
■ In general, modeling is a complex and creative
task, and building qualitative models is no excep-
tion. One way of automating this task is by means
of machine learning. Observed behaviors of a
modeled system are used as examples for a learn-
ing algorithm that constructs a model that is con-
sistent with the data. In this article, we review ap-
proaches to learning qualitative models, either
from numeric data or qualitative observations. We
describe the QUIN program that looks for qualita-
tive patterns in numeric data and outputs the re-
sults of learning as “qualitative trees.” We illustrate
this using applications associated with systems
control, in particular, the identification and opti-
mization of controllers and human operator’s con-
trol skill. We also review approaches that learn
models in terms of qualitative differential equa-
tions.

Much research in the field of qualitative
reasoning has been devoted to the
questions of representation of quali-

tative models and to qualitative simulation al-
gorithms that derive qualitative behaviors
from given qualitative models. However, an
important practical question is how do we con-
struct qualitative models in the first place. In
general, model construction is usually the
most demanding aspect of the modeling task.
In this article, we look at research that aims at
automating this task.

One idea is to use observations of the mod-
eled system, obtained through measurements,
and try to find a model that, when simulated,
would reproduce the same, observed behav-
iors. This task is known as system identification
and is just the opposite of system simulation.
Of course, to be of interest, the model induced
from observations should be more general
than the observations themselves. The induced
model should be capable of also making pre-
dictions in situations other than those literally

included among the observations. This task
can also be viewed as machine learning from
examples. The observed system behaviors are
taken as examples for a learning algorithm,
and the result of learning, usually called a the-
ory, or a hypothesis induced from the exam-
ples, represents a model of the system.

In this article, we consider the particular
problem of inducing a qualitative model from
examples of system behaviors. We first look at
a recently developed approach based on the in-
duction of qualitative trees. Then we present
an application of this technique to problems
associated with the control of dynamic sys-
tems. One such application is the qualitative
identification of industrial controllers, which
can also be viewed as qualitative reverse engi-
neering. Another application is the identifica-
tion of tacit control skills of human operators.
In the last part of the article, we review some
other representative approaches to the learn-
ing of qualitative models.

It should be noted that in comparison with
traditional (quantitative) system identifica-
tion, qualitative system identification puts
much more emphasis on obtaining comprehen-
sible models, models that intuitively explain
how the system works.

Qualitative Data
Mining with QUIN

Qualitative induction (QUIN) is a learning pro-
gram that looks for qualitative patterns in nu-
meric data (S̆uc 2001; S̆uc and Bratko 2001). In-
duction of the so-called qualitative trees is
similar to the well-known induction of deci-
sion trees (for example, CART [Breiman et al.
1984], C4.5 [Quinlan 1993]). The difference is
that in decision trees, the leaves are labeled
with class values, whereas in qualitative trees,

Articles

WINTER 2003 107

Learning
Qualitative Models

Ivan Bratko and Dorian S̆uc

Copyright © 2003, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2003 / $2.00

AI Magazine Volume 24 Number 4 (2003) (© AAAI)

tative tree specify conditions that split the at-
tribute space into subspaces. In a qualitative
tree, however, each leaf specifies a QCF that
holds among the input data that fall into this
leaf. Figure 1a shows an example data set with
three variables, X, Y, and Z. The data points
correspond to the function Z = X2 – Y2 with
some Gaussian noise added. When QUIN is
asked to find in these data qualitative con-
straints on Z as a function of X and Y, QUIN gen-
erates the qualitative tree shown in figure 1b.
X and Y are independent variables, also called
attributes, and Z is the dependent variable, also
called class. This tree partitions the data space
into four regions that correspond to the four
leaves of the tree. A different QCF applies in
each of the leaves. The tree describes how Z
qualitatively depends on X and Y. Notice that
noise in the data in this example did not pre-
sent problems to QUIN.

QUIN constructs a tree in a top-down greedy
fashion, similar to decision tree induction algo-
rithms. At each internal node of the tree, QUIN

considers all possible splits, that is, conditions

the leaves are labeled with what we call quali-
tatively constrained functions (QCFs).

QCFs are a kind of monotonicity constraint
that is widely used in the field of qualitative
reasoning. A simple example of a QCF is Y =
M+(X), which says that Y is a monotonically in-
creasing function of X. In general, QCFs can
have more than one argument. For example, Z
= M+,–(X, Y) says that Z monotonically increas-
es in X and decreases in Y. If both X and Y in-
crease, then according to this constraint, Z can
increase, decrease, or stay unchanged. In such
a case, a QCF cannot make an unambiguous
prediction of the qualitative change in Z. In
the literature, QCFs also appear under the term
multivariate monotonic function constraints
(Wellman 1991).

QUIN takes as input a set of numeric exam-
ples and looks for qualitative patterns among
the data. More precisely, QUIN looks for regions
in the data space where monotonicity con-
straints hold. Such a set of qualitative patterns
is represented in terms of a qualitative tree. As
in decision trees, the internal nodes in a quali-

Articles

108 AI MAGAZINE

22
0.

0
0.

0
10.0

0.0

– 0.0 – 10.0

0.0

10.0

–
22

0.
0

xy

z

X
≤ 0 > 0

Y Y
≤ 0 ≤ 0> 0 > 0

Z = M–,+(X, Y) Z = M–,–(X, Y) Z = M+,+(X, Y) Z = M+,–(X, Y)

A

B

Figure 1. An Illustration of QUIN Use.
A. A data set of points where Z = X2 – Y2 plus some noise. B. A qualitative tree induced by QUIN from this data set.

of the form X < T for all the attribute variables
X and effectively all possible thresholds T with
respect to X. Each such condition partitions the
training data into two subsets. QUIN finds the
best QCF for each subset according to an error-
cost measure for QCFs. Then the best split is se-
lected according to the minimum description
length (MDL) principle, which minimizes the er-
ror cost and the encoding complexity of QCFs.
The error cost of a QCF with respect to an ex-
ample set S is defined so that it takes into ac-
count the consistency of the QCF with S and
the ambiguity of the QCF with respect to the
data in S (the more unambiguous qualitative
predictions the QCF can make in S the better).
Technical details can be found in S̆uc (2001)
and S̆uc and Bratko (2001), where QUIN’s perfor-
mance on noisy data is also studied.

A Qualitative Reverse
Engineering Application of QUIN

In this section, we present an application of
QUIN to reverse engineering of an artifact. The
task of reverse engineering is in a sense formal-
ly equivalent to system identification, al-
though the application context is different.

First, we explain the motivation for this kind
of reverse engineering application, as observed
in the European project CLOCKWORK. This pro-
ject aims at creating tools to support engineer-
ing design. Accumulated engineering design
knowledge in a company often takes the form
of a library of designs and corresponding sim-
ulation models. A typical common problem
with such libraries is incomplete documenta-
tion. Such libraries contain numerous versions
of models (designs) where comparative advan-
tages and drawbacks of alternative models are
not well documented. Reuse of designs is made
difficult, especially because the intuitions be-
hind designs and their improvements are not
explained in the documentation. Although
there might be complete mathematical models
and working simulation programs included in
the library, the user of the library is impeded by
lack of understanding of how the designed sys-
tem works. What are the basic ideas of a de-
sign? For example, how does a controller of a
dynamic system achieve the goal of control?
What is the idea behind the improvement in
an alternative design?

Here we show how the task of recovering the
underlying ideas of designs can be tackled by
qualitative machine learning, in particular, us-
ing the QUIN program. We assume a model in
an engineering library is complete so that it
can be executed on a simulator. The simulated
system can thus be observed as a black box, but

the internal structure of the system is obscure
to the user because it is too complex to be un-
derstood without explanation. To help the user
develop some intuitive understanding of how
the black box works, machine learning tools
can be used to analyze the behavior of the vari-
ables in the model and detect meaningful rela-
tions among these variables. We refer to this as
qualitative reverse engineering (S̆uc and Bratko
2002). This task is formally similar to qualita-
tive system identification (Say and Kuru 1996),
although the context might be completely
different.

We illustrate an approach to qualitative re-
verse engineering with an application from the
control of gantry cranes (figure 2). The task is
to move the load from some start position to a
goal position. The goal position can, for exam-
ple, be a truck. For safety, when the load is en-
tering the truck, it should not be swinging. The
criterion is to transfer the load as quickly as
possible, that is, at high velocity. However,
high velocity requires large acceleration,
which, in turn, causes a large swing of the load.
The controller should carry out acceleration
maneuvers in such a way as to minimize the
swing; so, it should be capable of controlling
the swing under large accelerations. This aspect
is the most difficult of the crane control task.

Valasek designed an antisway industrial con-
troller for gantry cranes (Valasek et al. 1996).
This controller is now in everyday use in cranes
in a Czech metallurgical factory.1 The con-
troller helps the crane operator to easily con-
trol the crane carriage velocity without causing
a large swing of the load. The operator specifies

Articles

WINTER 2003 109

Control Force F

Carriage
(X, V)

Rope Angle
(Fi, DFi)

Load

Figure 2. Gantry Crane.

planation of how the system works than other
types of models. The task of qualitative reverse
engineering for our crane case is then defined
as, Given examples of time behaviors of Vdes,
F, X, V, Fi, and DFi, find a qualitative relation
between the control force F and the other
quantities.

Let us illustrate how a control strategy can
be described qualitatively, using typical for-
malisms in qualitative physics. For example,
consider the crane at rest in the initial state. To
start the crane moving, both velocity V and po-
sition X should be increasing simultaneously,
which can be stated by the usual qualitative
constraint:

V = M+(X)

It should be noted that this is not a law of the
physics of the crane system, but it is a control
law enforced by a controller. Another qualita-
tive rule about controlling the swing might be,
The greater the rope angle and the faster it in-
creases, the greater the carriage velocity to
“catch up” with the angle should be. This rule
can be stated by the following QCF:

V = M+,+(Fi, DFi)

The controller identification task can be for-
mulated in various ways, depending on which
variable is the class and what variables are in-
cluded among the attribute variables. Figure 4

the desired carriage velocity. The controller
works between the crane and the operator and
computes, for the given desired velocity, a con-
trol force that achieves a good approximation
to the desired velocity, but it does so in such a
way that it only causes a small swing of the
load. Therefore, this controller is also called the
antisway crane. Figure 3 gives an example exe-
cution trace of the desired velocity Vdes, the
controller’s action (force F in time), the actual
crane’s velocity V, the rope angle Fi, and the
angular velocity DFi. This trace shows that the
controller achieves the desired velocity in time,
causing only one sway of the load, without any
periodic oscillation. To prevent oscillation, the
force changes in time in a nontrivial way and
so does the actual velocity.

Now consider that this controller is given as
a black box. Its input and output can be ob-
served, but there is no documentation about
how it works. The problem is to reverse engi-
neer the controller, given some observed con-
trol traces such as that in figure 3.

In this article, we are particularly interested
in extracting from control traces a description
of the underlying controller that uncovers the
basic intuition about how the controller works.
To this end, we seek to recover from control
traces a qualitative model of the controller be-
cause such models usually provide a better ex-

Articles

110 AI MAGAZINE

Figure 3. Execution Trace in Time of the Antisway Controller.

10 30 50 70 90

0

2
Vdes
V

10 30 50 70 90

-10

-5

0

5

10 F / 5000
Fi
DFi

Time in Steps 0.2 Seconds

shows an example qualitative tree induced by
QUIN from the execution trace of figure 3. This
tree gives the qualitative constraints on the
function that maps the variables X, V, Fi, DFi,
and the relative carriage velocity Vrel (relative
to the desired velocity Vdes, Vrel = V – Vdes) in-
to the control force F.

The qualitative tree of figure 4 exposes some
interesting properties of the antisway control
strategy. When the rope angle is large, positive
or negative, then the controller takes care of
the angle. When the angle is small, then the
carriage is pushed in the direction of desired
velocity and, surprisingly, increases the ab-
solute angle of the rope.

A qualitative control strategy, such as that in
figure 4, cannot directly be used as a controller
because it does not determine a precise, nu-
meric value of the control force. The qualita-
tive tree just tells that, for example, the greater
the rope angle, the lesser the control force. To
make a qualitative control strategy operational,
we have to transform the QCFs in the leaves in-
to actual numeric functions. The QCFs con-
strain the choice of these functions. The prob-
lem of this qualitative-to-quantitative
transformation (Q2Q transformation) can be
viewed as an optimization problem. The opti-
mization criterion has to be defined in such a
way that it maximizes the fit in time between
the actual carriage velocity and the desired ve-
locity and minimizes the swing in time. One
such optimization procedure to solve this opti-
mization problem is described in S̆uc (2001)
and S̆uc and Bratko (2000a). Experiments de-
scribed in S̆uc and Bratko (2002) with this op-
timization procedure applied on qualitative
control strategies for the antisway crane show
that the obtained reconstructed controllers

perform comparably to the original controller.
For comparison, one might consider

whether it was essential to first reconstruct the
control strategy from quantitative data qualita-
tively and then transform it into a quantitative
strategy, or whether a straightforward numeric
reconstruction, using numeric regression,
would be equally successful? The most natural
machine learning method for this numeric re-
construction is the induction of regression
trees (Breiman et al. 1984) or its variant model
trees (Quinlan 1992). The experiments with
model trees on the same task, also reported in
S̆uc and Bratko (2002), somewhat surprisingly
did not lead to a successful reconstruction of
the antisway controller. It is not quite clear yet
why the straightforward numeric learning
failed when qualitative learning (combined
with the Q2Q transformation) succeeded. Just
studying the learning data from the execution
trace suggests that the numeric data are rather
regression unfriendly, and it is hard for the re-
gression procedure to decide whether some rel-
atively small numeric differences are just the
result of noise or numeric perturbations or
simply reflect genuine dependences among the
variables. However, it seems that QUIN is more
robust at detecting subtle qualitative depen-
dences because it pays less attention to the ab-
solute values of numeric changes. In other
words, what numerically looks like noise might
qualitatively be significant. This conjecture re-
quires further investigation.

Identification of Operator’s Skill
Human operator’s control of a complex dynamic
system, such as a crane or an aircraft, requires
skill acquired through experience. Imagine that

Articles

WINTER 2003 111

no

noyesyes

yes

no

Fi ≤ 0.63

Fi ≤ –0.87 Fi ≤ 0.63

F = M+(Fi) F = M–,–(Vrel, Fi) F = M+(Fi)F = M–,–(Vrel, Fi)

Figure 4. A Qualitative Controller Induced from the Trace of Figure 3.
The tree shows how the control force F qualitatively depends on the rope angle Fi and the relative carriage

velocity Vrel = V – Vdes (the difference between the actual velocity and the desired velocity).

1993; Michie, Bain, and Hayes-Michie 1990).
One goal of behavioral cloning is to generate

good performance clones, that is, those that
can reliably carry out the control task. Such
clones can replace the original human operator.
Often it turns out that a clone, while carrying
out the task in a style similar to the operator, ac-
tually performs better and more consistently
than the operator.

Performance improvement is, however, not
the only goal of behavior cloning. Another im-
portant goal is to generate meaningful clones
to help us understand the operator’s skill. Un-
derstanding what exactly a human operator is
doing and why can be of practical importance.
We can capture the skill of an outstanding op-
erator and transfer it to less gifted operators.

The operator’s control strategy should ideal-
ly be understood in terms of goals, subgoals,
plans, feedback loops, causal relations between
actions and state conditions, and so on. These
conditions are to be stated in terms of informa-
tion that is easily accessible to the operator, for
example, visually. It can be argued that such
information should be largely qualitative as
opposed to numeric. In the next section, we
show how qualitative descriptions of control
skills can be induced by QUIN from operator’s
control traces.

we have a skilled crane operator. Some questions
of interest are as follows: How does he/she do it?
Can we understand such a tacit human skill?
Can we reconstruct the skill as an automatic
controller and further optimize it? One attempt
would be to extract the skill from the operator in
a dialogue fashion, where the operator would be
expected to describe his/her own skill. This de-
scription would then be appropriately formal-
ized and built into an automatic controller.

The problem with this approach is that the
skill is subcognitive, and the operator is usually
only capable of describing it incompletely and
approximately. The operator’s descriptions are
not operational in the sense of being directly
translatable into an automatic controller. Such
difficulties of skill reconstruction through in-
trospection in crane control were experimen-
tally studied in Urbanc̆ic̆ and Bratko (1994)
and Bratko and Urbanc̆ic̆ (1999).

Given the difficulties of skill reconstruction
through introspection, an alternative approach
is to identify the skill from the manifestation
of the skill. The skill is manifested in the form
of traces of the operator’s actions. One idea is
to use these traces as examples for machine
learning and extract operational models of the
skill with machine learning techniques, which
is also known as behavioral cloning (Michie

Articles

112 AI MAGAZINE

10 30 50 70
0.0

0.5

1.0

1.5

2.0

FX / 10000
V
X / 30

Trace no. 12 of operator L

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

DFi
Fi / 2

10 30 50 70

Figure 5. Execution Trace in Time of Operator L.

Looking for Qualitative Patterns
in Dynamic Behaviors

Figure 5 shows an execution trace of a human
operator controlling a simulated crane. This
human control was one of the most successful
(in terms of time to complete the task) among
a number of human subjects that, in an exper-
imental study, learned to control this crane
simulator. In particular, this operator was able
to afford large accelerations, causing large
swing of the load, because he/she was capable
of controlling the swing and reducing it when
approaching the goal position.

Formally, the task of behavioral cloning is,
Given a trace such as that in figure 5, find the
operator’s “control strategy”; that is, find a rule
that for any given dynamic state of the crane
determines appropriate control actions. The
possible actions are the horizontal control
force Fx acting on the carriage and the vertical
control force Fy pulling the rope. Thus, formal-
ly, find two functions

Fx = Fx(X, V, Fi, DFi, L, LV)

Fy = Fy(X, V, Fi, DFi, L, LV)

where X, V, and so on, are the state variables of
the dynamic system (carriage position, carriage
velocity, rope angle, angular velocity, length of
the rope, and length velocity).

In the qualitative approach to this task, we
first try to identify the control strategy qualita-
tively. We look for qualitative patterns in the
execution trace data that tell us something
about how the operator controls the system.
For example, one qualitative property that is
easy to see in this trace is that initially, when X
is small and increasing, the velocity V is also
small and increasing. This relation can be writ-

ten as V = M+(X) (V is a monotonically increas-
ing function of X). Notice that this qualitative
statement does not tell anything about the pre-
cise numeric values of the two variables X and
V. However, it does tell us that initially, to start
the crane moving, the carriage velocity is to in-
crease.

Other, more subtle properties of the opera-
tor’s strategy that QUIN detected in the data of
figure 5 are shown in figure 6 (the tree on the
right). These properties tell us how the opera-
tor goes about controlling the swing. Also,
such properties induced from traces of differ-
ent operators point out qualitative differences
in the control styles of the operators.

Figure 6 shows two qualitative trees induced
by QUIN from control traces of operators S and
L. Operator S controls the crane very cautious-
ly, avoiding large velocities and accelerations,
and therefore never producing large swinging
of the load. This conservative strategy is reli-
able but not very efficient. It is slow and re-
quires a long time to complete the task of
transferring the load from start to goal. In con-
trast, operator L is more adventurous and does
not dodge large accelerations, causing large
swing, but operator L can afford this large
swing because he/she is capable of confidently
reducing the swing when necessary. Thus, L is
able to achieve much shorter completion times
than S.

Figure 6 nicely exposes the differences in the
control styles of both operators. Although their
corresponding qualitative trees have a similar
structure, they significantly differ in the QCFs
in the leaves. Looking at the corresponding
QCFs, it is obvious that S’s conservative strate-
gy is much simpler than that of L. For example,
the leftmost leaf of the left tree in figure 6

Articles

WINTER 2003 113

X ≤ 20.7 X ≤ 29.3

X ≤ 60.1

yes yes

yes yes

no no

no no

V = M–(X) V = M+(Fi) V = M–,+(X, Fi)

DFi ≤ –0.02V = M+,+,–(X, Fi, DFi)V = M+(X)

V = M–(X)

Figure 6. Qualitative Strategy of Operators S and L.
Left: Qualitative strategy of operator S. Right: Qualitative strategy of operator L. The trees show how the target carriage velocity qualitatively
depends on the carriage position X, rope angle Fi, and rope angular velocity DFi.

simulation algorithm (Kuipers 1994, 1986),
which is largely based on the assumption that
variables in the QDE model behave continu-
ously and smoothly in time. QDE models are
usually written as sets of constraints of the fol-
lowing types:

Y = M+(X)
Y is a monotonically increasing function
of X.
Y = M–(X)
Y is a monotonically decreasing function
of X.
add(X, Y, Z) Z = X + Y
minus(X, Y) Y = –X
mult(X, Y, Z) Z = X * Y
deriv(X, Y) Y = dX/dt

All these constraints are applied to “qualita-
tive states” of variables rather than on vari-
ables’ numeric values. For example, such a
qualitative state of variable X can be positive
and increasing in time, written as X = (pos,
inc). The possible directions of change are inc
(for increasing), std (for steady), and dec (for de-
creasing). The add(X, Y, Z) constraint is satis-
fied, for example, by the following qualitative
states: X = (pos, inc), Y = (pos, inc), Z = (pos,
inc). For some values of X and Y, Z is nondeter-
mined; so, if X = (pos, inc) and Y = (neg, dec),
then Z can be (pos, inc), or (zero, inc), or (pos,
std), or (neg, inc), and so on.

A QDE model is defined by a set of variables,
their possible qualitative values, and a set of
constraints among these variables. The prob-
lem of learning QDE models from example sys-
tem behaviors is, Given qualitative behaviors
of a set of observed variables, find a QDE mod-
el, that is, a set of qualitative constraints that
are consistent with the given behaviors.

The basic QDE learning algorithm, introduced
by Coiera (1989) in his program GEN-MODEL, con-
structs a model from examples as follows:

First, construct all the syntactically possible
constraints, using all the observed variables
(that is, those appearing in the example behav-
iors) and the given repertoire of types of quali-
tative constraints.

Second, evaluate all the constraints con-
structed in step 1 on all the qualitative system’s
states in the given example behaviors. Retain
those constraints that are satisfied by all the
states, and discard all other constraints. The set
of retained constraints constitute the induced
qualitative model.

It is possible to induce, using this simple
method, correct models for some simple sys-
tems, such as the U-tube or the spring-mass os-
cillator. For example, consider a possible,
somewhat simplified scenario of learning a

shows that at the starting stage of the task
when X is small, S just keeps increasing veloci-
ty (in a cautious way) and does not pay atten-
tion to the rope angle. Increasing velocity is ex-
pressed by the constraint in the leftmost leaf V
= M+(X) (when carriage position X is increas-
ing, the target carriage velocity is also increas-
ing). Only much later, when close to the goal,
S starts paying attention to the angle. Paying
attention to the angle can be seen in the right-
most leaf of S’s tree that says V = M+(Fi). This
principle of controlling the swing can be intu-
itively explained as, when the rope angle is in-
creasing, that is, the load is swinging to the
right, accelerate the carriage to “follow” the
load and, thus, reduce the angle. Operator L,
however, considers the angle and angular ve-
locity that is already at the early stage: The left-
most leaf of L’s tree says that the carriage veloc-
ity should also depend on the rope angle Fi and
angular velocity DFi as well as on X.

As in the case of the antisway crane, “quali-
tative clones” cannot be applied directly to the
control of the crane. Again, we need a transfor-
mation of the QCFs into real-valued functions.
This time, the natural optimization criterion is
the task completion time. It should also be not-
ed that the trees in figure 6 only suggest the
control actions indirectly. Namely, a tree only
determines the desired velocity and not the
control force. The reconstruction of skill, there-
fore, also requires the learning of a simple local
model of the crane’s dynamics. This model is
then used to determine a control force that
achieves the desired velocity. The resulting “in-
direct controllers” (S̆uc and Bratko 2000b) carry
out the task in style that is qualitatively equal
to that of the corresponding human operators
but typically perform better in terms of the
evaluation criterion (S̆uc 2001).

Learning Models in
Terms of Qualitative

Differential Equations
To this point, we have discussed the learning of
qualitative models represented as qualitative
trees. In this section, we look into learning
models expressed as qualitative differential
equations (QDEs). There have been a number
of attempts at automatically constructing QDE
models from examples of system behavior. In
the remainder of this article, we review this
work. For completeness, we first give a brief in-
troduction to QDEs.

QDEs are an abstraction of ordinary differen-
tial equations. In simulation based on QDEs,
time is usually treated differently than other
variables. An example is the QSIM qualitative

Articles

114 AI MAGAZINE

qualitative model of the U-tube with GEN-MOD-
EL. The U-tube system consists of two contain-
ers A and B, connected at the bottom by a thin
pipe. Thus, the three components form a U-
shape. Suppose that initially there is some wa-
ter in container A, but container B is empty.
The difference between the two water levels,
LevA and LevB, causes a positive flow from A to
B. Thus, LevA will be decreasing and LevB in-
creasing until both levels become equal, and
the flow becomes zero. This behavior can be
stated qualitatively as a sequence of three qual-
itative states of the three variables (table 1).

Now assume that this behavior in time was
observed through measurements. GENMODEL

will generate the possible qualitative con-
straints among the three observed variables
and find that three of these constraints are sat-
isfied in all three observed qualitative states.
These three constraints in conjunction consti-
tute the model induced by GENMODEL:

LevB = M–(LevA), add(LevB, Flow, LevA),
deriv(LevB, Flow)

This is actually a correct model of the U-
tube. However, in general, the GENMODEL algo-
rithm is very limited because it relies on some
strong assumptions:

First, all the variables in the target model are
observed, so they explicitly appear in the ex-
ample behaviors. The problem is what to do if
not all the variables in the target model are ob-
served. In such a case, we say that a variable
that should appear in the model is hidden (that
is, it is not mentioned in the example behav-
iors). GENMODEL does not handle hidden vari-
ables.

Second, the approach is biased toward learn-
ing the most specific models in the sense that
these models contain all the possible con-
straints that are satisfied by the example data.
There is, of course, no guarantee that all these
constraints should actually be part of the target
model.

Third, the resulting model is assumed to ap-
ply to the complete state space of the dynamic
system, which is not appropriate for the cases
when the system can be in more than one op-
erating region. For example, consider the water
level increasing in a container. When the level
reaches the top of the container, the level can
no longer keep increasing, and the system
starts behaving according to a different law.

The difficulty with hidden variables can be
illustrated by the U-tube example when the
two levels, LevA and LevB, are observed only.
The GENMODEL algorithm finds that the only
constraint satisfied by all the states in the ex-
ample behavior is

LevB = M–(LevA)

This model is underconstrained. It allows,
for example, an obviously impossible behavior
when LevA becomes (zero, std), and at the
same time, LevB is (pos, std). The GENMODEL al-
gorithm cannot find a more specific model
(that is, one with more constraints) because
such a model requires the introduction of new
variables. Therefore, a more general algorithm
also has to reconstruct the “hidden” variables,
for example, the flow in our case. Say and Ku-
ru’s (1996) QSI algorithm introduces new vari-
ables as follows. It hypothesizes the existence
of a new variable and constructs a possible
qualitative constraint between this variable
and existing variables. Such a constraint quali-
tatively defines the new variable. Thus, in this
U-tube example, QSI can introduce a new vari-
able, X, by constructing the constraint
deriv(LevB, X). QSI executes the GENMODEL algo-
rithm iteratively. In the second iteration, when
X has been introduced, QSI will find three satis-
fied constraints:

LevB = M–(LevA), add(LevB, X, LevA),
deriv(LevB, X)

In this way, QSI discovers the hidden variable
X that precisely corresponds to the flow of wa-
ter. This model only allows the given observed
behavior, so QSI stops here and outputs this
model as the final result.

Generally, QSI iteratively introduces new
variables, which enable the addition of further
constraints to the model. Each successive mod-
el is, therefore, more specific; that is, it allows
only a subset of behaviors of the more general
models. In successive iterations, the depth of
the model also increases. The depth of a model
is defined as the maximal depth of a variable in
the model. The depth of a variable is deter-
mined by the way the variable was introduced.
The observed variables have depth zero. A new
variable is introduced with a constraint in
which the new variable appears together with
at least one old variable. The depth of the new

Articles

WINTER 2003 115

 LevA LevB Flow

 (pos,dec) (zero,inc) (pos,dec)

 (pos,dec) (pos,inc) (pos,dec)

 (pos,std) (pos,std) (zero,std)

Table 1. Qualitative Behavior of the U-Tube.

tage of a learning system because the observa-
tions are supposed to come from nature, which
only provides positive examples. We cannot
observe in nature things that are not possible.
However, this advantage of learning from pos-
itive-only examples is not as clear. As men-
tioned earlier, QSI makes a kind of closed-world
assumption by which it considers some things
that were not observed, effectively as negative
examples. Also, to compensate for the lack of
negative examples, these algorithms adopt the
bias toward the most specific models, which
might also be debatable. However, the user (for
example, an expert) might well be able to spec-
ify negative examples on the basis of the back-
ground knowledge and the general under-
standing of the problem domain. Thus, the
restriction to learning from positive-only ex-
amples does not seem to be really necessary in
practice.

Let us further discuss the situation regarding
the availability of negative examples. Because
nature can only provide positive examples,
negative examples have to come from some
other source, most naturally from a domain ex-
pert. It is sometimes considered that it is unre-
alistic to expect that the domain expert be ca-
pable of providing negative examples, unless
the expert already knows the target model
completely. However then, if the model is al-
ready known, there would be no point in
learning a model from data. We believe that
such a view is mistaken because it assumes that
the expert either knows the right model com-
pletely or has no idea at all. However, model
building in practice is usually between these
two extremes. The expert typically does have
some ideas about the domain (often referred to
as background knowledge), but these are insuffi-
cient to immediately put together a completely
correct model. The incomplete expert’s knowl-
edge can often be expressed in terms of nega-
tive examples: The expert just states what
he/she believes can surely not happen. For ex-
ample, in the case of modeling a U-tube, the
modeler might not be able to define a complete
and correct model. Still, he/she might easily be
capable of stating, by means of negative exam-
ples, that the amount of water in a container
cannot be negative and that the total amount
of water in the whole system is constant. Such
use of incomplete knowledge through negative
examples can also be illustrated by program
writing, a task that is similar to modeling.
Building models, executable through simula-
tion, is actually a kind of program writing,
where a program is interpreted by the simula-
tion software. Consider a programmer writing
a program to sort lists. Although the program-

variable is one plus the depth of the old vari-
able. These iterations stop when the model is
sufficiently specific. A model is accepted as suffi-
ciently specific when it only allows an accept-
able number of behaviors. The user of QSI has
to specify an acceptable degree of behavior
branching allowed by a model, which is related
to the generality of the model. In this way, QSI

rather nicely determines an appropriate num-
ber of new variables and thus achieves an ap-
propriate generality of the model.

In essence, the problem of defining just the
“right degree of generality” of a model always
arises when models are learned from positive-
only examples. This is the case in both GEN-
MODEL and QSI as well as in several other sys-
tems, including MISQ (Richards, Kraan, and
Kuipers 1992) and QOPH (Coghill, Garrett, and
King 2002). Because there are no negative ex-
amples given, the completely unconstrained
model (empty model, with no constraints) is
consistent with the learning data. Such a mod-
el, although consistent with the observations,
is, of course, useless. Therefore, such models
should be avoided by an appropriate learning
bias, which should prevent useless, although
consistent, hypotheses. All these systems are
biased toward selecting a most specific model.
GENMODEL simply selects the most specific mod-
el constructed from the given types of con-
straints and the observed variables, but it does
not introduce new variables. However, it is not
always possible to construct a sufficiently spe-
cific model just using the observed variables.
MISQ (Richards, Kraan, and Kuipers 1992) is
similar to GENMODEL, but it introduces new vari-
ables aiming at a connected model, that is, a
model in which all the observed variables are
connected by chains of constraints in which
new variables might appear. The connected-
ness requirement is, of course, merely a heuris-
tic that might not result in the intended mod-
el. The QSI system controls the introduction of
new variables in a more general way that re-
sults in a more sophisticated learning bias: QSI

constructs the most specific model using the
observed variables and all the new variables to
the maximal depth. The depth is determined
by the acceptable branching of the model. The
model has to be sufficiently deep to prevent ex-
cessive branching. In this respect, QSI makes a
kind of implicit closed-world assumption, al-
though this assumption is only enforced softly;
that is, the QSI algorithm treats the states in the
given example behaviors as positive examples
and the siblings of these states as potential neg-
ative examples.

The learning from positive-only examples in
this context is often considered as an advan-

Articles

116 AI MAGAZINE

mer might not quite be capable of writing
down a completely correct program, he/she
might still be able to confidently provide neg-
ative examples: the result of sorting the list [3,
1, 2] is not [2, 1, 3], nor is it [1, 2].

In addition to negative examples, the expert
might also be able to specify some specific
background knowledge that might be useful in
the learning of qualitative models in the partic-
ular domain. Inductive logic programming
(ILP) is the machine learning framework that
ideally suits this situation. The following is the
ILP problem formulation that applies to the
learning of qualitative models from back-
ground knowledge BK; QDE constraints QC;
and sets POS and NEG of positive and negative
examples, respectively. Given BK, QC, POS, and
NEG, find a model M such that

For each example P in POS, BK & QC & M � P
and for each example N in NEG: BK & QC & M
�/ N

Once the problem is so formulated in logic,
a general-purpose ILP learning program can be
applied. Bratko, Muggleton, and Varsek (1991)
used such an ILP system, GOLEM, in an experi-
ment to induce a model of a U-tube from pos-
itive and negative examples. Although this ex-
ercise was impeded by some technical
limitations of GOLEM, it showed the advantages
of using ILP: (1) it was not necessary to develop
a special-purpose learning program for QDE
learning and (2) because GOLEM introduces new
variables itself, there was no special care need-
ed in respect of hidden variables. Another ad-
vantage that comes automatically with ILP is
the learning of models with multiple operating
regions. General-purpose ILP programs gener-
ate multiple-clause logic programs, so each
clause can cover one operating region. The
QOPH system (Coghill, Garrett, and King 2002)
also relies on using such a general ILP program
called ALEPH.2 QOPH does remarkably well with
introducing new variables, although this relies
on a number of heuristics that need further
study.

The programs mentioned earlier learn qual-
itative models from given examples of qualita-
tive behaviors. In an actual application, it is
more likely, however, that the observed data
are numeric. Most of these programs require a
transformation of such numeric data into qual-
itative behaviors. Some of the discussed ap-
proaches (Coghill, Garrett, and King 2002; Say
and Kuru 1996) also include such a transforma-
tion. It is not easy to do this well, especially
when there is noise in the numeric data. Dze-
roski’s and Todorovski’s (1995) QMN program is
interesting in that it builds QDE models directly
from numeric data, avoiding such a numeric-

to-qualitative transformation. The program
SQUID (Kay, Rinner, and Kuipers 2000) is also
relevant in this respect. It learns semi-quantita-
tive models (a combination of QDEs with nu-
meric elements) from numeric data. Another
way of handling numeric data is to apply QUIN

in combination with QDE learning.
The QDE learning programs reviewed earlier

were usually tested on small experimental do-
mains and rarely on problems of realistic com-
plexity. Probably the most impressive applica-
tion to real-life data is described by Hau and
Coiera (1997). Their system transforms signals
measured in time into qualitative behaviors
that are input into GENMODEL. They applied this
system to actually measured cardiovascular sig-
nals from a number of patients and induced
from these data qualitative models characteriz-
ing individual patients. Another ambitious ap-
plication-oriented work is Mozetic’s QUMAS
(Bratko, Muggleton, and Varsek 1991), which
learned models of the electrical system of the
heart capable of explaining many types of car-
diac arrhythmias. QUMAS did not use QDE
constraints as modeling primitives but, rather,
a set of problem-specific logical descriptions
used by what would now be recognized as an
ILP learning system.

Conclusion
In this article, two paradigms of learning qual-
itative models were reviewed: (1) the learning
of qualitative trees and (2) the learning of QDE
models. Learning qualitative models in com-
parison with traditional, numeric approaches
to automated modeling or system identifica-
tion should, in general, have the following ad-
vantages: (1) better comprehensibility, thus
providing better insight into the mechanisms
in the domain of investigation, and (2) a high-
er abstraction level, thus requiring less data to
learn because only qualitative relations are to
be determined, not precise quantitative depen-
dencies.

The learning of qualitative trees (in combi-
nation with Q2Q transformation) has been
shown in a number of case studies to be com-
petitive with traditional quantitative methods,
even in terms of criteria usually intended for
quantitative methods. In addition to offering a
comprehensible model, qualitative trees define
a space for numeric optimization among qual-
itatively equivalent solutions. A deficiency of
qualitative trees might be that they explicitly
define static relations only. For some applica-
tions, an extension of this approach toward ex-
plicit treatment of time would be useful. Ex-
plicit treatment of time would better support

Articles

WINTER 2003 117

manding for the user than in other typical ap-
plications of machine learning), and (3) the
impeded use of existing methods for learning
qualitative models by a lack of technical matu-
rity (robustness, scalability, and predictability).

Improvements in methods for learning qual-
itative models along the lines mentioned earli-
er would alleviate these difficulties.

Acknowledgments
This work was partially supported by the
Slovenian Ministry of Science, Education, and
Sport and the European Commission (CLOCK-
WORK project). We want to thank M. Valasek
and Z. Sika of the Czech Technical University
for assistance with the antisway controller. We
also want to thank the editors of this AI Maga-
zine special issue, B. Bredeweg and P. Struss,
and the anonymous referees for useful com-
ments.

Notes
1. M. Valas̆ek, personal communication, 2002.

2. A. Srinivasan. 2000. ALEPH web site: web.comlab.ox
.ac.uk/oucl/research/areas/mach-learn/Aleph/-
aleph_toc.html.

References
Bratko, I., and Urbanc̆ic̆, T. 1999. Control
Skill, Machine Learning, and Hand-Crafting in Con-
troller Design. In Machine Intelligence 15: Intelligent
Agents, eds. K. Furukawa, D. Michie, and S. Muggle-
ton, 130–163. Oxford, U.K.: Oxford University Press.

Bratko, I.; Mozetic̆, I.; and Lavrac̆, N. 1989. KARDIO: A
Study in Deep and Qualitative Knowledge for Expert Sys-
tems. Cambridge, Mass.: MIT Press.

Bratko, I.; Muggleton, S.; and Vars̆ek, A. 1992. Learn-
ing Qualitative Models of Dynamic Systems. In In-
ductive Logic Programming, ed. S. Muggleton, 437–
452. San Diego, Calif.: Academic.

Breiman, L.; Friedman, J. H.; Olshen, R. A.; and
Stone, C. J. 1984. Classification and Regression Trees.
Monterey, Calif.: Wadsford.

Coghill, G. M.; Garrett, S. M.; and King, R. D. 2002.
Learning Qualitative Models in the Presence of
Noise. Paper presented at the QR’02 Workshop on
Qualitative Reasoning, 10–12 June, Sitges, Spain.

Coiera, E. 1989. Generating Qualitative Models from
Example Behaviors. DCS Report, 8901, Department
of Computer Science, University of New South
Wales.

Dzeroski, S., and Todorovski, L. 1995. Discovering
Dynamics: From Inductive Logic Programming to
Machine Discovery. Journal of Intelligent Information
Systems 4(1): 89–108.

Hau, D. T., and Coiera, E. W. 1997. Learning Qualita-
tive Models of Dynamic Systems. Machine Learning
26(2–3): 177–211.

Kay, H.; Rinner, B.; and Kuipers, B. 2000. Semi-Quan-

explanation of phenomena that progress in
time.

A number of systems exist for learning QDE
models. Their development demonstrates im-
provements to several rather intricate prob-
lems involved in the learning of QDE models.
It seems that further progress is still required in
several respects, including better methods for
transforming numeric data into qualitative da-
ta, targeted explicitly toward the particular
qualitative modeling language; deeper study of
principles or heuristics associated with the dis-
covery of hidden variables and the generality
and size of models; and more effective use of
general ILP techniques.

Automating qualitative modeling is general-
ly regarded as important for the application of
qualitative modeling techniques. There are
some very encouraging experimental applica-
tions of learning qualitative models from data.
One example is the induction of patient-specif-
ic models from the patients’ measured cardio-
vascular signals (Hau and Coiera 1997). In an-
other example, the QUIN program was recently
applied to an industrial task in a unique way
within the CLOCKWORK project. The German car
simulation company INTEC wanted to simpli-
fy their car wheel suspension model for effi-
ciency reasons. A qualitative model of the sus-
pension system was obtained from simulation
data with QUIN. This qualitative model was
then transformed into a simplified numeric
model through the Q2Q transformation. In
this way, a simplified numeric model was ob-
tained that has the same qualitative behavior
as the original model but is computationally
much more efficient. In this experiment, pre-
serving qualitative fidelity proved to be useful
with respect to numeric accuracy of the simpli-
fied model. It was not possible to obtain similar
numeric accuracy with standard numeric
learning techniques that pay no attention to
qualitative properties.

In general, however, the impact of qualita-
tive model learning techniques on the practice
of qualitative modeling has been rather slow.
This slow impact is particularly surprising in
view of the enormous increase in the past
decade of machine learning applications in
other areas (Michalski, Bratko, and Kubat
1998). There are several probable reasons for
this slow impact of machine learning on the
practice of qualitative modeling: (1) relatively
weak awareness of the existing work in the
learning of qualitative models, (2) relatively
complicated hypothesis languages used in
learning qualitative models (such as QDEs)
(therefore, the use of machine learning in qual-
itative modeling is comparatively more de-

Articles

118 AI MAGAZINE

titative System Identification. Artificial Intelligence
119(1–2): 103–140.

Kuipers, B. 1994. Qualitative Reasoning. Cambridge,
Mass.: MIT Press.

Kuipers, B. 1986. Qualitative Simulation. Artificial In-
telligence 29(3): 289–338.

Michalski, R. S.; Bratko, I.; and Kubat, M., eds. 1998.
Machine Learning and Data Mining: Methods and Appli-
cations. New York: Wiley.

Michie, D. 1993. Knowledge, Learning, and Machine
Intelligence. In Intelligent Systems, ed. L. Sterling,
2–19. New York: Plenum.

Michie, D.; Bain, M.; and Hayes-Michie, J. 1990. Cog-
nitive Models from Subcognitive Skills. In Knowledge-
Based Systems in Industrial Control, eds. M. Grimble, J.
McGhee, and P. Mowforth, 71–99. London: Peter
Peregrinus.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. San Francisco, Calif.: Morgan Kaufmann.

Quinlan, J. R. 1992. Learning with Continuous Class-
es. Paper presented at the Fifth Australian Joint Con-
ference on Artificial Intelligence, 16–18 November,
Hobart, Tasmania.

Richards, B. I.; Kraan, I.; and Kuipers, B. J. 1992. Au-
tomatic Abduction of Qualitative Models. In Pro-
ceedings of the Tenth National Conference on Artifi-
cial Intelligence, 723–728. Menlo Park, Calif.:
American Association of Artificial Intelligence.

Say, A. C. C., and Kuru, S. 1996. Qualitative System
Identification: Deriving Structure from Behavior. Ar-
tificial Intelligence 83(1): 75–141.

S̆uc, D. 2001. Machine Reconstruction of Human
Control Strategies. Ph.D. dissertation, Faculty of
Computer and Information Science, University of
Ljubljana.
S̆uc, D., and Bratko, I. 2002. Qualitative Reverse En-
gineering. Paper presented at the International Con-
ference on Machine Learning (ICML’2002), 8–12 Ju-
ly, Sydney, Australia.
S̆uc, D., and Bratko, I. 2001. Induction of Qualitative
Trees. In Proceedings of the European Conference on Ma-
chine Learning (ECML’01), 442–453. Lecture Notes in
Artificial Intelligence 2167. Berlin: Springer-Verlag.
S̆uc, D., and Bratko, I. 2000a. Qualitative Trees Ap-
plied to Bicycle Riding. Electronic Transactions on Ar-
tificial Intelligence 5(4): 125–140.
S̆uc, D., and Bratko, I. 2000b. Skill Modeling through
Symbolic Reconstruction of Operator’s Trajectories.
IEEE Transactions on Systems, Man, and Cybernetics
30(6): 61–624.
Urbanc̆ic̆, T., and Bratko, I. 1994. Reconstructing Hu-
man Subcognitive Skill through Machine Learning.
Paper presented at the European Conference on Ar-
tificial Intelligence, 8–12 August, Amsterdam, The
Netherlands.

Valas̆ek, M.; Milacek, S.; Dedouch, K.; Kozanek, Y.;
and Zolotarev, I. 1996. Position and Velocity Control
of Gantry Crane. Paper presented at Mechatronic 96,
18–20 September, Guimares, Portugal.

Wellman, M. P. 1991. Qualitative Simulation with
Multivariate Constraints. In Proceedings of the Second

International Conference on Principles of Knowledge Rep-
resentation and Reasoning, eds. J. Allen, R. Fikes, and E.
Sandewall. San Francisco, Calif.: Morgan Kaufmann.

Ivan Bratko is a professor of com-
puter science in the Faculty of Com-
puter and Information Science,
Ljubljana University, Slovenia. He
heads the AI laboratory at the uni-
versity and has conducted research
in machine learning, knowledge-
based systems, qualitative model-

ing, intelligent robotics, heuristic programming, and
computer chess. His main interests in machine learn-
ing have been in learning from noisy data; the com-
bining of learning and qualitative reasoning; and
various applications of machine learning and induc-
tive logic programming, including medicine, ecolog-
ical modeling, and control of dynamic systems.
Bratko is the author of Prolog Programming for Artifi-
cial Intelligence, 3d. ed. (Addison-Wesley, 2001). He
coedited (with R. S. Michalsky and M. Kubat) Ma-
chine Learning and Data Mining: Methods and Applica-
tions (Wiley, 1998) and coauthored (with I. Mozetic
and N. Lavrac) KARDIO: A Study in Deep and Qualitative
Knowledge for Expert Systems (MIT Press, 1989). His e-
mail address is ivan.bratko@fri.uni-lj.si.

Dorian S̆uc is a teaching assistant in
the Faculty of Computer and Infor-
mation Science, University of Ljubl-
jana, Slovenia. He finished his M.Sc.
in 1998 and received his Ph.D. in
computer science and informatics
from the University of Ljubljana in
2001. For his doctoral dissertation,

he received the 2001 ECCAI Artificial Intelligence
Dissertation Award, sponsored by the European Co-
ordinating Committee for Artificial Intelligence. His
research interests include machine learning, human
skill reconstruction and behavioral cloning, rein-
forcement learning, qualitative modeling, and in-
duction of qualitative models as a general method to
discover qualitative relations in data. His e-mail ad-
dress is dorian.suc@fri.uni-lj.si.

Articles

WINTER 2003 119

Reminder:
AAAI-04 / IAAI-04

Submissions
Are Due

January 20, 2004.
For details,

follow the link at
AAAI’s

home page.

