
■ The infrastructure of modern society is controlled
by software systems. These systems are vulnerable
to attacks; several such attacks, launched by “recre-
ation hackers,” have already led to severe disrup-
tion. However, a concerted and planned attack
whose goal is to reap harm could lead to cata-
strophic results (for example, by disabling the
computers that control the electrical power grid
for a sustained period of time). The survivability of
such information systems in the face of attacks is
therefore an area of extreme importance to society.

This article is set in the context of self-adaptive sur-
vivable systems: software that judges the trustwor-
thiness of the computational resources in its en-
vironment and that chooses how to achieve its
goals in light of this trust model. Each self-adaptive
survivable system detects and diagnoses compro-
mises of its resources, taking whatever actions are
necessary to recover from attack. In addition, a
long-term monitoring system collects evidence
from intrusion detectors, firewalls, and all the self-
adaptive components, building a composite trust
model used by each component. Self-adaptive sur-
vivable systems contain models of their intended
behavior; models of the required computational
resources; models of the ways in which these re-
sources can be compromised; and finally, models
of the ways in which a system can be attacked and
how such attacks can lead to compromises of the
computational resources.

In this article, I focus on computational vulnera-
bility analysis: a system that, given a description of
a computational environment, deduces all the at-
tacks that are possible. In particular, its goal is to
develop multistage attack models in which the
compromise of one resource is used to facilitate the
compromise of other, more valuable resources. Al-
though the ultimate aim is to use these models on-
line as part of a self-adaptive system, there are oth-
er offline uses as well that we are deploying first to
help system administrators assess the vulnerabili-
ties of their computing environment.

The infrastructure of modern society is
controlled by computational systems
that are vulnerable to information at-

tacks. A skillful attack could lead to con-
sequences as dire as those of modern warfare.
There is a pressing need for new approaches to
protect our computational infrastructure from
such attacks and enable it to continue func-
tioning even when attacks have successfully
been launched.

The premise of my group’s research is that to
protect the infrastructure we need to restructure
these software systems as self-adaptive survivable
systems. Such software systems must be in-
formed by a trust model that indicates which re-
sources are to be trusted. When such a system
starts a task, it chooses the method that the
trust model indicates is most likely to avoid
compromised resources. In addition, such a sys-
tem must be capable of detecting its own mal-
function, it must be able to diagnose the failure,
and it must be capable of repairing itself after
the failure. For example, a system might notice
through self-monitoring that it is running
much slower than expected. It might, therefore,
deduce that the scheduler of the computer it is
running on has been compromised and that the
compromise resulted from the use of a buffer-
overflow attack that gained root access to the
system and used this privilege to change the
scheduler policy. The buffer-overflow attack in
turn might have exploited a vulnerability of a
web server (as, for example, happened in the
“code-red” worm attack). Given this diagnosis,
the trust model should be updated to indicate
that the computer’s operating system was com-
promised and should be avoided in the future if
possible. Techniques for this type of diagnosis
are described in Shrobe (2001).
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ing adaptive systems leads to increased preci-
sion in trust modeling and greater survivabil-
ity of critical systems.

Contributions of This Work
My group has developed a model-based tech-
nique, which we call computational vulnerability
analysis, for analyzing vulnerabilities and at-
tacks. Rather than relying on a catalog of known
specific attacks, we instead reason from first
principles to develop a much more comprehen-
sive analysis of the vulnerabilities. Furthermore,
the attacks developed in this analysis include
both single-stage attacks as well as multistage at-
tacks. These issues are crucial when failure is
caused by a concerted attack by a malicious op-
ponent who is attempting to avoid detection.

We developed a unified framework for reason-
ing about the failures of computations and
about these failures and how they are related to
compromises of the underlying resources, the
vulnerabilities of these resources, and the
method by which these vulnerabilities enable at-
tacks. We then extended previous work in mod-
el-based diagnosis (Davis and Shrobe 1982; deK-
leer and Williams 1989, 1987; Hamscher and
Davis 1988; Srinivas 1995) to enable systems ca-
pable of self-diagnosis, recovery, and adaptation.
We used this framework to build long-term
monitoring systems (Doyle et al. 2001a, 2001b)
capable of attack plan recognition. Both attack
plan recognition and self-diagnosis lead to up-
dated estimates of the trustability of the compu-
tational resources. These estimates, which form
the trust model, inform all future decision mak-
ing about how to achieve goals.

In addition to its role in survivable systems,
computational vulnerability analysis can also
be used offline to assess the vulnerability of
and identify weak links in a computational en-
vironment. This use can help system admini-
strators improve the security and robustness of
their network, often by instituting simple
changes. My group is currently using the sys-
tem, in a limited way, to assess the vulnerabil-
ities of our lab’s computing environment; as
the system matures, we plan to apply it more
systematically to the entire lab. We are also in
the process of connecting the computation
vulnerability analysis system to our long-term
monitoring system and connecting the moni-
toring system to a commercial intrusion detec-
tor. We plan to begin deploying this monitor-
ing system within the next six months.

This article first describes the modeling
framework and reasoning processes used in
computational vulnerability analysis and
shows its application to a small section of our

The trust model is also influenced by collat-
ing evidence from many available sources
over a long period of time. In our lab, for ex-
ample, we notice several alerts from our intru-
sion-detection system over a couple a days,
which was followed by a period in which
nothing anomalous happened. However, then
we began to notice that the consumption of
disk space and the amount of network traffic
from outside the lab were increasing, which
continued for some time. The load then lev-
eled off. What had happened is that a user
password had been stolen and that a public
ftp site had been set up for the use of the
friends of the password thief. This incident is
an instance of a common attack plan. Such at-
tack plans have multiple stages, temporal con-
straints between the stages, and constraints
within each stage on values and their deriva-
tives (for example, the rate of growth of disk
space consumption). These can, therefore, be
used as trend templates for collating and ana-
lyzing the alerts from intrusion-detection sys-
tems and the data in common system logs.
Trend template analysis provides perspective
over a longer period of time than the intru-
sion-detection systems themselves possess, al-
lowing detection of attacks that are intention-
ally subtle. Long-term monitoring systems
capable of conducting trend template–driven
attack plan recognition are described in Doyle
et al. (2001a , 2001b).

Trust modeling thus depends both on attack
plan recognition as well as on the self-diagno-
sis of self-adaptive software systems. The result-
ing trust model includes models of what com-
putational resources have been compromised,
what attacks were used to effect this attack, and
what vulnerability was exploited by the attack.
Key to all these tasks is having a comprehen-
sive set of attack models.

This article focuses on computational vulner-
ability analysis, a systematic method for devel-
oping attack models used both in attack plan
recognition and self-diagnosis of adaptive sys-
tems. All current systems are driven either by
signatures of specific exploits (for example,
the telltales of a password scan) or anomaly
profiling (for example, detecting a difference
in behavior between the current process and a
statistical norm). Neither of these methods
alone is capable of dealing with a skillful at-
tacker who would stage his/her attack slowly
to avoid detection, would move in stages, and
would use a compromise at one stage to gain
access to more valuable resources later on. The
systematic nature of computation vulnerabil-
ity analysis and the use of its attack plans in
both long-term monitoring and self-diagnos-
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lab’s computing environment. I conclude by
explaining how attack plans fit within the
self-diagnostic and the long-term monitoring
frameworks.

Computational
Vulnerability Analysis

In this section, I examine the core issue of this
article, which is how to make the modeling of
attacks and vulnerabilities systematic.

I do this examination by grounding the
analysis in a comprehensive ontology that cov-
ers system properties, system types, system
structure, and the control and dependency re-
lationships between system components.

This ontology covers what types of comput-
ing resources are present in the environment,
how the resources are composed from compo-
nents (for example, an operating system has a
scheduler, a file system, and so on), how the
components control one another’s behavior,
and what vulnerabilities are known to be pre-
sent in different classes of these components.
Finally, the models indicate how desirable
properties of such systems depend on the cor-
rect functioning of certain components of the
system (for example, predictable performance
of a computer system depends on the correct
functioning of its scheduler).

A relatively simple reasoning process (en-
coded in a rule-based system) then explores
how a desirable property of a system can be im-
pacted (for example, you can impact the pre-
dictability of performance by affecting the
scheduler, which in turn can be done by
changing its input parameters, which in turn
can be done by gaining root access, which fi-
nally is enabled by a buffer-overflow attack on
a process running with root privileges). The
output of this reasoning is a set of multistage
attacks, each of which is capable of affecting
the property of interest.

I also provide a structural model of the entire
computing environment under consideration,
including the following: 

Network structure and topology: How is
the network decomposed into subnets? Which
nodes are on which subnets? Which routers
and switches connect the subnets? What types
of filters and firewalls provide control of the in-
formation flow between subnets?

System types: What type of hardware is in
each node? How is the hardware decomposed
into subsystems? What type of operating sys-
tem is in each node? How is the operating
system decomposed into subsystems?

Server and user software suites: What soft-
ware function is deployed on each node?

Access rights: What are the access rights to
data and how are they controlled?

Data storage: What are the places in which
data are stored or transmitted?

The next step is to model dependencies. I be-
gin with a list of desirable properties that the
computational resources are supposed to deliv-
er. Typical properties include reliable perfor-
mance, privacy of communications, Integrity
of communications, integrity of stored data,
and privacy of stored data.

Within the diagnostic framework, each such
property corresponds to a normal behavioral
mode of some (or several) computational re-
source(s). For example, reliable computational
performance is a property to which the sched-
uler contributes, but data privacy is a property
contributed by the access-control mechanisms.

Control Relationships
I now turn attention to a rule base that utilizes
this ontology to reason about how one might
affect a desirable property. The goal is to make
this rule base as abstract and general as possi-
ble. For example, see figure 1. This abstract rule
is a paraphrase of the actual rule, which is cod-
ed in a Lisp-based rule system).

This rule (figure 1) puts the notion of control
and dependency at the center of the reasoning
process. There are several rules about how to
gain control of components, which are quite
general. Figure 2 contains examples of such
general and abstract rules.

At the leaves of this reasoning chain is spe-
cific information about vulnerabilities and
how to exploit them. For example, Microsoft
IIS web servers below a certain patch level are
vulnerable to buffer-overflow attacks, and
buffer-overflow attacks are capable of taking
control of the components that are vulnerable.

One of the rules shown previously indicates
that one can control a component by modify-
ing its input (figure 2). Figure 3 describes how
an input can be controlled.
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If the goal is to affect the 
reliable-performance property of some 
component?x

Then find a component ?y of ?x that
contributes to the delivery of that property 
and find a way to control ?y

Figure 1. A Vulnerability Analysis Rule Dealing with Control.



Access Rights
Within most computer systems, the ability to
read or modify data depends on obtaining ac-
cess rights to the data. In my group, we model
access rights in a more general way than is used
in many actual systems:

First, for each type of object, we enumerate
the operations that can be performed on ob-
jects of that type.

Second, for each operation, we specify the
capabilities that are required to perform the
operation.

Third, the capabilities are related by a sub-
sumption relationship that forms a directed
acyclic graph.

Fourth, for each agent (that is, a user or a
process), we enumerate the capabilities that
the agent possesses at any time.

Fifth, an agent is assumed to be able to per-
form an operation on an object only if it pos-
sesses a capability at least as strong as that re-
quired for the operation.

Sixth, typically, groups of machines manage
access rights collectively (for example, work
groups in Microsoft WINDOWS, NIS in UNIX envi-
ronments). We refer to such a collection of ma-
chines as an access pool.

Seventh, the structure of access pools can be
orthogonal to the network topology. Machines
in different subnets can be parts of the same ac-
cess pool, and machines on a common subnet
can be members of different access pools.

Given this framework, we provide rules that
describe how to gain access to objects in figure 4.

Knowledge of Secrets
Logging on to a system typically requires
knowledge of a secret (for example, a pass-
word). A set of rules describes how to obtain
knowledge of a password:

First, to obtain knowledge of a password,
find it by guessing, using a guessing attack.

Second, to obtain knowledge of a password,
sniff it. To sniff a piece of data, place a parasitic
virus on the user’s machine. To sniff a piece of
data, monitor network traffic that might con-
tain the datum. To sniff a piece of data, find a
file containing the data and gain access to it.

Third, to obtain knowledge of a password,
gain write access to the password file and
change it.

Network Structure
The next section of rules deals with networks.
As mentioned previously, networks are de-
scribed in terms of the decomposition into sub-
nets and the connections of subnets by routers
and switches. In addition, for each subnet, I
provide a description of the media type; some
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If the goal is to modify an input ?x of
component ?y

then find a component ?z which controls the input ?x
and find a way to gain control of ?z

If the goal is to modify an input ?x
of component ?y

then find a component ?z of the input ?x
and find a way to modify ?z

Figure 3. Rules about Controlling Input.

If the goal is to gain access to operation?x
on object ?y

and operation ?x on ?y requires capability ?z
subsume ?z

and find a way to take control of ?p.

If the goal is to gain access to operation ?x
on object ?y

and operation ?x on ?y requires capability ?z
then find a user ?u whose capability ?w

subsumes ?z
and find a way to log in as ?u
and launch a process ?p with capability ?w

Figure 4. Rules about Access Control.

If the goal is to control a component ?x
Then find an input?y to ?x

and find a way to modify ?y

If the goal is to control a component ?x
Then find a component ?y of ?x

and find a way to control ?y

If the goal is to control a component ?x
Then find a vulnerability ?y

of the component ?x
and find a way to exploit ?y

to take control of ?x.

Figure 2. Vulnerability Rules Dealing with 
Controlling Input and Components.



subnets are shared media, for example, coaxial-
cable–based ethernet and wireless ethernet. In
such subnets, any connected computer can
monitor any of the traffic. Other subnets are
switched media (for example, 10, 100, and
1000 base-T–type ethernet); in these networks,
only the switch sees all the traffic (although it
is possible to direct the switch to reflect all traf-
fic to a specific port). Switches and routers are
themselves computers that have presence on
the network, which means that like any other
computer, there are exploits that will gain con-
trol of them. However, it is typical that the
switches and routers are members of a special
access pool, using separate capabilities and
passwords.

Given this descriptive machinery it now be-
comes possible to provide another rule:

To gain knowledge of some information
gain the ability to monitor network traffic.

Residences and Format 
Transformations
The last set of modeling issues have to do with
the various places in which data live and how
data are transformed between various represen-
tations. The following issues are modeled:

First, data elements reside in many places.
Second, executable code resides in many

places: main memory, boot files, and paging
files.

Third, data elements and code move be-
tween their various residences. Data migra-
tions go through peripheral controllers. Data
migrations go through networks.

Given these representations, we then pro-
vide the following rules:

First, to modify or observe a data element,
find a residence of the element and find a way
to modify or observe it in the residence.

Second, to modify or observe a data element,
find a migration path, and find a way to mod-
ify or observe it during the transmission.

Further rules provide details of how one
might gain control of a peripheral controller or
a network segment to modify data during
transmission. 

For example, to control traffic on a network
segment launch, use a man in the middle attack
by gaining control of a machine on the network
and then finding a way to redirect traffic to the
machine rather than to the router or switch.

To observe network traffic, get control of a
switch or router and a user machine and  re-
flect the traffic to the user machine.

To modify network traffic, launch an insert-
ed packet attack. Thus, get control of a ma-
chine on the network and then send a packet
from the machine with the correct serial num-

ber but wrong data before the real sender sends
the correct data.

A somewhat analogous issue has to do with
the various formats that data and code take on
and the processes that transform data and code
between these formats. In particular, code can
exist in at least the following formats: source,
compiled, and linked executable images. In
many systems, there are other representations
as well (for example, JAR [JAVA archive] files for
JAVA code). In addition, processes such as com-
pilation and linking transform code between
these formats, leading to the following rules:

To modify a software component, find an
upstream representation of the compo-
nent and then find a way to modify that
representation and cause the transforma-
tion between representations to happen.

To modify a software component, gain
control of the processes that perform the
transformation from upstream to down-
stream representation.

An Example
The following example illustrates how these
representations and rules interact to analyze
the vulnerabilities of a computer. Suppose we
are interested in affecting the performance of a
specific computer. The rule base would then
generate the following plan:

First, one goal is to control the scheduler of
the computer because the scheduler is a com-
ponent that impacts performance.

Second, one way to do that is to modify the
scheduler’s policy parameters because the pol-
icy parameters are input to the scheduler.

Third, one way to modify the policy parame-
ters is by gaining root access to the computer
because root access is required to modify these
parameters.

One way to gain root access is to use a
buffer-overflow attack on a web server because
the web server possesses root capabilities, and
the web server is vulnerable to buffer-overflow
attacks.

For this attack to succeed in impacting per-
formance, every step of the plan must succeed.
Each of these steps has an a priori probability
based on its inherent difficulty. The analysis
process must take into account not just the gen-
eral strategies but also the specific features of in-
dividual machines, network segments, routers,
fire walls, packet filters, and so on. The attack
plans include only those that satisfy all these
constraints. A computer can be vulnerable to
an exploit, but if there is a firewall isolating it
from the attacker, the analysis will not develop
an attack plan exploiting this vulnerability.
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For the given system description, our vulner-
ability analyzer generated seven attack plans
for the privacy property and nine plans for at-
tacking performance.

We now turn briefly to the question of how
the attack plans are used in diagnostic reason-
ing and long-term monitoring. In both cases,
the attack plans are transformed: For diagnos-
tic reasoning, they are converted into compo-
nents of a Bayesian network. In this form, they
help explain why a computation has failed,
and they also deduce what resources are there-
fore likely to have been compromised. For
long-term monitoring, they are transformed
into trend templates. In this format, they func-
tion as a timeline for how a skillful attacker
would stage an assault on the analyzed net-
work. The monitoring system accepts and col-
lates input from intrusion detectors, firewalls,
and self-monitoring applications in an attempt
to detect more pernicious, multistage attacks.

We briefly describe each use in the next two
sections.

Application to Diagnosis
Figure 7 shows a model of a fictitious distrib-
uted financial system that we use to illustrate
the reasoning process. The system consists of
five interconnected software modules—(1)
WEB-SERVER, (2) DOLLAR-MONITOR, (3) BOND-TRADER,
(4) YEN-MONITOR, and (5) CURRENCY-TRADER—us-
ing four underlying computational re-
sources—that is, the computers (1) WALLST-
SERVER, (2) JPMORGAN, (3) BONDRUS, and (4)
TRADER-JOE. We use computational vulnerability
analysis to deduce that one or more attack
types are present in the environment, leading
to a three-tiered model as shown in figure 8.
The first tier is the computational level, which
models the behavior of the computation being
diagnosed; the second tier is the resource level,
which monitors the degree of compromise in
the resources used in the computation; the
third tier is the attack layer, which models at-
tacks and vulnerabilities. In this example, we
show two attack types: (1) buffer overflow and
(2) packet flood. Packet floods can affect each of
the resources because they are all networked
systems; buffer overflows affect only the two re-
sources that are instances of a system type that
is vulnerable to such attacks.

A single compromise of an operating system
component, such as the scheduler, can lead to
anomalous behavior in several application
components. This example illustrates a com-
mon mode failure; intuitively, a common mode
failure occurs when a single fault (for example,
an inaccurate power supply) leads to faults at

Figures 5 and 6 show two attack plans that
our system developed to attack privacy. Other
plans developed are more complex. Each plan
is an and-or tree (goal nodes are or nodes); they
can have several incoming links from plan
nodes; and all that is required is that one of the
plans work. Plan nodes are and nodes; each
subgoal must be fulfilled for a plan to be valid).
The leaves of the tree are primitive actions,
that is, actual attack steps. The figures show
one slice through the and-or tree for simplicity.

Articles

86 AI MAGAZINE

Attack Plan 2 
Goal: AFFECT

DATA-PRIVACY DWARF-TYPICAL-FILE

Goal: KNOW-CONTENTS-OF

DWARF-TYPICAL-FILE

Goal: ACHIEVE-ACCESS-RIGHTS-TO

DWARF-TYPICAL-FILE READ

Goal: KNOW

(PASSWORD DWARF-USER)

Goal: OBSERVE

NETWORK-TRAFFIC 8TH-FLOOR-2

Goal: CONTROL

SWITCH-8-54-2.OS.NETWORK-MONITOR

Goal: LOGON

ROUTER-ADMINISTRATOR SWITCH-8-54-2.OS

Goal: KNOW

(PASSWORD ROUTER-ADMINISTRATOR)

Do: PASSWORD-GUESS

ROUTER-ADMINISTRATOR

Goal: CONNECT

SWITCH-8-54-2

Do: CONNECT-VIA

SSH

SWITCH-8-54-2

Do: SNIFF-A-PASSWARD

DWARF-USER

8TH-FLOOR-2

Do: READ-WITH-RIGHTS-OF

DWARF-USER

DWARF-TYPICAL-FILE

Figure 5. A Plan for Affecting Privacy.



several observable points in the systems (for
example, several transistors misbehave because
their biasing power is incorrect). Formally,
there is a common mode failure whenever the
probabilities of the failure modes of two (or
more) components are dependent.

We deal with common mode failures as fol-
lows: Our modeling framework includes three
kinds of objects: (1) computational compo-
nents (represented by a set of input-output re-
lationships and delay models, one for each be-
havioral mode), (2) infrastructure resources
(for example, computers), and (3) attacks. Con-
necting the first two kinds of models are con-
ditional probability links; each such link states
how likely a particular behavioral mode of a
computational component would be if the in-
frastructure component that supports the com-
ponent were in a particular one of its modes
(for example, normal or abnormal). We next
observe that resources are compromised by at-
tacks that are enabled by vulnerabilities. An at-
tack is capable of compromising a resource in a
variety of ways; for example, buffer-overflow
attacks are used both to gain control of a spe-
cific component and to gain root access to the
entire system. However, the variety of compro-
mises enabled by an attack are not equally like-
ly (some are much more difficult than others).
We therefore have a third tier in our model de-
scribing the ensemble of attacks assumed to be
available in the environment, and we connect
the attack layer to the resource layer with con-
ditional probability links that state the likeli-
hood of each mode of the compromised re-
source once the attack is successful. The attack
plans generated by computational vulnerabili-
ty analysis constitute this third tier. However, a
transformation is required for them to fulfill
this role. Attack plans are and-or trees. Howev-
er, it is possible (and in fact likely) that differ-
ent attack plans share subplans (for example,
lots of multistage attacks begin with a buffer-
overflow attack being used to gain root privi-
lege). Therefore, all the attack plans are merged
into a single and-or tree, which constitutes the
third tier of the model. The top-level nodes of
this tree, which model the desirable properties
of the computational resources, are then con-
nected to the second tier (the resource layer) of
the model.

We next briefly describe how the diagnostic
and monitoring processes use attack plans.

Diagnostic Reasoning
Diagnosis is initiated when a discrepancy is de-
tected between the expected and actual behav-
iors of a computation. We use techniques sim-

ilar to those identified in deKleer and Williams
(1989) and Srinivas (1995). We first identify all
conflict sets (a choice of behavior modes for
each of the computational components that
leads to a contradiction) and then proceed to
calculate the posterior probabilities of the
modes of each of the components. Conflicts
are detected by choosing a behavioral mode for
each computational component and then run-
ning each of the selected behavioral models. If
this choice of behavioral mode leads to a con-
tradiction, then the choice of models is a con-
flict set; otherwise, it is a consistent diagnosis.

Whenever the reasoning process discovers a
conflict, it uses dependency tracing (that is, its
truth maintenance system) to find the subset
of the models in the conflict set that actually
contributed to the discrepancy. At this point, a
new node is added to the Bayesian network
representing the conflict. This node has an in-
coming arc from every node that participates
in the conflict. It has a conditional probability
table corresponding to a pure logical and. That
is, its true state has a probability of 1.0 if all the
incoming nodes are in their true states; other-
wise, it has probability 1.0 of being in its false
state. Because this node represents a logical
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Goal: AFFECT

DATA-PRIVACY DWARF-TYPICAL-FILE

Goal: KNOW-CONTENTS-OF

DWARF-TYPICAL-FILE

Goal: ACHIEVE-ACCESS-RIGHTS-TO

DWARF-TYPICAL-FILE READ

Goal: KNOW

(PASSWORD DWARF-USER)

Do: PASSWORD-GUESS

DWARF-USER

Do: READ-WITH-RIGHTS-OF

DWARF-USER

DWARF-TYPICAL-FILE

Figure 6. A Second Plan for Affecting Privacy.
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Yen
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Trader
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Normal .6 .15
Peak .1 .80
Off Peak .3 .05

N H
Normal .8 .3
Slow .2 .7

Normal .9
Hacked .1

Normal .85
Hacked .15

Normal .8
Hacked .2

Normal .7
Hacked .3

N H
Normal .50 .05
Fast .25 .45
Slow .25 .50

N H
Normal .60 .05
Slow .25 .45
Slower .15 .50
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Normal .50 .05
Fast .25 .45
Slow .25 .50

Figure 7. An Example of the Extended System Modeling.
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JP Morgan Net Wall St Server Bonds-R US Trader Joe

Buffer Overflow Packet Flood

Figure 8. An Example of the Three-Tiered System Modeling Framework.



contradiction, it is pinned in its false state.
We continue until all possible minimal con-

flicts are discovered, extending the Bayesian
network with a new node for each. At this
point, any remaining set of behavioral models
is a consistent diagnosis; we choose the mini-
mal such sets (that is, we discard any diagnosis
that is a superset of some other diagnosis). For

each of these diagnoses, we create a node in
the Bayesian network that is the logical and of
the nodes corresponding to the behavioral
modes of the components. This node repre-
sents the probability of this particular diagno-
sis. The Bayesian network is then solved, giving
us updated probabilities.

The sample system shown in figure 7 was
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Slow Fault on Both Output 25 “Diagnoses”
34 Minimal Conflicts

Output of Bond-Trader Observed at 35
Output of Current-trader Observed at 45

Name Prior Posterior
Wallst 1 .27 .58 .75 .80
JPMorgan .15 .45 .62 .74 .81
Bonds-R-Us .20 21 .20 .61 .50
Trader-Joe .30 .32 .31 .62 .50

Computations Using Each Resource
Off-Peak .03 .02 .02 .02
Peak .54 .70 .78 .80

Web Server

Normal .43 .28 .20 .18
Slow .74 .76 .73 .76Dollar

Monitor Normal .26 .24 .27 .24
Really Slow .52 .54 .56 .58
Slow .34 .35 .34 .34

Yen 
Monitor

Normal .14 .11 .10 .08
Slow .59 .57 .76 .70

Fast 0

Bond 
Trader

Normal .41 .43 .24 .30
Slow .61 .54 .62 .56
Fast .07 .11 .16 .16

Currency 
Trader

Normal .32 .35 .22 .28

Attack Type Attacks Possible

Name Prior None Buffer 
Overflow

Packet Flood Both

Buffer Overflow .4 0 .82 0 .58
Packet Flood .5 .89 .73

0 0 0

0 0

Figure 9. Updated Probabilities.



have been performed, the system attempts to
match the data streams to a trend template, a
model of how a process evolves over time. A
trend template is broken along one dimension
into data segments, each representing a
particular input or the product of applying
some filter (that is, smoothing, derivate) to
some other data segment. On another dimen-
sion, the template is broken into temporal in-
tervals with landmark points separating them.
There are constraints linking the data values
within the segments (for example, during this
period, disk consumption on system 1 is grow-
ing rapidly while network traffic is stable).
There are also constraints on the length of time
in each interval and on the relative placement
of the landmark points (for example, the peri-
od of disk consumption must be between three
days and two weeks; the start of disk consump-
tion must follow the start of network traffic
growth).

Trend template recognition is a difficult
process. It involves making (usually multiple)
assumptions about where each interval begins
and then tracking the data as they arrive to de-
termine which hypothesis best matches the da-
ta. Within each interval, regression analysis is
used to determine degree of fit to the hypoth-
esis. More details are provided in Doyle et al.
(2001b).

One source of trend templates is computa-
tional vulnerability analysis. Each attack plan
actually constitutes a set of trend templates be-
cause the attack plans are developed as and-or
trees. In contrast to the diagnostic application
where the plans are merged, here we unfold
each individual attack plan into a set of indi-
vidual plans by removing the or nodes. Each
unfolded plan, therefore, consists of a goal
node supported by a single plan node, which,
in turn, is supported by a set of goal nodes, all
of which must be satisfied for the plan to suc-
ceed (these goal nodes are, in turn, supported
by individual plan nodes; the recursion contin-
ues until terminated by a primitive action
node). This tree represents a set of constraints
on the temporal ordering: A goal is achieved af-
ter all the steps in the plan are achieved, but
the plan steps might happen in parallel. Each
step is characterized by expectations on the
various data streams; we are currently develop-
ing the mappings between the attack plan
steps and features of data streams that would
be indicative of the plan step.

At any point in time, the trend template
matcher has an estimate for how well each
template matches the data. These estimates are
evidence that specific attacks have been
launched against specific resources and are

run through several analyses, including both
those in which the output are within the ex-
pected range and those in which the output are
unexpected. Figure 9 shows the results of the
analysis. There are four runs for each case, each
with a different attack model developed by
computational vulnerability analysis. In the
first, there are no attacks present, and the a pri-
ori values are used for the probabilities of the
different modes of each resource. The second
run takes place in an environment in which
only a buffer-overflow attack is possible; the
third run includes only a packet-flood attack.
The fourth run is in an environment in which
both types of attacks are possible. Note that the
posterior probabilities are different in each case
because each set of attack models couples the
resource models in a unique manner. These
posterior probabilities can then be used to up-
date the overall trust model because each run
provides some evidence about compromises to
the resources involved. Furthermore, it is pos-
sible that a successful attack would have affect-
ed additional resources that were not used in
the computation being diagnosed; this suspi-
cion is propagated by the Bayesian network. In
effect, the reasoning is that the failure of the
computation is evidence that a resource has
been compromised, which, in turn, is evidence
that an attack has succeeded. However, if the
attack has succeeded, then other resources
sharing the vulnerability might also have been
compromised and should be trusted somewhat
less in the future.

Application to 
Long-Term Monitoring

The long-term monitoring system accepts in-
put from intrusion detectors, firewalls, system
logs, and self-diagnostic application systems
and attempts to recognize multistage concert-
ed attacks that would otherwise escape atten-
tion. Skillful attackers move slowly, first scop-
ing out the structure and weaknesses of a
computational environment, then slowly gain-
ing access to resources. Often the process is
staged: Access to one resource is used to gain
more information about the environment and
more access to other resources within it. Com-
putational vulnerability analysis produces at-
tack plans very much like those developed by
such skillful attackers (in particular, red teamers,
who simulate attackers as part of exercises, re-
port thought processes very similar to those de-
veloped by our tool).

The monitoring system performs many low-
level filtering, collating, and conditioning
functions on the data. Once these operations
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therefore also evidence about the degree and
type of compromise present in each resource.
Thus, this process, too, contributes to the over-
all trust model.

Conclusions and Future Work
I showed how computational vulnerability
analysis can model an attack scenario and how
such a model can drive both long-term moni-
toring and diagnostic processes that extract
maximum information from the available da-
ta. In the case of diagnosis, this means carefully
analyzing how unexpected behavior might
have arisen from compromises to the resources
used in the computation. For long- term mon-
itoring, this means recognizing the signs of a
multistage attack by collating evidence from
many sources. Both processes contribute to an
overall trust model.

The purpose of the trust model is to aid in re-
covering from a failure and help avoid compro-
mised resources in the future. The trust model
functions at the levels of (1) observable behav-
ior, (2) the compromises to the underlying
computational resources, and (3) the vulnera-
bilities and the attacks that exploit them.

Computational vulnerability analysis is an
important part of this process. However, it has
value beyond its contribution to self-adaptivi-
ty. Vulnerability assessments are a useful tool
for system administrators as they attempt to
keep their environments functioning. Often,
such an assessment can spot problems that can
be corrected easily, for example, by changing
filtering rules or adding a firewall. We have be-
gun to use the tool in our own lab for such as-
sessments and hope to use it more systemati-
cally as the coverage grows. 

Computational vulnerability analysis can al-
so be a valuable adjunct to intrusion detection
systems, helping to collate events over a longer
period into systematic attack plans. We have
already begun to use this tool in a limited way
in our lab to examine and prevent vulnerabili-
ties in various subspaces. We are planning to
add more expertise to the system and use it
more widely in the future. We are also plan-
ning to integrate this tool with the lab’s intru-
sion-detection system.
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Call for Proposals

Intelligent Systems Demonstrations

T
he AAAI Intelligent Systems Demonstrations program (collocated this year with IJCAI-03) showcases state-of-the-

art AI implementations and provides AI researchers with an opportunity to show their research in action. Implement-

ed intelligent systems allow us not only to experimentally validate AI research, but also to make AI research accessible

to each other, to the broader scientific community, and to the public at large.

Researchers from all areas of AI are encouraged to submit proposals to demonstrate their systems. Submissions will be eval-

uated on the basis of their innovation, relevance, scientific contribution, presentation, and “user friendliness,” as well as potential

logistical constraints. This program is primarily to encourage the early exhibition of research prototypes, but interesting mature

systems and commercial products are also eligible (commercial sales and marketing activities are not appropriate in the Intelli-

gent Systems Demonstration program, and should be arranged as part of the IJCAI-03 Exhibits program). Demonstrations that

can be used by the audience and/or that interact with the audience are particularly encouraged.

Demonstration systems should be available as much as possible during the conference exhibition. Each demonstration

will have a scheduled and advertised time during which it is the “featured” demonstration. Each accepted demonstration sys-

tem must be attended by at least one knowledgeable representative (preferably an architect of the system) who will be available

to answer in-depth technical questions at scheduled times.

Demonstration proposals must be made electronically using the forms at: www.cs.rochester.edu/research/ ijcai2003/isd/.

Researchers who cannot access the world wide web may contact the organizers to make alternative arrangements. In addition

to contact information, proposals must include the following, all of which may be submitted via the internet:

1. A two-page description in AAAI paper format of the technical content of the demo, including credits and references. These

descriptions will appear in the conference proceedings, space permitting.

2. A 150-word summary of the demo in plain text. Please include title, demonstrator names, and affiliation(s). This summary

will be used to compile a program for the demonstrations. Please try to keep the descriptions under the 150-word limit.

3. An demo storyboard of not more than six pages total or an informal videotape of the demo (in NTSC VHS format), that

describes how the demonstration will proceed (as opposed to the technical merits of the research being demonstrated). This

is the committee's primary method of evaluating your proposal. Please emphasize the elements that make your demonstra-

tion exciting and interesting. Videotapes (three copies) should be mailed to the address given on the web page.

4. A detailed description of hardware and software requirements. Demonstrators are encouraged to be flexible in their re-

quirements (possibly with different demos for different logistical situations). Please state what you can bring yourself and

what you absolutely must have provided. Generally speaking, we can provide generic PCs with standard software such as web

browsers, computer monitors, and peripherals such as TVs and VCRs. Each demonstration will be assigned a booth in the

Exhibit Hall.

Demo proposals must be received in their entirety including any supporting materials by Friday, February 21, 2003. Au-

thors will be notified of acceptance by March 18, 2003.

We especially hope that authors of papers accepted for presentation at the conference technical program will be able to

demonstrate their research in the AAAI Intelligent Systems Demonstration Program. To present a system demonstration,

however, the authors must still submit a proposal conforming to the above requirements by the Demonstration program

deadline. Submitters who wish to demonstrate intelligent mechanical systems that interact with the real world (aka “robots”)

should direct their efforts toward the Robot Exhibition.

If you have any questions or comments about the AAAI Intelligent Systems Demonstration program, we encourage you

to address them to the program organizer, George Ferguson (ferguson@cs.rochester.edu).

Collocated with the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03)

Acapulco, Mexico ■ August 9-15, 2003
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