item
 :addr ?Shipto)
 (DebitCC :cc ?ccard :amt ?item.cost)

Using ontologies:
Books4Sale.owl
(uses Inventory.owl, econ101.owl,
 ccard.owl, shipping.owl, owl-s.owl…)

Imports

Imports

Uses
Uses

Figure 2. Book Buying Example.

by the planner during goal regression. The
identification of these inputs hinges on two
things: (1) the client can match its goals to a
translation of some of the proposed process’s
effects, unifying items referenced as arguments
to these goals with the variables in those ef-
fects, and (2) the type restrictions and precon-
ditions specified for input variables referenced
in these effects translate to conditions in the
client’s ontology consistent with the objects
specified in the client’s goals.

In short, as in classical planning, the
process’s effects must unify with the client’s
goal, and the process’s preconditions must be
able to be satisfied by the client. The catch is
that this goal regression reasoning will only
succeed if the constraints are translated into
the client’s ontology, either in advance by
translating the whole service description or in-
crementally by the planner by backward chain-
ing in the presence of the necessary ontology-
mapping rules.

On the semantic web, translating a service
process model like BuyBook need not be done
by a middle agent if the necessary ontology
mappings are available directly. Each client can
find and read any ontologies that it does not
have that are referenced in messages. If the se-
mantic web architecture were to support mech-
anisms for finding and loading ontology map-
pings, then the client could relate descriptions
in unfamiliar ontologies to the concepts it na-
tively uses while planning. Taken together with
its own axioms, these ontology mapping rules
enable it to complete its reasoning whenever
the mappings cover all terms used in the target
service’s parameter type constraints, precondi-
tions, and effects.

Figure 3 shows schematically the situation
within the client after loading the service de-
scription, the published ontologies it refer-
ences, and mappings of terms in those ontolo-
gies to those of the client. There are sets of
ontologies used internally by the client (OCi)
and by the service (OSi) and some shared ones
(OShared), like OWL-S. There are also published
mappings (M) that relate terms in some of the
ontologies of the two partners. In this context
the client is able to extend its reasoning to ele-
ments of the service ontology OSi for which
mappings are known, reasoning about those
parts of the merged ontology as if the client
shared them with the server.

Once the client is able to interpret the infor-
mation requirements of the service and deter-
mine how to satisfy those requirements, it can
generate the service request. It may even be
possible to construct a valid request with an in-
complete set of mappings, if the missing map-

pings cover optional service inputs. For exam-
ple, if Books4Sale also used the Item class to
represent other goods besides books that it
sold, but required different service parameters
to specify those items, then the fact that there
were no mappings to the MyStuff ontology to
translate those additional service parameters
could be ignored. In contrast, a separate trans-
lation agent, called to translate the full service
description for the client, might fail because no
complete mapping between the ontologies was
available. Furthermore, when the client is re-
sponsible for translation, there is the possibility
of getting assistance from the user to identify
whether the missing mapping information is
relevant or perhaps even to supply the map-
ping.

Elsewhere (Dou et al. 2002, 2003) we de-
scribed an implemented approach to transla-
tion based on this model that can be used to
translate datasets (OWL/RDF files). This system
(OntoMerge) works by reading the source and
target ontologies into a first-order inference en-
gine (OntoEngine), along with a set of bridging
axioms or articulation rules (Mitra, Wieder-
hold, and Kersten 2000) that act as translation
rules between terms of the two ontologies. The
ontologies can be loaded together without
clashing because of the distinct URIs used to
identify terms in each model, and these URIs
are then linked through references in bridging
axioms. If the bridging axioms are bidirection-
al, translation can be performed in either a
push or pull fashion. With the push approach,
a dataset is translated by asserting its content
and forward chaining to find implications ex-
pressed in the target ontology. Similar tech-
niques based on applying sets of rewrite rules
have been described in Mitra, Wiederhold, and
Kersten (2000) and Chalupsky (2000), al-
though the latter system uses more syntactic
transformational rewrite rules. These tech-
niques are useful for translating fully specified
messages, such as query or service responses.

Articles

SPRING 2005 77

MyStuff Bridging relation Inventory

Book InstanceClass-SetClass Item

Book.name Equivalent Property Item.title

Book.by Equivalent Property Item.author

Book.pubDate Equivalent Property Item.PubDate

Book.purchDate - N/A -

Book.itemno - N/A - Item.ISBN

Cardinality(inst) = 1 >> Item.qty

Table 1. Mappings between MyStuff.owl and Books4Sale.owl.

process. The knowledge precondition for a
shipping address is to know the address to
which the purchase should be shipped (a ser-
vice effect), and this may depend on such
things as whether it is intended as a gift or not.
Decisions of this kind are common when deal-
ing with unfamiliar web services, although
when dealing with commercial services there
are a number of common types of required in-
formation that can be anticipated even when
the specific service to be used is unfamiliar. For
example, since purchasing anything requires
some form of payment, one can anticipate the
need to decide among the client’s available
credit cards and implement decision criteria
based on the cost and purpose of the items and
the available balances of the cards. Whether to
buy a warranty is another common question.
Less common, more item-specific requirements
would include special wrapping preferences,
nonstandard shipping methods, or whether to
buy item-specific optional accessories, and so
on.

One way to handle the common options on
web service requests is to give the client agent
default policies for deciding such questions. For
example, there could be a default rule that pur-
chases should be shipped to the address of the
buyer (user). It is a default rule since it would
not apply when a specific location was speci-
fied as part of the user’s goal. Most current AI
planning systems deal with nongoal related ef-
fects only to the extent that they try to avoid
effects that negatively affect their plans. But
many services’ inputs effectively ask their
client to refine the goal or its object (for exam-
ple, new or used book?) or require the client to

With OntoMerge, however, you can also use
a “pull” approach, in which queries are ex-
pressed in the target ontology, and OntoMerge
backchains to find the answers given the asser-
tions made in the source ontology. We have
used this pull approach in the reasoner of the
Optop planner to demonstrate the planning of
service invocation requests even when the ser-
vices are described using OWL-S and “foreign”
domain ontologies. As the planner reasons
about how to satisfy its own goals (by unifying
them with service effects) and infer whether
the service’s preconditions can be met, its back-
ward chaining naturally utilizes the bridging
axioms to locate the information required for
service inputs. For example, after loading the
bridging axioms of table 1, Optop determines
that the title and author inputs to BuyBook can
be unified with the name and by fields of the
book specified as its internal goal.

Identifying Values for Input
Parameters Unrelated to Goals
When services publish request message for-
mats, they typically include information that is
not represented directly in corresponding
client goals. Many other pieces of information,
such as a login ID and password may be re-
quired. If such required inputs are simple facts
known to the client, then these facts can be
found by the client during precondition evalu-
ation using the technique previously outlined,
because required inputs can be treated like
knowledge preconditions of the process. But
consider the credit card and shipping informa-
tion required in our sample book-buying

Articles

78 AI MAGAZINE

OC1

OShared

OC2

OS2

OS1

Client Ontologies Service Ontologies

MC2–S1

Figure 3. Ontology Merging by Loading Published Ontologies and Mappings

further specify the method by which it is
achieved (for example, selection of a shipping
method). Planning systems that can use back-
ground goals and preference policies to make
these additional distinctions will be needed to
more fully automate web service invocation.

These examples highlight why request trans-
lation is primarily about making the service de-
scription useful to the client rather than trans-
lating the request message the client produces
once it knows what is required. Since one can-
not anticipate all of these input requirements
from unfamiliar services, one must translate
the constraints on input parameter’s implied
by service preconditions and effects into
knowledge requirements so that the client’s de-
cision policies can be applied correctly. Assum-
ing that the basic structure of each service de-
scription is provided by the shared OWL-S
ontology, then what remains are the domain-
specific elements of the model. Either the client
translates individual input requirements as it
plans its request, as we have suggested, or the
service description is entirely translated for the
client by a translation agent beforehand.

There are several problems with this. One
problem is that ultimately the client must ap-
ply the service grounding to send the message,
and groundings are published by the service
provider using the service provider’s ontology.
Thus, after determining a valid set of request
inputs, the client must translate these parame-
ter values back into the service’s own ontolo-
gies. If done remotely, this would have to be a
separate process from translating the service
description for use by the client. Another prob-
lem with the external translator approach is
that it may fail if there are missing mappings,
whereas, if the client does the translation, it
could use a partial set of mappings to reason di-
rectly with the published description and then
ask for user help to decide whether and how to
translate any optional parameters for which
mappings were unavailable. The specific dis-
tinctions made in a service provider’s ontology
may lead to the real time development of new
mappings because the service ontology may
make distinctions not known to be relevant to
the client agent’s ontology developer, and
mappings cannot exist where one community
or the other does not represent the concepts or
relations involved. For example, the MyStuff
ontology may not represent the distinction be-
tween hardcover and softcover books. If that is
a required input to a book-buying service, the
requirement for it would fail to be translated,
and user advice would be needed. Ultimately,
we will need to develop mixed-initiative ap-
proaches to automated service interaction in

such open domains that enable our client
agents to get additional user assistance and to
learn incrementally about the ontologies of un-
familiar services and their mappings into local
ontologies.

Translating Responses
to Service Requests

Thus far, we have suggested why service invo-
cation may involve translation within a client,
rather than using a middle agent. We now ask
whether there are circumstances in which
knowledge local to a particular agent is needed
to translate service responses. Translating re-
sponses to requests or queries is perhaps the
most well studied kind of translation. Here, the
message to be translated is fully formed by one
agent (the service provider) independent of the
recipient’s knowledge state, and the translator
must simply identify the mappings needed to
transform the description into one in the recip-
ient’s ontology. Most of the work on heteroge-
neous information retrieval is focused on the
problem of developing the necessary ontology
mappings for this (Rahm and Bernstein 2001).

In most cases, response translation can be
done by any agent that has access to the source
and target ontologies and the necessary articu-
lation or mapping rules. However, there are
some circumstances in which the mappings
cannot be represented precisely, such as when
the classification of particular items depends
not on the structure of the relations in the on-
tologies but on their specific extent. Gio
Wiederhold has frequently illustrated this by
explaining that different administrative offices
at Stanford University use slightly different
models for who qualifies for membership in the
Employee class. One includes only salaried em-
ployees, while the other is broader and includes
nonsalaried staff, such as emeritus professors
like himself. The distinction between these
classes is not modeled by systems in either of-
fice because neither database represents any at-
tributes that capture the distinction. Thus, no
translation rule can be written that succinctly
captures the exception to the rule associating
the two classes. The only way to translate data
about particular individuals being communi-
cated between the two offices is to access the
set of all known employees in the target envi-
ronment and test whether each person whose
information is being transmitted is an employ-
ee. Effectively, in such situations, the transla-
tion needs to be done by the recipient, as a
middle agent would not have all the data nec-
essary.

Articles

SPRING 2005 79

matchmaker does the translation is preferable,
since the matchmaker can reformulate the
query in a context where knowledge about
what parts of the registry space are sparsely
populated is available.

With the Google approach, services are al-
lowed to describe themselves using their native
ontologies. As a result we see a different set of
motivations for having the matchmaker trans-
late queries. Here, it is possible in the extreme
case that every new service advertisement is de-
scribed using a different set of ontologies. How
can a client agent translate its own query, or
have a middle agent do it, when each query
must be compared to many profiles, all repre-
sented using different ontologies? The only
possible strategy requires matching and trans-
lation to be performed effectively simultane-
ously within the matchmaker.

For each kind of semantic service matchmak-
ing, then, there seem to be good reasons to ar-
gue that the matchmakers should do the trans-
lation of queries they receive. Of course, these
are extreme characterizations of the ontology
mismatch problems to be faced in connection
with service discovery. It is still an open, empir-
ical question how best to design matchmakers
that handle a wide diversity of service descrip-
tion ontologies.

The Impact of Knowledge
Locality on Translation

Processes
An important motivation for the development
of semantic web services is their promise of
greater and more dynamic interoperability
among agents and services. If the semantic web
is going to be based on the principle that a
thousand ontologies can bloom, then it is im-
portant to look at how the translation process-
es will be used to enable services to interoper-
ate. These questions have not been a major
focus in the semantic web services research
community to date.

In this article, we have reviewed the assump-
tions and motivations for the OWL-S approach
to dynamic discovery and utilization of seman-
tic web services in order to frame a discussion
of the multiple roles that ontology translation
processes must play in facilitating semantic in-
teroperability. Along the way we suggested why
published ontology mappings will be impor-
tant and concluded that it is often better to
support translation as a function within agents,
rather than separate mediators, in semantic
web service architectures.

The question of how and where translation
processing happens is critical to the design of

Translation Issues Associated
with Dynamic Service Discovery
The final question we consider is the architec-
tural placement of translation functionality for
queries to semantic web service matchmakers.
Recall that matchmakers receive advertise-
ments called service profiles from services that
wish to be utilized, and clients looking for ser-
vices find them by querying matchmakers with
general descriptions of their requirements rep-
resented in the form of a partial or abstract ser-
vice profiles. Pointers to candidate services are
returned for consideration by clients.

So what happens when different services use
distinct ontologies to advertise their services? If
a matchmaker is to maintain a catalog of ser-
vice advertisements, then a range of possibili-
ties must be considered. At one end of the spec-
trum, the matchmaker might use its own set of
ontologies to organize the services in a single
framework. At the other end of the spectrum, it
would maintain every service profile in its orig-
inal form. Let’s call the first approach the Yahoo
approach and the second the Google approach,
since Yahoo uses a uniform taxonomy con-
structed by its staff, and Google indexes web
pages based on the content of the original
sources.

With the Yahoo approach, each service ad-
vertisement must utilize concepts in the
matchmaker’s ontology to describe the repre-
sented service. Clients must then translate their
queries into abstract service descriptions using
the matchmaker’s ontology. With OWL-S pro-
files, this would mean finding concepts for the
class of service desired (for example, a restau-
rant), the classes of acceptable outputs (Italian
food), and the desired effect (for example, food
served in-house versus packaged for take-out)
and quality of service (for example, maximum
price). You might recognize the problem with
this from using an online yellow pages. The
client needs to be mindful of the expected
number of answers. For example, if one wants
to find a Chinese restaurant in Rome, is it bet-
ter to ask for a service that provides listings of
Chinese restaurants in Rome? or just restau-
rants in Rome? or Chinese restaurants in Italy?
Finding a useful, targeted answer depends on
the number of candidates in each of those
somewhat different conjunctive classes. So an
effective translation of a service query could de-
pend on both the specific mappings of terms
into the matchmaker’s ontology and on the se-
lection of appropriate abstractions of those
terms to find a small, targeted set of answers. If
such knowledge is routinely needed to get the
best results, then an architecture where the

Articles

80 AI MAGAZINE

architectures for semantic web services because
of the many related, partially overlapping on-
tologies in use by different communities on the
semantic web. For good reasons, each commu-
nity wants to control its own ontologies. Our
concern is with how to enable interoperability
of services beyond tight-knit communities, so
remote clients can discover and use these ser-
vices to fill one-time or occasional needs. Se-
mantic web service ontologies make it possible
for clients to read published semantic service
descriptions and reason with them. Translation
of the domain terms in these descriptions will
also be needed to support message exchanges.

We have argued that translation functional-
ity can critically depend on knowledge local to
particular agents. In particular, we demonstrat-
ed how translating a client’s goal into a request
is best done by the client using published ser-
vice descriptions and ontology mappings,
while translating a client’s query to a match-
maker is best done by the matchmaker, because
the translation depends on the set of ontolo-
gies and profiles known to that agent. The take-
away message is that the stronger the need is
for a translator to access a localized knowledge
context during translation, the more difficult it
will be to locate that translation process in an
independent middle agent.

Acknowledgements
This writing of this article was funded under a
contract with Yale University to the DARPA
DAML program, contract number F30602-00-
0600.

Notes
1. See the UDDI Technical White Paper, www.uddi.
org/.

2. See the DAML Services Coalition, OWL-S, www.
daml.org/services/owl-s/.

3. See Madhavan et al. (2002) for a discussion of on-
tology mapping languages.

4. This matching process is not a straightforward sub-
sumption test, as one might expect. As Paolucci et al.
(2002a) show, it is asymmetrical. A good match is one
in which the classes of inputs the client can provide
subsume those required, while the classes of outputs
the service claims it can return subsumes those re-
quired by the client.

References
Ankolenkar, A.; Burstein, M.; Hobbs, J. R.; Lassila, O.;
Martin, D. L.; McDermott, D.; McIlraith, S. A.;
Narayanan, S.; Paolucci, M.; Payne T. R.; and Sycara,
K. 2002. DAML-S: Web Service Description for the Se-
mantic Web. In The Semantic Web: Proceedings of the
First International Semantic Web Conference (ISWC),
Lecture Notes in Computer Science. Berlin: Springer-
Verlag.

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The

Semantic Web. Scientific American 284(5): 34–43,
2001.

Burstein, M.; McDermott, D.; Smith, D.; and West-
fold, S. 2003. Derivation of Glue Code for Agent In-
teroperation. Journal of Autonomous Agents and Multi-
Agent Systems 6(3): 265–286.

Chalupsky, H. 2000. OntoMorph: A Translation Sys-
tem for Symbolic Knowledge. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the
Seventh International Conference (KR2000), ed. A. G.
Cohn, F. Giunchiglia, and B. Selman. San Francisco:
Morgan Kaufmann Publishers.

Christensen, E.; Cubera, F.; Meredith, G.; and Weer-
awarana, S. 2002. Web Services Description Language
(WSDL). Report, Massachusetts Institute of Technol-
ogy, Cambridge, MA (www.w3.org/TR/).

Dean, M.; Connolly, D.; van Harmelen, F.; Hendler, J.;
Horrocks, I.; McGuinness, D.; Patel-Schneider, P.; and
Stein, L. 2003. OWL Web Ontology Language 1.0 Ref-
erence. Cambridge, MA: World Wide Web Consor-
tium (W3C) (www.w3.org/TR/owl-features).

Dou, D.; McDermott, D.; and Qi, P. 2003. Ontology
Translation on the Semantic Web. In Proceedings of
the International Conference on Ontologies, Databases,
and Applications of Semantics. Lecture Notes in Com-
puter Science. Berlin: Springer-Verlag.

Dou, D.; McDermott, D.; and Qi, P. 2002. Ontology
Translation by Ontology Merging and Automated
Reasoning. Paper presented at the European Knowl-
edge Acquisition Workshop on Ontologies for Multi-
Agent Systems, Bologna, Italy, July 6.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension
of PDDL for Expressing Temporal Planning Domains.
Journal of Artificial Intelligence Research 20: 61–124.

Gaio, S.; Lopes, A.; and Botelho, L. 2003. From
DAML-S to Executable Code. In Agentcities: Challenges
in Open Agent Environments, ed. B. Burg, J. Dale, T.
Finin, H. Nakashima, L. Padgham, C. Sierra, and S.
Willmott, 25–31. Berlin: Springer-Verlag.

Kalfoglou, Y., and Schorlemmer, M. 2003. Ontology
Mapping: The State of the Art. Knowledge Engineering
Review (18:1): 1–31.

Lassila, O.; and Swick, R. 1999. Resource Description
Framework (RDF) Model and Syntax Specification.
Cambridge, MA: World Wide Web Consortium
(W3C) (www.w3.org/TR/REC-rdf-syntax).

Madhavan, J.; Bernstein, P.; Domingos, P.; and
Halevy, A. 2002. Representing and Reasoning about
Mappings between Domain Models. In Proceedings of
the Eighteenth National Conference on Artificial intelli-
gence, 80–86. Menlo Park, CA: AAAI Press.

McDermott, D. 2003. Reasoning about Autonomous
Processes in an Estimated-Regression Planner. In Pro-
ceedings of the International Conference on Automated
Planning and Scheduling. Menlo Park, CA: AAAI Press.

McDermott, D. 2002. Estimated-Regression Planning
for Interactions with Web Services. In Proceedings of
the Sixth International Conference on AI Planning and
Scheduling. Menlo Park, CA: AAAI Press.

McDermott, D.; Burstein, M.; and Smith, D. 2002.
Overcoming Ontology Mismatches in Transactions
with Self-Describing Agents. In The Emerging Semantic
Web: Selected Papers from the First Semantic Web Work-

Articles

SPRING 2005 81

Wide Web. Paper presented at the Semantic Web
Workshop, Honolulu, 7 May 2002. (seman-
ticweb2002.aifb.uni-karlsruhe.de/USCHOLD-Hawaii-
InvitedTalk2002.pdf)

Weld, D. Recent Advances in AI Planning. AI Maga-
zine 20(2): 93–123.

Wu, D.; Parsia, B.; Sirin, E.; Hendler, J.; and Nau, D.
2003. Automating DAML-S Web Services Composi-
tion Using SHOP2. In Proceedings of the Second Inter-
national Semantic Web Conference (ISWC2003). Lec-
ture Notes in Computer Science. Berlin:
Springer-Verlag.

Mark H. Burstein is a division sci-
entist and the director of the Hu-
man Centered Systems Group at
BBN Technologies. He is cochair of
the Semantic Web Services Initia-
tive’s Architecture Committee. He
holds a B.S. in mathematics from
the Massachusetts Institute of
Technology and a Ph.D. in com-

puter science (artificial intelligence) from Yale Uni-
versity. He is author or coauthor of more than 60 pa-
pers on topics including semantic web services,
ontology translation, multiagent systems, mixed-ini-
tiative planning and scheduling, plausible reasoning,
knowledge acquisition, and machine learning. He
can be contacted at burstein@bbn.com.

Drew V. McDermott is professor
of computer science at Yale Uni-
versity. He was educated at the
Massachusetts Institute of Tech-
nology, where he received a Ph.D.
in 1976. His research is in plan-
ning, knowledge representation,
and interagent communication,
with side excursions into philoso-

phy. He helped create the AI Planning Systems con-
ference, which, as a result of a merger, became the
International Conference on Planning and Schedul-
ing. He chaired the Rules Committee for the first In-
ternational Planning Competition, which created
PDDL, the standard notation for defining planning
domains. He is the coauthor of two textbooks in ar-
tificial intelligence and the sole author of Mind and
Mechanism, a book on AI and consciousness. He is on
the editorial board of Artificial Intelligence, and is a
Fellow of the American Association for Artificial In-
telligence.

ing Symposium, ed. Isabel Cruz, Stefan Decker, Jérôme
Euzenat, and Deborah McGuinness, 228–244. Ams-
terdam: IOW Press.

McIlraith, S.; and Son, T. 2002. Adapting Golog for
Composition of Semantic Web Services. In Proceed-
ings of the Eighth International Conference on Knowledge
Representation and Reasoning (KR2002). San Francisco:
Morgan Kaufmann Publishers.

Mitra, P.; Wiederhold, G.; and Kersten, M. A. 2000.
Graph-Oriented Model for Articulation of Ontology
Interdependencies. In Advances in Database Technol-
ogy (EDBT’2000): Seventh International Conference on
Extending Database Technology. Berlin: Springer-Ver-
lag.

Noy, N. F. and Musen, M. A. 2002. Evaluating Ontol-
ogy Mapping Tools: Requirements and Experience. In
Workshop on Evaluation of Ontology Tools at
EKAW’02 (EON2002). SMI Report 2002-0936, Stan-
ford Univ., Stanford, CA.

Paolucci, M.; Ankolekar, A.; Srinivasan N.; and
Sycara, K. 2003. The DAML-S Virtual Machine. In The
Semantic Web: Proceedings of the Second International
Semantic Web Conference (ISWC), 290–305. Berlin:
Springer-Verlag.

Paolucci, M.; Kawamura, T.; Payne, T.; and Sycara, K.
2002a. Semantic Matching of Web Services Capabili-
ties. In Proceedings of the First International Semantic
Web Conference (ISWC), Lecture Notes in Computer
Science. Berlin: Springer-Verlag.

Paolucci, M.; Kawamura, T; Payne, T. R.; and Sycara,
K. 2002b. Importing the Semantic Web in UDDI. In
Proceedings of Web Services, E-Business, and the Seman-
tic Web: CAISE 2002 International Workshop. Lecture
Notes in Computer Science, 225–236. Berlin:
Springer-Verlag.

Rahm, E.; and Bernstein, P. A. 2001. A Survey on Ap-
proaches to Automatic Schema Matching. The Inter-
national Journal on Very Large Data Bases 10(4):
334–350.

Sabou, M.; Richards, D.; and van Splunter, S. 2003.
An Experience Report on Using DAML-S. In Proceed-
ings of the Twelfth International World Wide Web
Conference Workshop on E-Services and the Seman-
tic Web (ESSW ’03). New York: Association for Com-
puting Machinery.

Schlenoff, C.; Gruninger M.; Tissot, F.; Valois, J.;
Lubell, J.; and Lee, J. 2000. The Process Specification
Language (PSL): Overview and Version 1.0 Specifica-
tion. Technical Report NISTIR 6459, National Insti-
tute of Standards and Technology, Gaithersburg, MD.

Sheshagiri, M.; desJardins, M.; and Finin, T. A Planner
for Composing Services Described in DAML-S. In Pro-
ceedings of the AAMAS Workshop on Web Services
and Agent-Based Engineering. New York: Association
for Computing Machinery.

Sirin, E.; Parsia, B.; and Hendler, J. 2004. Composi-
tion-Driven Filtering and Selection of Semantic Web
Services. In Semantic Web Services: Papers from the
AAAI Spring Symposium. Technical Report SS-04-06.
Menlo Park, CA: American Association for Artificial
Intelligence.

Uschold, M.; and Gruninger, M. 2002. Creating Se-
mantically Integrated Communities on the World

Articles

82 AI MAGAZINE

