
■ To build a machine that has “common sense” was
once a principal goal in the field of artificial intel-
ligence. But most researchers in recent years have
retreated from that ambitious aim. Instead, each
developed some special technique that could deal
with some class of problem well, but does poorly at
almost everything else. We are convinced, howev-
er, that no one such method will ever turn out to
be “best,” and that instead, the powerful AI sys-
tems of the future will use a diverse array of re-
sources that, together, will deal with a great range
of problems. To build a machine that’s resourceful
enough to have humanlike common sense, we
must develop ways to combine the advantages of
multiple methods to represent knowledge, multi-
ple ways to make inferences, and multiple ways to
learn. We held a two-day symposium in St.
Thomas, U.S. Virgin Islands, to discuss such a pro-
ject—to develop new architectural schemes that
can bridge between different strategies and repre-
sentations. This article reports on the events and
ideas developed at this meeting and subsequent
thoughts by the authors on how to make progress.

The Need for Synthesis 
in Modern AI

To build a machine that has “common
sense” was once a principal goal in the
field of artificial intelligence. But most re-

searchers in recent years have retreated from
that ambitious aim. Instead, each developed

some special technique that could deal with
some class of problem well, but does poorly at
almost everything else. An outsider might re-
gard our field as a chaotic array of attempts to
exploit the advantages of (for example) neural
networks, formal logic, genetic programming,
or statistical inference—with the proponents
of each method maintaining that their chosen
technique will someday replace most of the
other competitors.

We do not mean to dismiss any particular
technique. However, we are convinced that no
one such method will ever turn out to be
“best,” and that instead, the powerful AI sys-
tems of the future will use a diverse array of re-
sources that, together, will deal with a great
range of problems. In other words, we should
not seek a single “unified theory!” To build a
machine that is resourceful enough to have hu-
manlike common sense, we must develop ways
to combine the advantages of multiple meth-
ods to represent knowledge, multiple ways to
make inferences, and multiple ways to learn. 

We held a two-day symposium in St.
Thomas, U.S. Virgin Islands, to discuss such a
project—to develop new architectural schemes
that can bridge between different strategies
and representations. This article reports on the
events and ideas developed at this meeting and
subsequent thoughts by the authors on how to
make progress.1

Articles

SUMMER 2004  113

The St. Thomas 
Common Sense 

Symposium:
Designing Architectures 

for Human-Level Intelligence

Marvin Minsky, Push Singh, and Aaron Sloman

Copyright © 2004, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2004 / $2.00

AI Magazine Volume 25 Number 2 (2004) (© AAAI)



mining whether a region in an image is a patch
of skin or a fragment of a cloud. This can be
done by summing the contributions of many
small pieces of evidence such as the individual
pixels of the texture. No one pixel is terribly
important, but en masse they determine the
classification. Formal logic, on the other hand,
works well on problems where there are rela-
tively few causal components, but which are
arranged in intricate structures sensitive to the
slightest disturbance or inconsistency. An ex-
ample of such a problem-type is verifying the
correctness of a computer program, whose be-
havior can be changed completely by modify-
ing a single bit of its code. Case-based and ana-
logical reasoning lie between these extremes,
matched to problems where there are a moder-
ate number of causal components each with a
modest amount of influence. Many common
sense domains, such as human social reason-
ing, may fall into this category. Such problems
may involve knowledge too difficult to formal-
ize as a small set of logical axioms, or too diffi-
cult to acquire enough data about to train an
adequate statistical model.

It is true that many of these techniques have
worked well outside of the regimes suggested
by this causal diversity matrix. For example,
statistical methods have found application in
realms where previously rule-based methods
were the norm, such as in the syntactic parsing
of natural language text. However, we need a
richer heuristic theory of when to apply differ-
ent AI techniques, and this causal diversity ma-
trix could be an initial step toward that. We
need to further develop and extend such theo-
ries to include the entire range of AI methods
that have been developed, so that we can more
systematically exploit the advantages of partic-
ular techniques.

How could such a “meta-theory of AI tech-
niques” be used by an AI architecture? Before
we turned to this question, we discussed a con-
crete problem domain in which we could think
more clearly about the goal of building a ma-
chine with common sense.

Returning to the Blocks World
Later that first morning, Push Singh presented
a possible target domain for a commonsense
architecture project. Consider the situation of
two children playing together with blocks (fig-
ure 2).

Even in this simple situation, the children
may have concerns that span many “mental
realms”:

Physical: What if I pulled out that bottom
block?

Organizing the 
Diversity of AI Methods

Marvin Minsky kicked off the meeting by dis-
cussing how we might begin to organize the
many techniques that have been developed in
AI so far. While AI researchers have invented
many representations, methods, and architec-
tures for solving many types of problems, they
still have little understanding of the strengths
and weaknesses of each these techniques. We
need a theory that helps to map the types of
problems we face onto the types of solutions
that are available to us. When should one use
a neural network? When should one use statis-
tical learning? When should one use logical
theorem proving?

To help answer these kinds of questions,
Minsky suggested that we could organize dif-
ferent AI methods into a “causal diversity ma-
trix” (figure 1). Here, each problem-solving
method, such as analogical reasoning, logical
theorem proving, and statistical inference, is
assessed in terms of its competence at dealing
with problem domains with different causal
structures.

Statistical inference is often useful for situa-
tions that are affected by many different
matched causal components, but where each
contributes only slightly to the final phenom-
enon. A good example of such a problem-type
is visual texture classification, such as deter-
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Figure 1. The Causal Diversity Matrix.
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Bodily: Can I reach that green block from here?
Social: Should I help him with his tower or
knock it down?
Psychological: I forgot where I left the blue
block.
Visual: Is the blue block hidden behind that
stack?
Spatial: Can I arrange those blocks into the
shape of a table?
Tactile: What would it feel like to grab five
blocks at once?
Self-Reflective: I’m getting bored with this—
what else is there to do?

Singh argued that no present-day AI system
demonstrates such a broad range of common-
sense skills. Any architecture we design should
aim to achieve some competence within each
of these and other important mental realms.
He proposed that to do this we work within the
simplest possible domain requiring reasoning
in each of these realms. He suggested that we
develop our architectures within a physically
realistic model world resembling the classic
Blocks World, but where the world was popu-
lated by several simulated beings, and thus em-
phasizing social problems in addition to phys-
ical ones. These beings would manipulate
simple objects like blocks, balls, and cylinders,
and would participate in the kinds of scenarios
depicted in figure 3, which include jointly
building structures of various kinds, competing
to solve puzzles, teaching each other skills
through examples and through conversation,
and verbally reflecting on their own successes
and failures.

The apparent simplicity of this world is de-
ceptive, for many of the kinds of problems that
show up in this world have not yet been tack-
led in AI, for they require combining elements
of the following:

Spatial reasoning about the spatial arrange-
ments of objects in one’s environment and
how the parts of objects are oriented and situ-
ated in relation to one another. (Which of
those blocks is closest to me?)

Physical reasoning about the dynamic behav-
ior of physical objects with masses and collid-
ing/supporting surfaces. (What would happen
if I removed that middle block from the tow-
er?)

Bodily reasoning about the capabilities of
one’s physical body. (Can I reach that block
without having to get up?)

Visual reasoning about the world that under-
lies what can be seen. (Is that a cylinder-shaped
block or part of a person’s leg?)

Psychological reasoning about the goals and
beliefs oneself and of others. (What is the other
person trying to do?)

Social reasoning about the relationships,

shared goals and histories that exist between
people. (How can I accomplish my goal with-
out the other person interfering?)

Reflective reasoning about one’s own recent
deliberations. (What was I trying to do a mo-
ment ago?)

Conversational reasoning about how to ex-
press one’s ideas to others. (How can I explain
my problem to the other person?)

Educational reasoning about how to best learn
about some subject, or to teach it to someone
else. (How can I generalize useful rules about
the world from experiences?)

Many of the meeting participants were en-
thusiastic about this proposal and agreed that
there would be challenging visual, spatial, and
robotics problems within this domain. Ken
Forbus pointed out that the video game com-
munities would soon produce programmable
virtual worlds that would easily meet our
needs. Several participants mentioned the suc-
cess of the RoboCup competitions (Kitano et
al. 1997), but some concluded that the
RoboCup domain, while appropriate for those
interested in the problem of coordinating mul-
tiagent teams in a competitive scenario, was
very different in character from the situation of
two or three people more slowly working to-
gether on a physical task, communicating in
natural language, and in general operating on
a more thoughtful and reflective level.
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Figure 2. A Pair of Busy Youths.



Establishing a Collection of 
Graded Miniscenarios

How would we guide such a
project and measure its
progress over time? Some par-

ticipants suggested trying to emulate
the abilities of human children at
various ages. However, others argued
that while this should inspire us, we
should not use it as a plan for the pro-
ject, because we don’t really yet know
enough about the details of early hu-
man mental development. 

Aaron Sloman argued that it might
be better to try to model the mind of
a four- or five-year-old human child
because that might lead more directly
toward more substantial adult abili-
ties. After the meeting, Sloman devel-
oped the notion of a “commonsense
miniscenario,” a concrete description
in the form of a simple storyboard of
a particular skill that a commonsense
architecture should be able to
demonstrate. Each miniscenario has
several features: (1) It describes some
forms of competence, which are ro-
bust insofar as they can cope with
wide ranges of variation in the condi-
tions; and (2) each comes with some
meta-competence for thinking and
speaking about what was done. For
example competence can have a
number of different facets, including
describing the process; explaining
why something was done, or why
something else would not have
worked; being able to answer hypo-
thetical questions about what would
happen otherwise; being able to im-
prove performance in such ways as
improving fluency, removing bugs in
strategies, and expanding the variety
of contexts. The system should also
be able to further justify these kinds
of remarks.

Sloman proposed this example of a
sequence of increasingly sophisticat-
ed such miniscenarios in the pro-
posed multi-robot problem domain:

1. Person wants to get box from high

shelf. Ladder is in place. Person
climbs ladder, picks up box, and
climbs down.

2. As for 1, except that the person
climbs ladder, finds he can’t reach
the box because it’s too far to one
side, so he climbs down, moves the
ladder sideways, then as 1.

3. As for 1, except that the ladder is
lying on the floor at the far end of
the room. He drags it across the
room lifts it against the wall, then
as 1. 

4. As for 1, except that if asked while
climbing the ladder why he is
climbing it the person answers:
something like “To get the box.” It
should understand why “To get to
the top of the ladder” or “To in-
crease my height above the floor”
would be inappropriate, albeit cor-
rect. 

5. As for 2 and 3, except that when
asked, “Why are you moving the
ladder?” the person gives a sensible
reply. This can depend in complex
ways on the previous contexts, as
when there is already a ladder clos-
er to the box, but which looks un-
safe or has just been painted. If
asked, “would it be safe to climb if
the foot of the ladder is right up
against the wall?” the person can
reply with an answer that shows an
understanding of the physics and
geometry of the situation. 

6. The ladder is not long enough to
reach the shelf if put against the
wall at a safe angle for climbing.
Another person suggests moving
the bottom closer to the wall, and
offers to hold the bottom of the
ladder to make it safe. If asked why
holding it will make it safe, gives a
sensible answer about preventing
rotation of ladder.

7. There is no ladder, but there are
wooden rungs, and rails with holes

from which a ladder can be con-
structed. The person makes a lad-
der and then acts as in previous
scenarios. (This needs further un-
packing, e.g. regarding sensible se-
quences of actions, things that can
go wrong during the construction,
and how to recover from them,
etc.)

8. As for 7, but the rungs fit only
loosely into the holes in the rails.
Person assembles the ladder but re-
fuses to climb up it, and if asked
why can explain why it is unsafe.

9. Person watching another who is
about to climb up the ladder with
loose rungs should be able to ex-
plain that a calamity could result,
that the other might be hurt, and
that people don’t like being hurt.

Such a system should be made to
face a substantial library of such grad-
ed sequences of mini-scenarios that
require it both to learn new skills, to
improve its abilities to reflect on
them, and (with practice) to become
much more fluent and quick at
achieving these tasks. These
orderings should be based on such
factors as the required complexity of
objects, processes, and knowledge in-
volved, the linguistic competence re-
quired, and the understanding of
how others think and feel. That li-
brary could include all sorts of things
children learn to do in such various
contexts as dressing and undressing
dolls, coloring in a picture book, tak-
ing a bath (or washing a dog), making
toys out of Meccano and other con-
struction kits, eating a meal, feeding a
baby, cleaning a mess made by
spilling some powder or liquid, read-
ing a story and answering questions
about it, making up stories, dis-
cussing behavior of a naughty per-
son, and learning to think and talk
about the past, the future, and about
distant places, etc.
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Still, the participants had a heated debate
about the adequacy of the proposed problem
domain. The most common criticism was that
this world does not contain enough of a variety
of objects or richness of behavior. Doug Lenat
suggested a solution to this, which was to em-
bed the people within not a Blocks World, but
instead somewhere like a typical house or of-
fice, as in the popular computer game The Sims.
Doug Riecken argued that we could develop
enough of the architecture within the more
limited virtual world, and later add extensions
to deal with a wider range of objects and phe-
nomena.

A different response to this criticism was
that in order to focus on architectural issues, it
would help to simplify the problem domain, so
that we could focus less on acquiring a large
mass of world knowledge, and more on devel-
oping better ways for systems to use the knowl-
edge they have. However, other participants ar-
gued that restricting the world would not
entirely bypass the need for large databases of
commonsense knowledge, for even this simple
world would likely require hundreds of thou-
sands or even millions of elementary pieces of

commonsense knowledge about space, time,
physics, bodies, social interactions, object ap-
pearances, and so forth.

Other participants disagreed with the virtual
world domain. They felt that we should in-
stead take the more practical approach of de-
veloping the architecture by starting with a
useful application like a search engine or con-
versational agent, and extending its common
sense abilities over time. But Ben Kuipers wor-
ried that choosing too specific an application
would lead to what happened to most previous
projects—someone discovers some set of ad
hoc tricks that leads to adequate performance,
without making any more general progress to-
ward more versatile, resourceful, or “more in-
telligent” systems.

In the end, after long debates we achieved a
substantial consensus that to solve harder
problems requiring common sense, we first
needed to solve the more restricted class of
problems that show up in simpler domains like
the proposed virtual world. Once we get the
core of the architecture functioning in this rich
but limited domain, we can attempt to extend
it—or it extend itself—to deal with a broader
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Figure 3. Reasoning in Multiple Mental Realms to Solve a Problem in the Model World.



several reflective levels beyond the reactive and
deliberative levels. Here is one view of his mod-
el for the architecture of a person’s mind, as de-
scribed in his book, The Emotion Machine, and
shown here in figure 4.

Some participants questioned the need for
so many reflective layers; would not a single
one be enough? Minsky responded by arguing
that today, when our theories still explain too
little, we should elaborate rather than simplify,
and we should be building theories with more
parts, not fewer. This general philosophy
pervades his architectural design, with its
many layers, representations, critics, reasoning
methods, and other diverse types of compo-
nents. Only once we have built an architecture
rich enough to explain most of what people
can do will it make sense to try to simplify
things. But today, we are still far from an archi-
tectural design that explains even a tiny frac-
tion of human cognition.

Aaron Sloman’s Cognition and Affect project
has explored a space of architectures proposed
as models for human minds; a sketch of Slo-
man’s H-CogAff model is shown in figure 5.
This architecture appears to provide a frame-
work for defining with greater precision than
previously a host of mental concepts, includ-
ing affective concepts, such as “emotion,” “at-
titude,” “mood,” “pleasure,” and so on. For in-
stance, H-CogAff allows us to define at least
three distinct varieties of emotions; primary,
secondary and tertiary emotions, involving dif-
ferent layers of the architecture which evolved
at different times—and the same architecture
can also distinguish different forms of learn-
ing, perception, and control of behavior. (A dif-
ferent architecture might be better for explor-
ing analogous states of insects, reptiles, or
other mammals.) Human infants probably
have a much-reduced version of the architec-
ture that includes self-bootstrapping mecha-
nisms that lead to the adult form.

The central idea behind the Minsky-Sloman
architectures is that the source of human re-
sourcefulness and robustness is the diversity of
our cognitive processes: we have many ways to
solve every kind of problem—both in the
world and in the mind—so that when we get
stuck using one method of solution, we can
rapidly switch to another. There is no single
underlying knowledge representation scheme
or inferencing mechanism.

How do such architectures support such di-
versity? In the case of Minsky’s Emotion Ma-
chine architecture, the top level is organized as
follows. When the system encounters a prob-
lem, it first uses some knowledge about “prob-
lem-types” to select some “way-to-think” that

range of problems using a much broader array
of commonsense knowledge.

Large-Scale Architectures for 
Human-level Intelligence

In the afternoon, we discussed large-scale ar-
chitectures for machines with human-level in-
telligence and common sense. Marvin Minsky
and Aaron Sloman each presented their cur-
rent architectural proposals as a starting point
for the meeting participants to criticize, debug,
and elaborate. These two architectures share so
many features that we will refer to them to-
gether as the Minsky-Sloman model.

These architectures are distinguished by
their emphasis on reflective thinking. Most
cognitive models have focused only on ways to
react or deliberate. However, to make machines
more versatile, they will need better ways to
recognize and repair the obstacles, bugs and
deficiencies that result from their own activi-
ties. In particular, whenever one strategy fails,
they’ll need to have a collection of ways to
switch to alternative ways to think. To provide
for this, Minsky’s architectural design includes
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Figure 4. Minsky’s Emotion Machine Architecture.
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might work. Minsky describes “ways-to-think”
as configurations of agents within the mind
that dispose it towards using certain styles of
representation, collections of commonsense
knowledge, strategies for reasoning, types of
goals and preferences, memories of past expe-
riences, manners of reflections, and all the oth-
er aspects that go into a particular “cognitive
style.” One source of knowledge relating prob-
lem-types to ways-to-think is the causal diver-
sity matrix discussed at the start of the meet-
ing—for example, if the system were presented
with a social problem, it might use the causal
diversity matrix to then select a case-based

style of reasoning, and a particular database of
social reasoning episodes to use with it.

However, any particular such approach is
likely to fail in various ways. Then if certain
“critic” agents notice specific ways in which
that approach has failed, they either suggest
strategies to adapt that approach, or suggest
alternative ways-to-think, as suggested shown
in figure 6. This is not done by employing any
simple strategy for reflection and repair, but
rather by using large arrays of higher level
knowledge about where each way-to-think has
advantages and disadvantages, and how to
adapt them to new contexts. 
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Ashwin Ram and Larry Birnbaum both pointed
out that despite the agreement over the archi-
tectural proposals it was still not clear what the
particular components of the architecture
would be. They pointed out that we needed to
think more about what the units of reasoning
would be. In other words, we needed to come
up with a good list of way-to-think. Some ex-
amples might include the following:

Solving problems by making analogies to past
experiences

Predicting what will happen next by rule-based
mental simulations

Constructing new “ways to think” by building
new collections of agents

Explaining unexpected events by diagnosing
causal graphs

Learning from problem-solving episodes by de-
bugging semantic networks

Inferring the state of other minds by re-using
self-models

Classifying types of situations using statistical
inference

Getting unstuck by reformulating the problem
situation

This list could be extended to include all avail-
able AI techniques.

Educating the Architecture
On the morning of the second day of the meet-
ing, we addressed the problem of how to sup-
ply the architecture with a broad range of com-
monsense knowledge, so that it would not
have to “start from scratch.” We all agreed that
learning was of value, but we didn’t all agree
on where to start. Many researchers would like
to start with nothing; however, Aaron Sloman
pointed out that an architecture that comes
with no knowledge is like a programming lan-
guage that comes with no programs or li-
braries.

One view that was expressed was that ap-
proaches that start out with too little initial
knowledge would likely not achieve enough
versatility in any practical length of time. Min-
sky criticized the increasing popularity of the
concept of a “baby machine”—learning sys-
tems designed to achieve great competence,
given very little initial structure. Some of these
ideas include genetic programming, robots
that learn by associating sensory-motor pat-
terns, and online chatbots that try to learn lan-
guage by generalizing from thousands of con-
versations. Minsky’s complaint was that the
problem is not that the concept of a baby ma-
chine is itself unsound, but rather that we
don’t know how to do it yet. Such approaches
have all failed to make much progress because

In Minsky’s design, several ways-to-think are
usually active in parallel. This enables the sys-
tem to quickly and fluently switch between dif-
ferent ways-to-think because, instead of start-
ing over at each transition, each newly
activated way-to-think will find an already-pre-
pared representation. The system will rarely
“get stuck” because those alternative ways-to-
think will be ready to take over when the pre-
sent one runs into trouble, as shown in figure 7.

Here each way-to-think involves reasoning
in a particular subset of mental realms. Impass-
es encountered while reasoning in one set of
mental realms can be overcome within others.
Further information about these architectures
can be found in Singh and Minsky (2003), Slo-
man (2001), and McCarthy et al. (2002). Min-
sky’s model will be described in detail in his
new book The Emotion Machine (Minsky, forth-
coming).

Generally, the participants were sympathetic
to these proposals, and all agreed with the idea
that to achieve human-level intelligence we
needed to develop more effective ways to com-
bine multiple AI techniques. Ken Forbus sug-
gested that we needed a kind of “component
marketplace,” and that we should find ways to
instrument these components so that the re-
flective layers of the architecture had useful in-
formation available to them. He contrasted the
Soar project (Laird, Newell, and Rosenbloom
1987) as an effort to eliminate and unify com-
ponents rather than to accumulate and diver-
sify them, as in the Minsky-Sloman proposals.

Articles

120 AI MAGAZINE

Reactive

Deliberative

Reflective

Self-Reflective

Self-Conscious

Self-Ideals

Reactive

Deliberative

Reflective

Self-Reflective

Self-Conscious

Self-Ideals

Initial Way-to-Think New Way-to-Think

Figure 6. Switching from a Largely Reactive to a 
Largely Deliberative Way-to-Think. 

Circles represent agents and other mental resources (fragments of knowledge,
methods of reasoning, ways to learn, etc.) specific to that way-to-think, spanning
the many levels of the architecture.



they started out with inadequate schemes for
learning new things. You cannot teach algebra
to a cat; among other things, human infants
are already equipped with architectural fea-
tures to equip them to think about the causes
of their successes and failures and then to make
appropriate changes. Today we do not yet have
enough ideas about how to represent, orga-
nize, and use much of commonsense knowl-
edge, let alone build a machine that could
learn all of that automatically on its own. As
John McCarthy noted long ago: “in order for a
program to be capable of learning something,
it must first be able to represent that knowl-
edge.”

There are very few general-purpose com-
monsense knowledge resources in the AI com-
munity. Doug Lenat gave a wonderful presen-
tation of the Cyc system, which is presently
the project furthest along at developing a use-
ful and reusable such resource for the AI com-
munity, so that new AI programs don’t have to
start with almost nothing. The Cyc project
(Lenat 1995) has developed a great many ways
to represent commonsense knowledge, and
has built a database of over a million common-
sense facts and rules. However, Lenat estimated
that an adult-level commonsense system
might require 100 million units of common-
sense knowledge, and so one of their current
directions is to move to a distributed knowl-
edge acquisition approach, where it is hoped
that eventually thousands of volunteer teach-
ers around the world will work together teach
Cyc new commonsense knowledge. Lenat
spent some time describing the development

of friendly interfaces to Cyc that allow nonlo-
gicians to participate in the complicated teach-
ing and debugging processes involved in build-
ing up the Cyc knowledge base.

Many of the participants agreed that Cyc
would be useful, and some suggested we could
even base our effort on top of it, but others
were sharply critical. Jeffrey Siskind doubted
that Cyc contained the spatial and perceptual
knowledge needed to do important kinds of vi-
sual scene interpretation. Roger Schank argued
that Cyc’s axiomatic approach was unsuitable
for making the kinds of generalizations and
analogies that a more case-based and narrative-
oriented approach would support. Srini
Narayanan worried that the Cyc project was
not adequately based on what cognitive scien-
tists have learned about how people make
commonsense inferences. Oliver Steele con-
cluded that while we disagreed about whether
Cyc was 90% of the solution or only 10%, this
was really an empirical question that we would
answer during the course of the project. But
generally, the architectural proposal was re-
garded as complementary to parallel efforts to
accumulate substantial commonsense knowl-
edge bases. 

Minsky predicted that if we used Cyc, we
might need to augment each existing item of
knowledge with additional kinds of procedural
and heuristic knowledge, such as descriptions
of (1) problems that this knowledge item could
help solve; (2) ways of thinking that it could
participate in; (3) known arguments for and
against using it; and (4) ways to adapt it to new
contexts.
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Figure 7. Using Several Ways-to-Think in Parallel in a Social Blocks World. 
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that it could avoid the silliest mistakes. (2) It
would understand human reasoning so that it
could present you with the right level of detail
and avoid saying things that you probably in-
ferred. (3) It would converse in natural lan-
guage so that you could easily talk to it about
complex matters without having to learn a spe-
cial language or complex interface.

To build such a kind of “helping machine,”
we would first need to give it knowledge about
space, time, beliefs, plans, stories, mistakes,
successes, relationships, and so forth, as well as
good conversational skills. However, little of
this could be realized by anything less than a
system with common sense. To accomplish
this we would need to pursue some sequence
of more modest goals that would help one with
simpler problem types—until the system
achieved the sorts of competence that we ex-
pect from a typical human four- or five-year-
old. 

However, to get such a system to work, we
would need to address many presently un-
solved commonsense problems that show up
in the model-world problem domain.

Final Consensus
The participants agreed that no single tech-
nique (such as statistics, logic, or neural net-
works) could cope with a sufficiently wide
range of problem-types. To achieve human-lev-
el intelligence we must create an architecture
that can support many different ways to repre-
sent, acquire, and apply many kinds of com-
monsense knowledge.

Most participants agreed that we should
combine our efforts to develop a model world
that supports simplified versions of everyday
physical, social, and psychological problems.
This simplified world would then be used to
develop and debug the core components of the
architecture. Later, we can expand it to solve
more difficult and more practical problems.

The participants did not all agree on which
particular larger-scale application would both
attract sufficient support and also produce sub-
stantial progress toward making machines that
use commonsense knowledge. Still, many
agreed with the concept of a personalized
teaching machine that would come to under-
stand you so well that it could adapt to your
particular circumstances, difficulties, and
needs.

Ben Kuipers sketched the diagram shown in
figure 8, which captures the general dependen-
cies between the three points of consensus:
Practical applications depend on developing
an architecture for commonsense thinking

It was stressed that knowledge about the
world was not enough by itself—we also need
a knowledge base about how to reason, reflect
and learn, the knowledge that the reflective
layers of the architecture must possess. The
problem remains that the programs we have
for using knowledge are not flexible enough,
and neither Cyc’s “adult machine” approach of
supplying a great deal of world knowledge, nor
the “baby machine” approach of learning com-
mon sense from raw sensory-motor experi-
ence, will likely succeed without first develop-
ing an architecture that supports multiple ways
to reason, learn, and reflect upon and improve
its activities.

An Important Application
Several of the participants felt that such a pro-
ject would not receive substantial support un-
less it proposed an application that clearly
would benefit much of the world. Not just an
improvement to something existing, it would
need to be one that could not be built without
being capable of human-level commonsense
reasoning.

After a good deal of argument, several partic-
ipants converged upon a vision from The Dia-
mond Age, a novel by Neil Stephenson. That
novel envisioned an “intelligent book”—The
Young Ladies Illustrated Primer—that, when giv-
en to a young girl, would immediately bond
with her and come to understand her so well as
to become a powerful personal tutor and men-
tor.

This suggested that we could try to build a
personalized teaching machine that would adapt
itself to someone’s particular circumstances,
difficulties, and needs. The system would carry
out a conversation with you, to help you un-
derstand a problem or achieve some goal. You
could discuss with it such subjects as how to
choose a house or car, how to learn to play a
game or get better at some subject, how to de-
cide whether to go to the doctor, and so forth.
It would help you by telling you what to read,
stepping you through solutions, and teaching
you about the subject in other ways it found to
be effective for you. Textbooks then could be
replaced by systems that know how to explain
ideas to you in particular, because they would
know your background, your skills, and how
you best learn. 

This kind of application could form the basis
for a completely new way to interact with com-
puters, one that bypasses the complexities and
limitations of current operating systems. It
would use common sense in many different
ways: (1) It would understand human goals so
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flexible enough to integrate a wide array of
processes and representations of problems that
come up in the model-world problem domain.

A Collaborative Project?
At the end of the meeting, we brainstormed
about how we might organize a distributed,
collaborative project to build an architecture
based on the ideas discussed at this meeting. It
is a difficult challenge, both technically and so-
cially, to get a community of researchers to
work on a common project. However, success-
es in the Open Source community show that
such distributed projects are feasible when the
components can be reasonably disassociated. 

Furthermore, this kind of architecture itself
should help to make it easy for members of the
project to add new types of representations
and processes. However, we first would have to
develop a set of protocols to support the inter-
operation of such a diverse array of methods.
Erik Mueller suggested that such an organiza-
tion could be modeled after the World Wide
Web Consortium (W3C), and its job would
largely be to assess, standardize and publish
the protocols and underlying tools that such a
distributed effort would demand.

While we did not sketch a detailed plan for
how to proceed, Aaron Sloman, Erik Mueller
and Push Singh listed some technical steps that
such a project would need:

First, it should not be too hard to develop a
suitable virtual model world, because the pre-
sent-day video game and computer graphics
industry has produced most of the required
components. These should already include ad-
equate libraries for computer graphics, physics
simulation, collision detection, and so forth.

Second, we need to develop and order the
set of miniscenarios that we will use to orga-
nize and evaluate our progress. This would be
a continuous process, as new types of problems
will constantly be identified. 

Third, what kinds of protocols could the
agents of this cognitive system use to coordi-
nate with each other? This would include mes-
sages for updating representations, describing
goals, identifying impasses, requesting knowl-
edge, and so forth. We would consider the rad-
ical proposal to use, for this, an Interlingua
based on a simplified form of English, rather
than trying to develop some brand new ontol-
ogy for expressing commonsense ideas. Of
course, each individual agent could be free to
use internally whatever ontology or represen-
tation scheme was most convenient and use-
ful.

Fourth, we would need to create a compre-

hensive catalog of ways-to-think, to incorpo-
rate into the architecture. A commonsense sys-
tem should be at least capable of reasoning
about prediction, explanation, generalization,
exemplification, planning, diagnosis, reflec-
tion, debugging, learning, and abstracting.

Fifth, what are the kinds of self-reflections
that a commonsense system should be able to
make of itself, and how should these invoke
and modify ways-to-think as problems are en-
countered?

Sixth, in any case, such a system will need a
substantial, general-purpose, and reusable
commonsense knowledge base about the spa-
tial, physical, bodily, social, psychological, re-
flective, and other important realms, enough
to deal with a broad range of problems within
the model world problem domain.

Finally, we might need to develop a new
kind of “intention-based” programming lan-
guage to support the construction of such an
architecture.

Towards the Future
Since our meeting similar sentiments have
been expressed at DARPA, most notably in the
recent “Cognitive Systems” Information Pro-
cessing Technology Office (IPTO) Broad
Agency Announcement (BAA) (Brachman and
Lemnios 2002), which solicits proposals for
building AI systems that combine many ele-
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Computer Science. His
research is focused on
finding ways to give
computers humanlike
common sense, and he is
presently collaborating
with Marvin Minsky to
develop an architecture
for commonsense think-

ing that makes use of many types of mech-
anisms for reasoning, representation, and
reflection. He started the Open Mind Com-
mon Sense project at MIT, an effort to build
large-scale commonsense knowledge bases
by turning to the general public, and has
worked on incorporating commonsense
reasoning into a variety of real-world appli-
cations. Singh received his B.S. and M.Eng.
in electrical engineering and computer sci-
ence from MIT.

Aaron Sloman is a pro-
fessor of AI and cogni-
tive science at the Uni-
versity of Birmingham,
UK.He received his B.Sc.
in mathematics and
physics (Cape Town,
1956), and a D.Phil. Phi-
losophy, from Oxford

(1962). Sloman is a Rhodes Scholar, a Fel-
low of AAAI, AISB, and ECCAI. He is also
author of The Computer Revolution in Philos-
ophy (1978) and many theoretical papers
on vision, diagrammatic reasoning, forms
of representation, architectures, emotions,
consciousness, philosophy of AI, and tools
for exploring architectures. Sloman main-
tains the FreePoplog open source web site
and is about to embark on a large EC-fund-
ed robotics project. All papers, presenta-
tions, and software are accessible from his
home page: www.cs.bham.ac.uk/~axs/

Agent Systems. Cambridge, Mass., Septem-
ber 30 – October 3.

Sloman, Aaron 2001. Beyond Shallow
Models of Emotion. Cognitive Processing,
1(1):530-539.

Note
1. This meeting was held in St. Thomas,
U.S. Virgin Islands, on April 14-16, 2002.
The meeting included the following partic-
ipants: Larry Birnbaum (Northwestern Uni-
versity), Ken Forbus (Northwestern Univer-
sity), Ben Kuipers (University of Texas at
Austin), Douglas Lenat (Cycorp), Henry
Lieberman (Massachusetts Institute of
Technology), Henry Minsky (Laszlo Sys-
tems), Marvin Minsky (Massachusetts Insti-
tute of Technology), Erik Mueller (IBM T. J.
Watson Research Center), Srini Narayanan
(University of California, Berkeley), Ashwin
Ram (Georgia Institute of Technology),
Doug Riecken (IBM T. J. Watson Research
Center), Roger Schank (Carnegie Mellon
University), Mary Shepard (Cycorp), Push
Singh (Massachusetts Institute of Technol-
ogy), Jeffrey Mark Siskind (Purdue Univer-
sity), Aaron Sloman (University of Birming-
ham), Oliver Steele (Laszlo Systems), Linda
Stone (independent consultant), Vernor
Vinge (San Diego State University), and
Michael Witbrock (Cycorp).

Marvin Minsky has
made many contribu-
tions to AI, cognitive
psychology, mathemat-
ics, computational lin-
guistics, robotics, and
optics. In recent years he
has worked chiefly on
imparting to machines

the human capacity for commonsense rea-
soning. His conception of human intellec-
tual structure and function is presented in
The Society of Mind which is also the title of
the course he teaches at MIT. He received
his B.A. and Ph.D. in mathematics at Har-
vard and Princeton. In 1951 he built the
SNARC, the first neural network simulator.
His other inventions include mechanical
hands and other robotic devices, the confo-
cal scanning microscope, the “Muse” syn-
thesizer for musical variations (with E.
Fredkin), and the first LOGO “turtle” (with
S. Papert). A member of the NAS, NAE and
Argentine NAS, he has received the ACM
Turing Award, the MIT Killian Award, the
Japan Prize, the IJCAI Research Excellence
Award, the Rank Prize and the Robert
Wood Prize for Optoelectronics, and the
Benjamin Franklin Medal.

Push Singh is a doctoral candidate in MIT’s
Department of Electrical Engineering and

ments of knowledge, reasoning, and
learning. While we are gratified that
architectural approaches are becoming
more popular, we would like to see
more emphasis placed on architectural
designs that specifically support more
common sense styles of thinking.

There was a genuine sense of excite-
ment at this meeting. The participants
felt that it was a rare opportunity to fo-
cus once more on the grand goal of
building a human-level intelligence.
Over the next few years, we plan to de-
velop a concrete implementation of
an architecture based on the ideas dis-
cussed at this meeting, and we invite
the rest of the AI community to join us
in such efforts.
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