
■ Reasoning about spatial data is a key task in many
applications, including geographic information
systems, meteorological and fluid-flow analysis,
computer-aided design, and protein structure data-
bases. Such applications often require the identifi-
cation and manipulation of qualitative spatial rep-
resentations, for example, to detect whether one
object will soon occlude another in a digital image
or efficiently determine relationships between a
proposed road and wetland regions in a geograph-
ic data set. Qualitative spatial reasoning (QSR) pro-
vides representational primitives (a spatial “vocab-
ulary”) and inference mechanisms for these tasks.
This article first reviews representative work on
QSR for data-poor scenarios, where the goal is to
design representations that can answer qualitative
queries without much numeric information. It
then turns to the data-rich case, where the goal is
to derive and manipulate qualitative spatial repre-
sentations that efficiently and correctly abstract
important spatial aspects of the underlying data
for use in subsequent tasks. This article focuses on
how a particular QSR system, SPATIAL AGGREGATION,
can help answer spatial queries for scientific and
engineering data sets. A case study application of
weather analysis illustrates the effective represen-
tation and reasoning supported by both data-poor
and data-rich forms of QSR. 

The ability to perceive spatial objects and
reason about their relations seems effort-
less for humans but has proved so diffi-

cult for computers that they have yet to attain
the capabilities of a five-year-old child. Part of
the computational problem lies in the difficul-
ty of identifying and manipulating qualitative
spatial representations. For example, although
the pixels in a digital image implicitly define
the locations of spatial objects, the task at

hand might require a more qualitative charac-
terization of the configuration of these objects,
say, whether one object will soon occlude an-
other. Handling spatial data is a key task in
many applications, including geographic in-
formation systems (GISs), meteorological and
fluid flow analysis, computer-aided design
(CAD) systems, and protein structure databases
(figure 1) (Zhao et al. 1999). For example, a GIS
system might have large amounts of numeric
information about spatial features such as
highways and terrain but require query mech-
anisms to efficiently determine qualitative re-
lationships such as those between a proposed
route and wetlands regions. 

Qualitative spatial reasoning (QSR) ad-
dresses these problems with representational
primitives (a spatial “vocabulary”) and infer-
ence mechanisms. QSR approaches can be
characterized by two important and comple-
mentary classes of problems. Problems in the
first class are data poor, and the goal is to de-
sign representations that can answer qualita-
tive queries without much numeric informa-
tion. The goal of answering qualitative queries
addresses an important aspect of common-
sense reasoning by humans and can be found
in many practical applications such as com-
puter-aided tutoring or diagram understand-
ing. Because of the lack of detailed numeric in-
formation, representations used by the
approaches to data-poor problems are often
carefully designed by hand with respect to a
task at hand. Problems in the second class (for
example, scientific and engineering applica-
tions from fluid-flow analysis to distributed
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tive spatial representations is their ability to re-
late reasoning results to underlying data (rich
or poor) and domain knowledge provided by
the user. 

In this article, we first review the representa-
tive work on QSR for data-poor scenarios. We
then turn to the data-rich case and focus on
how a particular QSR system, SPATIAL AGGREGA-
TION, can help answer spatial queries for scien-
tific and engineering data sets. Finally, we pre-
sent a particular application that illustrates the
effective representation and reasoning sup-
ported by both forms of QSR. 

Qualitative Spatial Reasoning for
Data-Poor Problems 

Qualitative reasoning research uses high-level
representations of physical systems and do-
main knowledge for tasks such as prediction,
diagnosis, reconfiguration, and tutoring (de
Kleer and Brown 1984; Falkenhainer and For-
bus 1991; Forbus 1984; Kuipers 1986; Weld and
de Kleer 1990) without requiring significant
amounts or quality of data. Classical qualita-
tive reasoning work deals primarily with tem-
poral aspects of a system, abstracting away its
spatial properties. Following the spirit of this
qualitative reasoning research, work in QSR for
data-poor domains has focused on similarly
“minimalist” spatial representations and infer-
ence mechanisms. 

Much QSR work has studied purely topolog-
ical descriptions of spatial regions and their re-
lationships. These approaches often seek to
generalize Allen’s temporal interval calculus
(for example, a before b, a overlaps b, and so
on) (Allen 1983) into higher-dimensional, spa-
tial relationships. One representative ap-
proach, the region-connection calculus
(RCC) (Cui, Cohn, and Randell 1992), provides
predicates for expressing and reasoning about
the relationships among topological regions
(arbitrarily shaped chunks of space). One ver-
sion, the RCC-8, provides eight jointly exhaus-
tive and pairwise disjoint predicates (figure 2):
(1) disconnected from (DC), (2) externally con-
nected to (EC), (3) partially overlaps (PO), (4, 5)
tangential proper part of (TPP and TPPi), (6, 7)
nontangential proper part of (NTPP and NTP-
Pi), and (8) identical with (EQ). The axioms
specifying these relationships provide rigorous
underpinnings to support spatial reasoning.
For example, Boolean functions (for example,
union, intersection, and difference) allow com-
position of complex spatial objects (that is,
topological shapes). Additional predicates can
then test, using theorem proving, topological
features of these objects (for example, connect-

control design) are data rich, and the goal is to
derive and manipulate qualitative spatial repre-
sentations that efficiently and correctly ab-
stract important spatial aspects of the underly-
ing data and can be used for subsequent tasks.
The approaches to data-rich problems are com-
plementary to those for data-poor problems in
that they can automatically construct spatial
representations. Computational efficiency in
reasoning arises from appropriate qualitative
spatial representations; for example, a qualita-
tive description of a temperature distribution
as a configuration of iso-contours focuses the
search for good thermal control designs. Simi-
larly, qualitative representations allow efficient
access and manipulation of data, for example,
correlating maps (for example, a road map, a
utilities map, and a forestry map) in a GIS sys-
tem, determining the interaction of parts in a
CAD design, and planning paths for a robotics
application. An important feature of qualita-

Articles

48 AI MAGAZINE

Figure 1. Spatial Objects in Physical Fields.
Top: A fluid flow. The fluid field describes how objects such as high-density
regions and large vortex structures are spatially distributed (shown here) and
temporally evolving (not shown). Bottom: A 300-megabyte weather map over
North America. The data in a typical meteorological map include pressure, tem-
perature, and wind velocities on a spatial grid. An experienced meteorologist
could identify qualitatively important weather features such as the location of
a cold front and the direction of its movement by extracting and correlating geo-
metric features such as pressure troughs and thermal packing. 



ed, number of holes), and feasibility of addi-
tional relationships. An important characteris-
tic of the predicates is that they support rea-
soning about continuity—a temporal process
between two regions must pass through the
possible relationships in a well-defined way
(for example, they can’t go directly from being
disconnected to identical). Although the most
general RCC theories are undecidable, tractable
subsets suitable for various domains have been
identified and applied to applications ranging
from GIS to visual programming languages. 

In addition to topological relationships, QSR
researchers have also studied other key qualita-
tive aspects of spatial objects, such as size and
shape, and relationships, such as orientation
and distance. A full review of these representa-
tions is beyond the scope of this article (see, for
example, Cohn and Hazarika [2001]). Shape
representations typically go beyond pure
topology to specify some amount of geometric
information, such as convex-concave portions
of a boundary, and use multiscale representa-
tions similar to those described in the next sec-
tion. Uncertainty in shape can be handled with
coupled RCC-like predicates specifying an ob-
ject’s certain interior and uncertain exterior.
Distance, orientation, and size can be repre-
sented relatively, for example, indicating or-
der-of-magnitude relationships and rules for
combining them (for example, distances sum
when oriented properly). Of particular interest
is that these representations must often bring
in some amount of metric information to
make significant inference possible. 

In fact, Forbus, Nielsen, and Faltings (1991)
hypothesized that some metric information is
necessary in general for QSR. More precisely,
the poverty conjecture states that “there is no
problem-independent, purely qualitative rep-
resentation of space or shape.” Purely qualita-
tive means essentially that no detailed metric
information supporting perceptual-like pro-
cessing is available. Problem independence
means that the representation must be gener-
al—a small set of spatial objects constrained to

only specific interactions in a specific domain
might indeed admit a purely qualitative repre-
sentation, but this representation might then
break down with the addition or modification
of a single part. 

To balance the tension between qualitative-
ness and generality, the metric diagram/place
vocabulary (MD/PV) theory (Forbus, Nielsen,
and Faltings 1991) takes a hybrid approach,
linking metric information supporting quanti-
tative queries with sets of special qualitatively
important entities (places) in a domain. For ex-
ample, in the analysis of clock mechanisms
(Forbus, Nielsen, and Faltings 1991), the place
vocabulary is computed for pairs of interacting
parts, which are specified with CAD-like metric
diagrams that can determine such interactions.
This approach addresses a key concern in qual-
itative reasoning—ensuring the appropriate-
ness of a choice of qualitative vocabulary be-
cause the place vocabulary is computed for a
specific problem. It also ensures tight coupling
between qualitative and quantitative aspects of
the reasoning. In an approach that is similar at
a high level, although different in application
details, the spatial semantic hierarchy (Kuipers
2000; Kuipers and Levitt 1988) discovers “in-
teresting” locations in the construction of
mappings between topological and metric
maps for robot navigation. 

Qualitative physical fields (Lundell 1996)
capture spatially distributed qualitative para-
meters; that is, each spatial region consists of a
uniformly valued qualitative feature. For exam-
ple, a model of heating might describe regions
as being warm or cold as well as regions that
are sunny or shaded. Note that as opposed to
pairwise interactions, this representation is, at
its very heart, continuous. This representation
supports reasoning about spatiotemporal
processes in an extension of qualitative process
theory (Forbus 1984). To continue the exam-
ple, a qualitative heat flow would be estab-
lished between topologically adjacent regions
of different qualitative temperature (from
warm to cold). This heat flow would establish
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Figure 2.  The Region-Connection Calculus (RCC) Represents and Manipulates Pairwise Relationships between Regions of Space.



straction. This key insight—physical properties
such as continuity and locality give rise to re-
gions of uniformity in spatially distributed da-
ta—enables QSR to overcome the challenge of
massive data. In fact, this insight is similar to
that underlying the MD/PV approach de-
scribed in the previous section. Domain-specif-
ic physical knowledge justifies the extraction
of qualitative information in support of more
abstract reasoning processes. 

QSR in data-rich domains has many connec-
tions and parallels to work in scientific visual-
ization (Rosenblum et al. 1994) and scientific
data mining (Ramakrishnan and Grama 2001).
For example, weather data can be visualized us-
ing pseudocolor to represent temperature, iso-
contours to connect points of equal pressure,
needle diagrams to indicate directions of wind
flow with arrows, streamlines to show connect-
ed flows, and animations of these to show
changes over time. Interactive visualizations
allow scientists to explore, focus, filter, project,
and transform large data sets. Feature-detec-
tion algorithms (for example, for vortexes in
fluid data) both identify and track spatial struc-
tures over time (Junker and Braunschweig
1995; Ordóñez and Zhao 2000; Samtaney et al.
1994; Yip 1995). Similarly, in scientific data
mining, algorithms seek to cluster, generalize,
and classify patterns and correlations in data-
bases. For example, mining such patterns can
allow identification of general climate patterns
across regions (Lu, Han, and Ooi 1993), auto-
matic cataloging of sky images (Fayyad, Weir,
and Djorgovski 1993), recognition of vol-
canoes in images of the surface of Venus (Burl
et al. 1994), and tracking of cyclones in weath-
er data (Stolorz et al. 1995). 

Spatial Aggregation 
Spatial aggregation (Yip and Zhao 1996) is a par-
ticular QSR approach for data-massive domains
that follows an imagistic reasoning (Yip, Zhao,
and Sacks 1995) style, applying vision-like rou-
tines to manipulate multilayer geometric and
topological structures in spatially distributed
data. Thus, it can leverage the connections de-
scribed earlier with visualization and data min-
ing. In the spirit of qualitative reasoning, how-
ever, it focuses on explicit representation and
manipulation of objects, explainability of re-
sults, and utilization of explicitly encoded do-
main knowledge. Spatial aggregation is partial-
ly motivated by some of the spatial reasoning
problems raised by Abelson et al. (1989). The
Abelson paper describes a number of approach-
es to interpreting numeric results of simula-
tions of dynamic systems. These problems of-
ten possess a set of geometric and topological

a temporal process changing the “front” be-
tween the two regions and ultimately the asso-
ciated temperatures. This approach is discussed
in more detail in the case study section. 

Qualitative Spatial Reasoning for
Data-Rich Problems 

In contrast with the data-poor application do-
mains discussed earlier, many important sci-
ence and engineering applications are charac-
terized by massive amounts of spatially
distributed numeric data (figure 1). For exam-
ple,  to predict the weather, meteorologists use
pressure, temperature, and wind velocity data
collected from a large number of spatially dis-
tributed weather sensors. Similarly, in design-
ing aircraft with minimal drag, engineers study
wind tunnel and simulation data specifying
airflow over a body at many points and over
many instants of time. In these applications,
geometric as well as topological characteriza-
tions are necessary; for example, a temperature
field is influenced by the geometry of the do-
main, spatial variations in material property,
and boundary conditions. 

The massive amount of data, either collected
from experiments or produced by simulations,
poses significant computational challenges
that can be addressed by QSR. In particular, a
central problem is the automatic construction
of qualitative spatial representations from a
given data set to focus the search space for data
interpretation and design tasks. QSR approach-
es to these problems are often built on a sound
mathematical theory of geometric and topo-
logical analysis, for example, the theory of cell
complexes from algebraic topology that natu-
rally defines “closeness,” “composition,” and
“abstraction” (Munkres 1984). As discussed
earlier, the availability of data provides us the
opportunity to automate the construction of
qualitative spatial representations. QSR differs
from traditional numeric methods for spatial
data analysis problems that also abstract nu-
meric data at multiple levels of resolution. For
example, engineers use multigrid meth-
ods (Briggs 1987) to analyze numeric proper-
ties of physical phenomena using a hierarchy
of grid discretization. The main difference be-
tween QSR and numeric methods lies in the
ontological abstraction that QSR adopts. QSR
supports more abstract, qualitative reasoning
by introducing notions of objects that explicit-
ly encapsulate key spatial properties of a phys-
ical domain. For example, meteorologists use
abstract structures such as isobars, pressure
troughs, and pressure cells to reason about the
underlying pressure data at a higher level of ab-
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constraints that can be exploited to significant-
ly cut down the search space and can be used
to communicate the interpretation results to
human experts. For example, in interpreting
the qualitative behaviors of a nonlinear dy-
namic system, one can describe the set of tra-
jectories that share the same asymptotic be-
haviors as a flow pipe, a geometric object that
can easily be visualized (Yip and Zhao 1996).
Several early examples of using geometric and
spatial reasoning to aid in scientific computa-
tion include KAM (Yip 1991), which interprets
the behaviors of Hamiltonian systems;
MAPS (Zhao 1994), which designs control laws
based on a geometric analysis of the state equa-
tions of a dynamic system; and HIPAIR (Joskow-
icz and Sacks 1991), which analyzes the kine-
matics of fixed-axis mechanisms. 

Spatial aggregation organizes computation
around image-like representations of spatially
distributed data (figure 1). In the field ontology,
the input is a field mapping from one continu-
um to another. For example, a two-dimensional
(2-D) temperature field associates a temperature
with each point, mapping from �2 to �1; a 2-D
fluid field associates a velocity with each point,
mapping from  �2 to �2. A field is information
rich in that its representation requires many
bits. The identification of structures in a field
(for example, iso-bars, pressure cells, and fronts)
is a form of data reduction: The data-rich field
representation is abstracted into a more concise
structural representation. For example, a set of
points on a curve can be described more com-
pactly by a parameterized spline—the spline pa-
rameters are a much more concise representa-
tion than the enumeration of points. Note that
the qualitative physical field approach described
in the previous section starts with an abstract
description of a field (qualitative domain and
range in the field); the synergy between the da-
ta-rich and data-poor fields are explored further
in the case study section. 

Spatial aggregation uncovers structures in
fields at multiple levels of abstraction, with
the structures uncovered at one level becom-
ing the input to the structure-discovery pro-
cess at the next level. For example, in a weath-
er data analysis application (Huang and Zhao
2000), spatial aggregation could extract from
pressure data the isobars, pressure cells, and
pressure troughs. As discussed earlier, continu-
ities in a field give rise to regions of uniformity
that can be abstracted as spatial structures (for
example, isothermal contours are connected
curves of equal [or similar enough] tempera-
ture). Similarly, these structures exhibit their
own continuities; therefore, multilayer struc-
tures arise from continuities in fields at multiple

scales. Spatial objects are introduced as primi-
tives in QSR to encapsulate the geometric and
topological properties of these points, curves,
regions, or volumes. Mathematically, a spatial
object is a cell—a portion of space topologically
equivalent to a ball (Munkres 1984). Adjacency
between the objects is defined by the contiguity
of their cells. Navigating the mapping from field
to abstract description through multiple layers
rather than in one giant step allows the con-
struction of modular programs with manage-
able pieces that can use similar processing tech-
niques at different levels of abstraction. The
multilevel mapping also allows higher-level lay-
ers to use global properties of lower-level objects
as local properties of the higher-level objects.
For example, the average temperature in a re-
gion is a global property when considered with
respect to the temperature data points but a lo-
cal property when considered with respect to a
more abstract region description. 

Spatial aggregation provides a set of data
types and operators for constructing the spatial
aggregate hierarchy. The data types and opera-
tors make explicit use of domain-specific
knowledge (figure 3), in particular, the similar-
ity and closeness of both field objects and their
features that are encoded with metrics, adjacen-
cy relations, and equivalence predicates. Yip
and Zhao (1996) present a number of applica-
tion programs, ranging from dynamic systems
analysis to mechanical mechanism analysis, in
terms of the same set of generic operators para-
meterized by different such domain knowledge.
The central data type of spatial aggregation, the
neighborhood graph, is an explicit representa-
tion of an object-adjacency relation. The defin-
ition of adjacency is domain specific and de-
pends on the metric properties of the input
field. Common adjacency relations include De-
launay triangulations, minimal spanning trees,
and uniform grids. The neighborhood graph
serves as computational glue, localizing interac-
tions between neighboring objects. The main
SPATIAL AGGREGATION operators aggregate objects
into neighborhood graphs satisfying an adja-
cency predicate, classify neighboring nodes in-
to equivalences classes with respect to an equiv-
alence predicate specifying domain-specific
feature similarity, and redescribe equivalence
classes into higher-level objects with respect to
a domain-specific abstraction mechanism. Ad-
ditional operators search through neighbor-
hood graphs, check consistency of objects, ex-
tract geometric properties, and so forth. By
instantiating these operators with proper
knowledge at different levels of abstraction,
spatial aggregation allows specification of a va-
riety of application programs. 
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very expensive data collection must be careful-
ly planned (for example, for fluid dynamics
simulation and aircraft design). In particular,
the iterative approach performs spatial analysis
of data in one iteration; identifies ambiguities
arising in the analysis; and focuses sample se-
lection in the next iteration  to clarify the am-
biguities, maximizing information content and
improving the analysis. This approach has been
shown to make highly effective, explainable
sampling decisions in several case studies, in-
cluding discovery of “pockets” in n-dimension-
al space by aggregation of gradient vector fields
in an interpolated representation derived from
a minimal number of targeted samples (Bailey-
Kellogg and Ramakrishnan 2001); analysis of
matrixes using a perturbation sampling ap-
proach (Ramakrishnan and Bailey-Kellogg
2002) that utilizes consistent correspondence
of features to determine properties such as the
Jordan form from a small number of samples;
and influence-based model decomposition for
decentralized control design (Bailey-Kellogg
and Ramakrishnan 2001; Bailey-Kellogg and
Zhao 2001, 1999, 1998), where locality of a few
sampled control effects supports high-quality
decomposition of problem domains and rea-
soning about trade-offs among computation,
communication among decentralized controls,
and resulting control quality. 

Case Study: Reasoning 
with Weather Data 

Consider the approach taken by meteorologists
interpreting weather data to make predictions
about future conditions. They make sense of
large, multicategory data sets by recognizing
and explicitly labeling aggregate weather fea-
tures such as high-low pressure centers, pres-
sure troughs, thermal packings, fronts, and jet
streams (figure 4) (Huang and Zhao 2000).
They then use weather rules,  such as the fol-
lowing, to correlate these features and establish
prediction patterns: 

1. “Major and minor 500mb troughs are good
indicators of existing or potential adverse
weather” (Air Weather Service 1975). 

2. “At 850mb, the polar front is located parallel
to and on the warm side of the thermal pack-
ing” (Air Weather Service 1975). 

3. “A front lies in a pressure trough and the iso-
bars make an abrupt change in direction at the
front” (Blair and Fite 1965). 

4. “A front moves slowly when it is nearly par-
allel to the iso-bars and increases in velocity as
the number of iso-bars intersecting it in-
creases” (Blair and Fite 1965). 

5. “A strong high east of a low, especially if the

The SPATIAL AGGREGATION language (sal) (Bai-
ley-Kellogg, Zhao, and Yip 1996; Yip and Zhao
1996), summarized in table 1, implements the
spatial aggregation theory with a C++ library of
data types and operators and an interpreted,
interactive environment layered over the li-
brary. The library supports construction of effi-
cient C++ programs, and the interpreter sup-
ports rapid programming of modeling tasks by
providing a convenient, high-level interface.
SAL lets programmers conveniently explore
trade-offs in the specification of domain
knowledge such as neighborhood relations and
equivalence predicates and interactively and
graphically examine and modify the results.1

Recent work on spatial aggregation (Bailey-
Kellogg and Ramakrishnan 2001; Rama-
krishnan and Bailey-Kellogg 2002) has moved
to bridge the quantitative-qualitative gap in the
opposite direction, using qualitative structures
to guide sample selection in the underlying
field. This approach of sparse data mining is
particularly important for applications where
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Primitive Objects represent locations
and structures in spatial data.
 Example:

Compound Objects combine primitive objects
 
 Spaces group objects.
  Example (points and curves):

 
 Fields associate objects and features.
  Example (point � temperature):

 
 Ngraphs relate nearby objects.
  Example (Delaunay triangulation):

 
 Equivalence classes group similar objects.
  Example (by vector direction):

Means of Abstraction connect compound objects 
at one level of abstraction and primitive objects 
at the next.
  Example (by convex hull):

Table 1. Components of the SPATIAL AGGREGATION LANGUAGE (SAL).



standing of distributed parameter fields. The
task of modeling such fields is important by it-
self, for example, in ecology applications
where researchers desire to understand interac-
tions among different parameters (for example,
shade and temperature profile) (Lundell 1996).
As discussed earlier, modeling also leads direct-
ly to prediction based on features extracted
from a field at one point in time or, even better,
the history of such features over time (Ordóñez
and Zhao 2000; Yip 1997). Although the
weather data application isn’t amenable to
control (yet!), modeling is also important
when engineers desire to regulate a physical
field with some set of controls (Bailey-Kellogg
and Zhao 2001), for example, guiding a robotic
laser welding arm in response to temperature
data from an infrared camera (Doumanidis
1997) or maintaining a uniform temperature
profile with a set of concentric circles of heat
lamps (Kailath et al. 1996). In the following
two subsections, we discuss how data-poor
QSR supports reasoning with models of such
heat flows and how data-rich QSR supports ex-
traction and manipulation of such models. 

Data-Poor Reasoning 
This section follows the approach taken by
Lundell (1996, 1995) for qualitative physical
fields. In reasoning about temperature fields in
ecology, dense, precise numeric data and corre-
sponding models are often not available. How-
ever, it is desirable to envision qualitative dif-
ferences in the temporal evolution for a given
(qualitative) model. As described earlier, the
model is defined in terms of a field—an associ-
ation of some parameter (here, temperature)
with spatial objects in the domain. Composite
fields are defined by spatial interactions of
fields with overlapping domains and different
parameters (for example, temperature and
pressure). The static definition of a field’s do-
main and involved parameters is specified sep-
arately from the dynamic process capturing the
interactions among the parameters over time. 

The value of a field parameter belongs to
some qualitative space of possible values (such
as “warm” or “cold”). At a point in time, the
field domain is partitioned into maximal re-
gions of the same value (for example, iso-
thermal regions), which is essentially a place
vocabulary (see the earlier discussion of
MD/PV). The resulting qualitative spatial repre-
sentations are then amenable to the general
QSR techniques described in the preceding sec-
tion. In particular, composite fields (for exam-
ple, temperature and shade) are naturally com-
putable using the intersection of regions in the
separate fields. Figure 5 illustrates such qualita-

high is increasing in intensity or is nearly sta-
tionary, will retard the low or deflect it to the
left or right. Two lows close together tend to
unite” (Blair and Fite 1965). 

These rules are intuitively expressed in terms
of animated, interacting objects that have rich
spatial and physical properties and often defy
concise mathematical characterization. 

This weather data analysis application illus-
trates a more general class of practical model-
ing and design problems requiring an under-
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tive physical fields for the temperature model-
ing application in both the underlying geomet-
ric domain and a diagrammatic representation
that captures the relevant topological connec-
tivity and continuity. 

Dynamic changes in fields (for example, be-
cause of heat flow) are captured with a spa-
tiotemporal extension to the qualitative
process theory (Forbus 1984). In particular,
spatiotemporal processes are captured as inter-
actions between spatial and temporal pro-
cesses. In the case study application, each re-
gion is warmed by a temporal process that
takes into account its irradiation and tempera-
ture differences, and the regions of boundaries
are adjusted by a spatial process that considers
the differences in temperatures. More precisely,
the temporal process manipulates variables for
heating rate in the regions, with a negative
qualitative relationship between the heating
rate and the amount of shade (that is, more
shade means less heating from the sun) and a
monotonic influence between the temperature
in the region and the heating rate. The spatial
process then distributes heat using flow be-
tween adjacent regions of different tempera-
tures. It is specified in terms of an “expansion
region” of applicability, starting at the bound-
ary between two regions and spreading at a
rate proportional to the temperature difference
until equilibrium is reached. Temporal pro-
cesses within the expansion region cool one
part and heat the other. Simulation of this set
of processes yields a vision of the qualitatively
interesting state transitions in the evolution of
a temperature-shade field. 

Data-Rich Modeling 
This section illustrates that qualitative reason-
ing about physical fields can extract rich struc-
ture from large spatial datasets, in support of
tasks such as prediction and analysis. In partic-
ular, we focus on the identification of troughs
and ridges in weather data. We provide here a
high-level discussion of a spatial aggregation–
based approach; interested readers are referred
to Huang and Zhao (2000) for details about the
approach and results. 

Troughs and ridges are important features in
weather analysis; for example, high-altitude
troughs give rise to the bending of jet streams
and are important for extended weather fore-
casts, but surface troughs are useful for locating
weather fronts. Trough features are only quali-
tatively understood (see the sample weather
prediction rules at the start of this section);
sometimes experts even give different answers
about the existence of a trough in a weather
map. The key to identifying troughs lies in the

qualitative structures of a field of atmospheric
pressure data. In particular, the shape and con-
figuration of iso-bars—the iso-contours of the
pressure field, collecting points of the same
pressure value—indicate areas where troughs
are likely present. Visually, troughs and ridges
are stacks of iso-bar segments bending sharply
and consistently to one direction, with troughs
pointing away from lower iso-bars and ridges
away from higher iso-bars. Figure 4b shows a
trough. Because of the Coriolis force, winds
tend to follow iso-bars; so, sharply bending iso-
bars indicate sharp change of wind direction,
which usually causes more advection; more
mixing of warm air with cold air; and there-
fore, deteriorating weather. 

As previously discussed, data-rich QSR focus-
es on the extraction and manipulation of struc-
tures in spatial data. These structures arise as
equivalence classes of neighboring objects ac-
cording to some similarity measure, re-
described as primitive objects at a higher level
of abstraction for further analysis. A spatial ag-
gregation–based trough-finding algorithm uses
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step, iso-bar points are interpolated from the
gridded data, yielding a set of “iso-points,”
with pressure at specified contour levels. The
algorithm then proceeds through two levels of
aggregation (see again the section on spatial
aggregation for a description of operations in a

this approach to extract the same qualitative
spatial features that experts do—sharply bend-
ing segments of iso-curves of pressure data. The
input to the algorithm is a gridded pressure da-
ta set, and the output is a contoured pressure
chart with troughs labeled. In a preprocessing
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Figure 6. Example of a Spatial Aggregation Approach to Extraction of Pressure Troughs and Ridges.
A. Preprocessed input: iso-points. B. Aggregate (I): point triangulation. C. Classify (I): pressure classes. D. Redescribe (I � II):
iso-bars.  E. Filter (II): high-curvature segments. F. Aggregate (II): constituent point adjacency. G. Classify (II): similar curva-
ture. H. Redescribe (II): troughs and ridge (troughs are dashed; ridge is solid).



typical level), the first to group points into iso-
bars and the second to group segments of iso-
bars into troughs and ridges. We briefly de-
scribe the spatial aggregation steps in this
process (using slightly different wording from
the original paper); figure 6 (Huang and Zhao
2000) illustrates with data from a 500-
megabyte pressure data set from a National
Weather Service data server.

Level 1 At the first level of aggregation, the
algorithm groups points into iso-bars.

Aggregate: Build a Delaunay triangulation
neighborhood graph for the iso-points. The
Delaunay triangulation has a number of im-
portant geometric properties. Most important-
ly here, although the triangulation only acts
on iso-points, its edges are “well-behaved”
with respect to the aggregated iso-curves, in
that its edges connect only points within a sin-
gle curve or in two topologically adjacent
curves. 

Classify: Form equivalence classes of neigh-
boring points sharing the same pressure value.
At the same time, classify graph edges into
strong adjacencies, connecting same-class
points, and weak adjacencies, connecting points
in different classes. 

Redescribe: Abstract each class of same-pres-
sure points into an iso-curve object. As previ-
ously discussed, forming a higher-level object
allows the computation of aggregate proper-
ties; here, curvature is an especially important
property. We note that although other algo-
rithms (for example, marching cubes [Loren-
son and Cline 1987]) can also be used to con-
tour a pressure data set, the approach taken
here yields more structure in the spatial ob-
jects, and this structure proves useful in later
steps. 

Level 2 At level 2, the algorithm groups seg-
ments of iso-bars into troughs and ridges.

Filter: Segment the curves and extract high-
curvature curve segments. Curve segmentation
breaks a curve into piece-wise simple parame-
terized curves (for example, straight lines or
circular arcs); for example, a split-and-merge al-
gorithm (Pavlidis and Horowitz 1974) splits
curves at places with high approximation er-
rors and merges segments to avoid overseg-
mentation. Simple thresholding then allows
extraction of high-curvature segments. 

Aggregate: Build a neighborhood graph for
the high-curvature curve segments based on
the between-class (“weak”) adjacencies from
level 1. That is, two curves are adjacent if and
only if a constituent point in one is adjacent to
a constituent point in the other in the original
Delaunay triangulation. 

Classify: Form equivalence classes of neigh-

boring curve segments that bend in similar di-
rections, within some tolerance. 

Redescribe: Abstract equivalence classes of
similar-direction high-curvature curve seg-
ments into troughs. The abstraction process
constructs a curve (for example, B-spline)
through the stack of iso-curves (for example,
through a representative point on each). 

As figure 7 (Huang and Zhao 2000) demon-
strates, the results of this algorithm are in qual-
itative agreement with those of professional
meteorologists. Although the expert-drawn
trough seems smoother and more visually
pleasing, the exact shape and position are not
as important for a synoptic map at this scale. 
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Figure 7. Labeling a Weather Chart.
A. The high-altitude trough (dashed line) detected by the spatial
aggregation–based algorithm. B. The corresponding trough (parallel dashed line)
drawn by meteorologists for the National Weather Service forecast map for rough-
ly the same area as the small box in A.

A

B



This trough-finding algorithm illustrates the
importance of explicitly representing and rea-
soning with multilevel spatial structures. The
edges in a neighborhood graph play two dis-
tinct roles in the aggregation process. The clas-
sification process in level 1 uses domain-specif-
ic knowledge to distinguish these roles as
strong and weak adjacencies (figure 8) (Huang
and Zhao 2000). Strong adjacencies carry infor-
mation about the interactions and connections
among the constituent parts of an aggregate
spatial object and are abstracted as structural
information of the object. Weak adjacencies
carry information about the interactions and
connections between aggregate objects and are
abstracted into a higher-level neighborhood
graph. Explicitly representing these adjacen-
cies allows the programmer to use a natural en-
coding of domain knowledge, in terms of
equivalence predicates, to identify objects that
are internally connected, externally bounded,
and related at multiple levels of abstraction. 

Conclusions and Future 
Research Directions 

We described several representative approaches
to data-poor and data-rich problems in QSR. In
many applications dealing with spatial data,
qualitative spatial representations and infer-
ences are preferable because either detailed nu-
meric information is not available for the do-
main, or existing numeric methods are unable
to describe the kinds of geometric and topolog-
ical structures in data sets that can help answer
high-level spatial queries. As the sample appli-
cations demonstrate, QSR is an important as-
pect of commonsense reasoning and can have
a significant impact on many technical and sci-
entific applications. 

QSR is a rich problem domain for qualitative
reasoning research. To fully realize the poten-
tial of QSR, we need to address a number of
open research issues. For example, spatial ag-
gregation introduces a number of spatial prim-
itives for describing structures in a data-rich
physical field. What are other formulations of
the problem, using, say, a primal-dual space
representation? What are additional primitives
and inference operators in spatial aggregation
that might be appropriate? How can proba-
bilistic information be incorporated? An im-
portant problem in synthesizing the approach-
es to data-poor and data-rich problems is to use
data-rich approaches to automatically build
models for data-poor approaches. Here, the da-
ta used to build a model for a data-poor prob-
lem could perhaps come from a domain where
the physics constraints are similar enough, and
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Figure 8. Explict Representation and Aggregation of Spatial Adjacencies. 
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jacencies. B. Strong adjacencies connect internal structure of aggregate objects A, B,
and C. C. A higher-level neighborhood graph is constructed from lower-level weak
adjacencies between constituent objects.



numeric information is readily available. For
example, in an ecology application, although
detailed numeric information for a particular
region might not be available because of a lack
of instrumentation for that region, the model-
building process could leverage data from an-
other similar region where sensors have al-
ready been deployed. 

Although each of the approaches we have
described is to some degree based on mathe-
matical theories of topology and geometry, we
have yet to develop a rigorous and formal basis
for a general theory of qualitative spatial rea-
soning that can unify the different approaches.
Equally important is the development of a set
of problem characterizations that can aid in
transforming a general theory into an efficient
algorithm for a task. 
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sal.html or www.parc.com/zhao/sal.html.
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