Al Magazine Volume 22 Number 4 (2001) (© AAAI)

Agent-Centered Search

Sven Koenig

W In this article, I describe agent-centered search
(also called real-time search or local search) and
illustrate this planning paradigm with examples.
Agent-centered search methods interleave plan-
ning and plan execution and restrict planning to
the part of the domain around the current state of
the agent, for example, the current location of a
mobile robot or the current board position of a
game. These methods can execute actions in the
presence of time constraints and often have a
small sum of planning and execution cost, both
because they trade off planning and execution cost
and because they allow agents to gather informa-
tion early in nondeterministic domains, which
reduces the amount of planning they have to per-
form for unencountered situations. These advan-
tages become important as more intelligent sys-
tems are interfaced with the world and have to
operate autonomously in complex environments.
Agent-centered search methods have been applied
to a variety of domains, including traditional
search, sTriPs-type planning, moving-target search,
planning with totally and partially observable
Markov decision process models, reinforcement
learning, constraint satisfaction, and robot naviga-
tion. I discuss the design and properties of several
agent-centered search methods, focusing on robot
exploration and localization.

I researchers have studied in detail
Aoffline planning methods that first

determine sequential or conditional
plans (including reactive plans) and then exe-
cute them in the world. However, interleaving
or overlapping planning and plan execution
often has advantages for intelligent systems
(“agents”) that interact directly with the world.
In this article, I study a particular class of plan-
ning methods that interleave planning and
plan execution, namely, agent-centered search
methods (Koenig 1997a, 1996). Agent-centered
search methods restrict planning to the part of
the domain around the current state of the
agent, for example, the current location of a
mobile robot or the current board position of a

game. The part of the domain around the cur-
rent state of the agent is the part of the domain
that is immediately relevant for the agent in its
current situation (because it contains the states
that the agent will soon be in) and sometimes
might be the only part of the domain that the
agent knows about. Figure 1 illustrates this
approach. Agent-centered search methods usu-
ally do not plan all the way from the start state
to a goal state. Instead, they decide on the local
search space, search it, and determine which
actions to execute within it. Then, they exe-
cute these actions (or only the first action) and
repeat the overall process from their new state
until they reach a goal state. They are special
kinds of any-time algorithms and share their
advantages. By keeping the planning cost
(here, time) between plan executions small,
agent-centered search methods allow agents to
execute actions in the presence of time con-
straints. By adapting the planning cost be-
tween plan executions to the planning and
execution speeds of agents, agent-centered
search methods allow agents to reduce the sum
of planning and execution cost.
Agent-centered search is not yet a common
term in Al, although planning methods that fit
its definition are scattered throughout the lit-
erature on Al and robotics. In this article, I
illustrate the concept of agent-centered search
in deterministic and nondeterministic do-
mains, describe which kinds of planning task
they are suitable for, and give an overview of
some agent-centered search methods from the
literature that solve real-world planning tasks
as part of complete agent architectures. I illus-
trate agent-centered search in nondeterminis-
tic domains using robot-navigation tasks such
as repeated terrain coverage, exploration (map
building), and localization. These tasks were
performed by robots that have been used in
programming classes, entered robot competi-
tions, guided tours in museums, and explored
natural outdoor terrain. By showing that dif-

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2001 / $2.00

WINTER 2001

Articles

109

Articles

local search space

current |, |} /

state

110 AI MAGAZINE

Figure 1. Agent-Centered Search.

ferent planning methods fit the same planning
paradigm, I hope to establish a unified view
that helps focus research on what I consider to
be an exciting area of Al

Overview of
Agent-Centered Search

The best known example of agent-centered
search is probably game playing, such as play-
ing chess. In this case, the states correspond to
board positions, and the current state corre-
sponds to the current board position. Game-
playing programs typically perform a minimax
search with a limited lookahead depth around
the current board position to determine which
move to perform next. Thus, they perform
agent-centered search even though they are free
to explore any part of the state space. The rea-
son for performing only a limited local search is
that the state spaces of realistic games are too
large to perform complete searches in a reason-
able amount of time. The future moves of the
opponent cannot be predicted with certainty,
which makes the planning tasks nondetermin-
istic, resulting in an information limitation that
can only be overcome by enumerating all pos-
sible moves of the opponent, which results in
large search spaces. Performing agent-centered
search allows game-playing programs to choose
a move in a reasonable amount of time yet
focuses on the part of the state space that is the
most relevant to the next move decision.

In this article, I concentrate on agent-cen-
tered search in single-agent domains. Tradi-
tional search methods, such as A* (Nilsson
1971; Pearl 1985), first determine plans with
minimal execution cost (such as time or power

consumption) and then execute them. Thus,
they are offline planning methods. Agent-cen-
tered search methods, however, interleave
planning and execution and are, thus, online
planning methods. They can have the follow-
ing two advantages, as shown in figure 2: (1)
they can excede actions in the presence of time
constraints and (2) they often decrease the sum
of planning and execution cost.

Time constraints: Agent-centered search
methods can execute actions in the presence of
soft or hard time constraints. The planning
objective in this case is to approximately min-
imize the execution cost subject to the con-
straint that the planning cost (here, time)
between action executions is bounded. This
objective was the original intent behind devel-
oping real-time (heuristic) search (Korf 1990)
and includes situations where it is more impor-
tant to act reasonably in a timely manner than
to minimize the execution cost after a long
delay. Driving, balancing poles, and juggling
devil sticks are examples. For example, before
an automated car has determined how to nego-
tiate a curve with minimal execution cost, it
has likely crashed. Another example is real-
time simulation and animation, which become
increasingly important for training and enter-
tainment purposes, including real-time com-
puter games. It is not convincing if an animat-
ed character sits there motionlessly until a
minimal-cost plan has been found and then
executes the plan quickly. Rather, it has to
avoid artificial idle times and move smoothly.
This objective can be achieved by keeping the
amount of planning between plan executions
small and approximately constant.

Sum of planning and execution cost:
Agent-centered search methods often decrease
the sum of planning and execution cost com-
pared to planning methods that first determine
plans with minimal execution cost and then
execute them. This property is important for
planning tasks that need to be solved only
once. The planning objective in this case is to
approximately minimize the sum of planning
and execution cost. Delivery is an example. If I
ask my delivery robot to fetch me a cup of cof-
fee, then I do not mind if the robot sits there
motionlessly and plans for a while, but I do
care about receiving my coffee as quickly as
possible, that is, with a small sum of planning
and execution cost. Because agents that per-
form agent-centered search execute actions
before they know that the actions minimize
the execution cost, they are likely to incur
some overhead in execution cost. However,
this increase in execution cost is often out-
weighed by a reduction in planning cost, espe-

Articles

traditional search

planning

plan execution

agent-centered search

L |
small (bounded) planning cost between plan executions

small sum of planning and execution cost

Figure 2. Traditional Search versus Agent-Centered Search.

cially because determining plans with minimal
execution cost is often intractable, such as for
the localization problems discussed in this arti-
cle. How much (and where) to plan can be
determined automatically (even dynamically),
using either techniques tailored to specific
agent-centered search methods (Ishida 1992)
or general techniques from limited rationality
and deliberation scheduling (Zilberstein 1993;
Boddy and Dean 1989; Horvitz, Cooper, and
Heckerman 1989). Applications of these tech-
niques to agent-centered search are described
in Russell and Wefald (1991).

To make this discussion more concrete, I
now describe an example of an agent-centered
search method in single-agent domains. I relate
all the following agent-centered search meth-
ods to this one.

LEARNING REAL-TIME A* (LRTA*) (Korf 1990) is an
agent-centered search method that stores a val-
ue in memory for each state that it encounters
during planning and uses techniques from
asynchronous dynamic programming (Bert-
sekas and Tsitsiklis 1997) to update the state
values as planning progresses. I refer to agent-
centered search methods with this property in
the following as LRTA*-like real-time heuristic
search methods. The state values of Lrra*
approximate the goal distances of the states.
They can be initialized using a heuristic func-
tion, such as the straight-line distance between
a location and the goal location on a map,
which focuses planning toward a goal state.

LRTA* and LRrTA*-like real-time search methods
improve on earlier agent-centered search meth-
ods that also used heuristic functions to focus
planning but were not guaranteed to terminate
(Doran 1967). A longer overview of LRTA*-like
real-time search methods is given in Ishida
(1997), and current research issues are outlined
in Koenig (1998).

Figure 3 illustrates the behavior of LRTA*
using a simplified goal-directed navigation
problem in known terrain without uncertainty
about the initial location. The robot can move
one location (cell) to the north, east, south, or
west, unless this location is untraversable. All
action costs are 1. The robot has to navigate to
the given goal location and then stop. In this
case, the states correspond to locations, and
the current state corresponds to the current
location of the robot. The state values are ini-
tialized with the Manhattan distance, that is, the
goal distance of the corresponding location if
no obstacles were present. For example, the
Manhattan distance of the start state C1 is 3.
Figure 4 visualizes the value surface formed by
the initial state values. Notice that a robot does
not reach the goal state if it always moves to
the successor state with the smallest value and
thus performs steepest descent on the initial
value surface. It moves back and forth between
locations C1 and C2 and thus gets trapped in
the local minimum of the value surface at loca-
tion C2. There are robot-navigation methods
that use value surfaces in the form of potential

WINTER 2001 111

Articles

rst trial
the robot gets started

and so on, until
the robot reaches the goal
after 9 action executions

O = robot location
O = local search space

start goal
location location

second trial
the robot gets re-started

third trial
the robot gets re-started

and so on, until and so on, until
the robot reaches the goal | the robot reaches the goal
after 9 action executions Jafter 7 action executions -
in all subsequent trials,
the robot follows this
minimal-cost path to the goal

Figure 3. LRTA* in a Simple Grid World.

112 Al MAGAZINE

fields for goal-directed navigation, often com-
bined with randomized movements to escape
the local minima (Arkin 1998). LrRTA* avoids
this problem by increasing the state values to
fill the local minima in the value surface. Fig-
ure 5 shows how LrRTA* performs a search
around the current state of the robot to deter-
mine which action to execute next if it breaks
ties among actions in the following order:

north, east, south, and west. It operates accord-
ing to the following four steps:

First is the search step. LrRtA* decides on the
local search space, which can be any set of non-
goal states that contains the current state (Bar-
to, Bradtke, and Singh 1995). LrTA* typically
uses forward search to select a continuous part
of the state space around the current state of
the agent. For example, it could use A* to deter-
mine the local search space, thus making it an
online variant of A* because LRTA* then inter-
leaves incomplete A* searches from the current
state of the agent with plan executions. Some
researchers have also explored versions of LRTA*
that do not perform agent-centered search, for
example, in the context of reinforcement
learning with the pyNa architecture (Moore and
Atkeson 1993; Sutton 1990).

In the example of figure 3, the local search
spaces are minimal, that is, contain only the
current state. In this case, LRTA* can construct a
search tree around the current state. The local
search space consists of all nonleaves of the
search tree. Figure 5 shows the search tree for
deciding which action to execute in the initial
location.

Second is the value-calculation step. LRTA*
assigns each state in the local search space its
correct goal distance under the assumption that
the values of the states just outside the local
search space correspond to their correct goal dis-
tances. In other words, it assigns each state in
the local search space the minimum of the exe-
cution cost for getting from it to a state just out-
side the local search space plus the estimated
remaining execution cost for getting from there
to a goal location, as given by the value of the
state just outside the local search space. Because
this lookahead value is a more accurate estimate
of the goal distance of the state in the local
search space, LRTA* stores it in memory, overwrit-
ing the existing value of the state.

In the example, the local search space is
minimal, and LrRTA* can simply update the val-
ue of the state in the local search space accord-
ing to the following rule, provided that it
ignores all actions that can leave the current
state unchanged. LRTA* first assigns each leaf of
the search tree the value of the corresponding
state. The leaf that represents B1 is assigned a
value of 4, and the leaf that represents C2 is
assigned a value of 2. This step is marked 1 in
figure 5. The new value of the root node C1
then is the minimum of the values of its chil-
dren plus 1 because LRTA* chooses moves that
minimize the goal distance, and the robot has
to execute one additional action to reach the
child (2). This value is then stored in memory
for C1 (3).

Articles

value surface of the state values - —

S = N W B W

Figure 4. Initial Value Surface.

: O

add to memory
Cl=53

Agent
(MIN)

(initially empty)
If a value is not found in memory, |lag

memory LRTA* uses

the heuristic function to generate it.

Figure 5. LRTA*.

WINTER 2001 113

Articles

state values before the value-calculation step

location

start goal

location

= robot location
= local search space

Figure 6. Example with a Larger Local Search.

114 Al MAGAZINE

Figure 6 shows the result of one value-calcu-
lation step for a different example where the
local search space is nonminimal.

Third is the action-selection step. LRTA*
selects an action for execution that is the
beginning of a plan that promises to minimize
the execution cost from the current state to a
goal state (ties can be broken arbitrarily).

In the example, LRTA* selects the action that
moves to a child of the root node of the search
tree that minimizes the value of the child plus
1. Because the estimated execution cost from
the current state to a goal state is 3 when mov-
ing east (namely, 1 plus 2) and 5 when moving

north (1 plus 4), LrTA* decides to move east.

Fourth is the action-execution step. LRTA*
executes the selected action, updates the state
of the robot, and repeats the overall process
from the new state of the robot until the robot
reaches a goal state.

The left column of figure 3 shows the result
of the first couple of steps of LrTa* for the exam-
ple. The values in parentheses are the new state
values calculated by the value-calculation step
because the corresponding states are part of the
local search space. The robot reaches the goal
location after nine action executions.

If there are no goal states, then LrRTA* is guar-
anteed to visit all states repeatedly if the state
space is finite and strongly connected, that is,
where every state can be reached from every
other state. Strongly connected state spaces
guarantee that the agent can still reach every
state no matter which actions it has executed
in the past. This property of LRTA* is important
for covering terrain (visiting all locations) once
or repeatedly, such as for lawn mowing, mine
sweeping, and surveillance. If there are goal
states, then LRTA* is guaranteed to reach a goal
state in state spaces that are finite and safely
explorable, that is, where the agent can still
reach a goal state no matter which actions it
has executed in the past. This property of LRTA*
is important for goal-directed navigation (mov-
ing to a goal location).

An analysis of the execution cost of LRTA*
until it reaches a goal state and how it depends
on the informedness of the initial state values
and the topology of the state space is given in
Koenig and Simmons (1996a, 1995). This analy-
sis yields insights into when agent-centered
search methods efficiently solve planning tasks
in deterministic domains. For example, LRTA*
tends to be more efficient the more informed
the initial state values are and, thus, the more
the initial state values focus the search well,
although this correlation is not perfect (Koenig
1998). LRTA* also tends to be more efficient the
smaller the average goal distance of all states is.
Consider, for example, sliding-tile puzzles,
which are sometimes considered to be hard
search problems because they have a small goal
density. Figure 7, for example, shows the eight
puzzle, a sliding-tile puzzle with 181,440 states
but only 1 goal state. However, the average goal
distance of the eight puzzle is only 21.5, and its
maximal goal distance is only 30 (Reinefeld
1993). Thus, LRTA* can never move far away
from the goal state even if it makes a mistake
and executes an action that does not decrease
the goal distance, which makes the eight-puzzle
state space easy to search relative to other
domains with the same number of states.

If the initial state values are not completely
informed, and the local search spaces are small,
then it is unlikely that the execution cost of
LRTA* is minimal. In figure 3, for example, the
robot could reach the goal location in seven
action executions. However, LRTA* improves its
execution cost, although not necessarily
monotonically, because it solves planning tasks
with the same goal states in the same state
spaces until its execution cost is minimal,
under the following conditions: Its initial state
values are admissible (that is, do not overesti-
mate the goal distances), and it maintains the
state values between planning tasks. If LrTA*
breaks ties always in the same way, then it
eventually keeps following the same minimal-
cost path from a given start state. If it breaks
ties randomly, then it eventually discovers all
minimal-cost paths from the given start state.
Thus, LRTA* can always have a small sum of
planning and execution cost and still minimize
the execution cost in the long run.

Figure 3 (all columns) illustrates this aspect
of LrTA*. In the example, LRTA* breaks ties
among successor states in the following order:
north, east, south, and west. Eventually, the
robot always follows a minimal-cost path to
the goal location. LRTA* is able to improve its
execution cost by making the state values bet-
ter informed. Figure 8 visualizes the value sur-
face formed by the final state values. The robot
now reaches the goal state on a minimal-cost
path if it always moves to the successor state
with the smallest value (and breaks ties in the
order given earlier) and, thus, performs steep-
est descent on the final value surface.

LRTA* always moves in the direction in which
it believes the goal state to be. Although this
approach might be a good action-selection
strategy for reaching the goal state quickly,
recent evidence suggests that it might not be a
good action-selection strategy for converging
to a minimal-cost path quickly. Consequently,
researchers have studied LrrA*-like real-time
search methods that improve their execution
cost faster than Lrra* (Edelkamp 1997; Ishida
and Shimbo 1996; Thorpe 1994). For example,
although LrTA* focuses its value updates on
what it believes to be a minimal-cost path from
its current state to a goal state, FAST LEARNING
AND CONVERGING SEARCH (FALCONS) (Furcy and
Koenig 2000) focuses its value updates on what
it believes to be a minimal-cost path from the
start state to a goal state and often finds mini-
mal-cost paths faster than LrTA* in undirected
state spaces.

In the following sections, I discuss the appli-
cation of agent-centered search methods to
deterministic and nondeterministic planning

8 4
7065

goal configuration

Figure 7. Eight Puzzle.

tasks and relate these agent-centered search
methods to LRTA*.

Deterministic Domains

In deterministic domains, the outcomes of
action executions can be predicted with cer-
tainty. Many traditional domains from Al are
deterministic, including sliding-tile puzzles
and blocks worlds. Agent-centered search
methods can solve offline planning tasks in
these domains by moving a fictitious agent in
the state space (Dasgupta, Chajrabartum, and
DeSarkar 1994). In this case, the local search
spaces are not imposed by information limita-
tions. Agent-centered search methods thus pro-
vide alternatives to traditional search methods,
such as a*. They have, for example, successfully
been applied to optimization and constraint-
satisfaction problems and are often combined
with random restarts. Examples include hill
climbing, simulated annealing, tabu search,
some sAT-solution methods, and some schedul-
ing methods (Selman 1995; Aarts and Lenstra
1997; Gomes, Selman, and Koutz 1998). Agent-
centered search methods have also been
applied to traditional search problems (Korf
1990) and stripS-type planning problems
(Bonet, Loerincs, and Geffner 1997). For exam-
ple, Lrra*-like real-time search methods easily
determine plans for the twenty-four puzzle, a
sliding-tile puzzle with more than 1024 states
(Korf 1993), and blocks worlds with more than
1027 states (Bonet, Loerincs, and Geffner 1997).
For these planning problems, agent-centered
search methods compete with other heuristic
search methods such as greedy (best-first)

Articles

WINTER 2001 115

Articles

116 Al MAGAZINE

>

O = N W kA O\

value surface of the state values - —

Figure 8. Value Surface after Convergence.

search (Russell and Norvig 1995) that can find
plans faster than agent-centered search or lin-
ear-space best-first search (Korf 1993; Russell
1992) that can consume less memory (Bonet
and Geffner 2001; Korf 1993).

Nondeterministic Domains

Many domains from robotics, control, and
scheduling are nondeterministic. Planning in
nondeterministic domains is often more diffi-
cult than planning in deterministic domains
because their information limitation can only
be overcome by enumerating all possible con-
tingencies, resulting in large search spaces.
Consequently, it is even more important that
agents take their planning cost into account to
solve planning tasks efficiently. Agent-centered
search in nondeterministic domains has an
additional advantage over agent-centered
search in deterministic domains, namely, that
it allows agents to gather information early.
This advantage is an enormous strength of
agent-centered search because this information
can be used to resolve some of the uncertainty
and, thus, reduce the amount of planning per-
formed for unencountered situations. Without
interleaving planning and plan execution, an
agent has to determine a complete conditional
plan that solves the planning task, no matter
which contingencies arise during its execution.

Such a plan can be large. When interleaving
planning and plan execution, however, the
agent does not need to plan for every possible
contingency. It has to determine only the
beginning of a complete plan. After the execu-
tion of this subplan, it can observe the result-
ing state and then repeat the process from the
state that actually resulted from the execution
of the subplan instead of all states that could
have resulted from its execution. I have already
described this advantage of agent-centered
search in the context of game playing. In the
following, I illustrate the same advantage in
the context of mobile robotics. Consider, for
example, a mobile robot that has to localize
itself, that is, to gain certainty about its loca-
tion. As it moves in the terrain, it can acquire
additional information about its current envi-
ronment by sensing. This information reduces
its uncertainty about its location, which makes
planning more efficient. Thus, sensing during
plan execution and using the acquired knowl-
edge for replanning, often called sensor-based
planning (Choset and Burdick 1995), is one
way to make the localization problem
tractable.

Mobile robots are perhaps the class of agents
that have been studied the most, and agent-
centered search methods have been used as
part of several independently developed robot
architectures that robustly perform real-world

navigation tasks in structured or unstructured
terrain. Navigation often has to combine path
planning with map building or localization
(Nehmzow 2000). Consequently, I study two
different navigation tasks: First, I discuss explo-
ration (map building) and goal-directed navi-
gation in initially unknown terrain but with-
out uncertainty about the initial location.
Second, I discuss localization and goal-directed
navigation in known terrain with uncertainty
about the initial location. Agent-centered
search methods have also been used in other
nondeterministic domains from mobile robot-
ics, including moving-target search, the task of
catching moving prey (Koenig and Simmons
1995; Ishida 1992; Ishida and Korf 1991).

I am only interested in the navigation strat-
egy of the robots (not precise trajectory plan-
ning). I therefore attempt to isolate the agent-
centered search methods from the overall
robot architectures, which sometimes makes it
necessary to simplify the agent-centered search
methods slightly. I assume initially that there is
no actuator or sensor noise and that every loca-
tion can be reached from every other location.
All the following agent-centered search meth-
ods are guaranteed to solve the navigation
tasks under these assumptions. Because the
assumptions are strong, I discuss in a later sec-
tion how to relax them.

Exploration of Unknown Terrain

I first discuss exploration (map building) and
goal-directed navigation in initially unknown
terrain without uncertainty about the initial
location. The robot does not know a map of
the terrain. It can move one location to the
north, east, south, or west, unless this location
is untraversable. All action costs are one. On-
board sensors tell the robot in every location
which of the four adjacent locations (north,
east, south, west) are untraversable and, for
goal-directed navigation, whether the current
location is a goal location. Furthermore, the
robot can identify the adjacent locations when
it observes them again at a later point in time.
This assumption is realistic; for example, if
dead reckoning works perfectly, the locations
look sufficiently different, or a global position-
ing system is available. For exploration, the
robot has to visit all locations and then stop.
For goal-directed navigation, the robot has to
navigate to the given goal location and then
stop.

The locations (and how they connect) form
the initially unknown state space. Thus, the
states correspond to locations, and the current
state corresponds to the current location of the
robot. Although all actions have deterministic

effects, the planning task is nondeterministic
because the robot cannot predict the outcomes
of its actions in the unknown part of the ter-
rain. For example, it cannot predict whether
the location in front of it will be traversable
after it moves forward into unknown terrain.
This information limitation is hard to over-
come because it is prohibitively time consum-
ing to enumerate all possible obstacle configu-
rations in the unknown part of the terrain. This
problem can be avoided by restricting planning
to the known part of the terrain, which makes
the planning tasks deterministic and, thus, effi-
cient to solve. In this case, agent-centered
search methods for deterministic state spaces,
such as LrTA*, can be used unchanged for explo-
ration and goal-directed navigation in initially
unknown terrain.

I now discuss several of these agent-centered
search methods. They all impose grids over the
terrain. However, they could also use Voronoi
diagrams or similar graph representations of
the terrain (Latombe 1991). Although they
have been developed independently by differ-
ent researchers, they are all similar to LrRTA*,
which has been used to transfer analytic results
among them (Koenig 1999). They differ in two
dimensions: (1) how large their local search
spaces are and (2) whether their initial state
values are uninformed or partially informed.

Sizes of the local search spaces: I call the
local search spaces of agent-centered search
methods for deterministic state spaces maximal
in unknown state spaces if they contain all the
known parts of the state space, for example, all
visited states. I call the local search spaces min-
imal if they contain only the current state.

Informedness of the initial state values:
Heuristic functions that can be used to initial-
ize the state values are often unavailable for
exploration and goal-directed navigation if the
coordinates of the goal location are unknown,
such as when searching for a post office in an
unknown city. Otherwise, the Manhattan dis-
tance of a location can be used as an approxi-
mation of its goal distance.

In the following, I discuss three of the four
resulting combinations that have been used on
robots:

Approach 1: Uninformed LRTA* with mini-
mal local search spaces can be used unchanged
for exploration and goal-directed navigation in
initially unknown terrain, and indeed, LRTA*-
like real-time search methods have been used
for this purpose.

Several LrTA*-like real-time search methods
differ from LrTA* with minimal local search
spaces only in their value-calculation step (Korf
1990; Russell and Wefald 1991; Thrun 1992;

Articles

WINTER 2001 117

Articles

118 Al MAGAZINE

Wagner et al. 1997). Consider, for example,
NODE COUNTING, an LRTA*-like real-time search
method that always moves the robot from its
current location to the adjacent location that it
has visited the smallest number of times so far.
It has been used for exploration by several
researchers, either in pure or modified form
(Balch and Arkin 1993; Thrun 1992; Pirzadeh
and Snyder 1990). For example, it is similar to
AVOIDING THE PAST (Balch and Arkin 1993),
which has been used on a Nomad-class Den-
ning mobile robot that placed well in AAAI
autonomous robot competitions. AVOIDING THE
pAST differs from NODE COUNTING in that it sums
over vectors that point away from locations
that are adjacent to the robot with a magnitude
that depends on how often these locations
have been visited so far, which simplifies its
integration into schema-based robot architec-
tures (Arkin 1998). It has also been suggested
that NODE COUNTING mimics the exploration
behavior of ants (Wagner, Lindenbaum, and
Bruckstein 1999) and can thus be used to build
ant robots (Koenig, Szymanski, and Liu 2000);
see the sidebar.

NODE COUNTING and uninformed LRTA* with
minimal local search spaces differ only in their
value-calculation step (if all action costs are 1).
The state values of NODE COUNTING count how
often the states have been visited. Consequent-
ly, NODE COUNTING moves the robot to states
that have been visited fewer and fewer number
of times with the planning objective of getting
it as fast as possible to a state that has not been
visited at all, that is, an unvisited state (where
the robot gains information). The state values
of uninformed LRTA*, however, approximate
the distance of the states to a closest unvisited
state. Consequently, LRTA* moves the robot to
states that are closer and closer to unvisited
states with the planning objective of getting it
as fast as possible to an unvisited state. Experi-
mental evidence suggests that NODE COUNTING
and uninformed LrTA* with minimal local
search spaces perform equally well in many
(but not all) domains. However, it is also
known that LrRTA* can have advantages over
NODE COUNTING. For example, it has a much
smaller execution cost in the worst case, can
use heuristic functions to focus its search, and
improves its execution cost as it solves similar
planning tasks. An analysis of the execution
cost of NODE COUNTING is given in Koenig and
Szymanski (1999) and Koenig and Simmons
(1996).

Approach 2: Uninformed LrRTA* with maxi-
mal local search spaces can be used unchanged
for exploration and goal-directed navigation in
initially unknown terrain. It results in the fol-

lowing behavior of a robot that has to explore
unknown terrain. The robot always moves
from its current location with minimal execu-
tion cost to an unvisited location (where it
gains information), until it has explored all the
terrain (GREEDY MAPPING). It has been used on a
Nomad-class tour-guide robot that offered
tours to museum visitors (Thrun et al. 1998).
An analysis of the execution cost of unin-
formed LrRTA* with maximal local search spaces
is given in Koenig (1999) and Koenig, Tovey,
and Halliburton (2001).

Approach 3: Partially informed LrtA* with
maximal local search spaces can be used
unchanged for goal-directed navigation in ini-
tially unknown terrain. This approach has
been called incremental best-first search (Pember-
ton and Korf 1992). It results in the following
behavior of a robot that has to move to a goal
location in unknown terrain: It always moves
from its current location to an unvisited loca-
tion (where it gains information) so that it
minimizes the sum of the execution cost for
getting from its current location to the unvisit-
ed location and the estimated remaining exe-
cution cost for getting from the unvisited loca-
tion to the goal location, as given by the value
of the unvisited location, until it has reached
the goal location.

The heuristic function of incremental best-
first search can also be changed dynamically as
parts of the terrain get discovered. p* (Stentz
1995) and p+LiTE (Likhachev and Koenig 2000),
for example, exhibit the following behavior:
The robot repeatedly moves from its current
location with minimal execution cost to a goal
location, assuming that unknown terrain is tra-
versable.

(Other assumptions are possible.) When it
observes during plan execution that a particular
location is untraversable, it corrects its map,
uses the updated map to recalculate a minimal-
cost path from its current location to the goal
location (again making the assumption that
unknown terrain is traversable), and repeats
this procedure until it reaches the goal location.
D* is an example of an assumptive planning
method (Nourbakhsh 1997) that exhibits opti-
mism in the face of uncertainty (Moore and
Atkeson 1993) because the path that it deter-
mines can be traversed only if it is correct in its
assumption that unknown terrain is traversa-
ble. If the assumption is indeed correct, then
the robot reaches the goal location. If the
assumption is incorrect, then the robot discov-
ers at least one untraversable location that it did
not know about and, thus, gains information.
D+ has been used on an autonomous high-
mobility multiwheeled vehicle (HMMWYV) that

navigated 1410 meters to the goal location in
an unknown area of flat terrain with sparse
mounds of slag as well as trees, bushes, rocks,
and debris (Stentz and Hebert 1995).

D+ is similar to incremental best-first search
with the exception that it changes the heuristic
function dynamically, which requires it to
have initial knowledge about the possible con-
nectivity of the graph, for example, geometric
knowledge of a two-dimensional terrain. Figure
9 illustrates this difference between p* and
incremental best-first search. In the example,
D* changes the state value of location C1 (even
though this location is still unvisited and, thus,
has not been part of any local search space)
when it discovers that locations C3 and D3 are
untraversable because the layout of the envi-
ronment implies that it takes now at least eight
moves to reach the goal location instead of the
six moves suggested by the heuristic function.
Dynamically recomputing the heuristic func-
tion makes it better informed but takes time,
and the search is no longer restricted to the
part of the terrain around the current location
of the robot. Thus, different from incremental
best-first search, p* is not an agent-centered
search method, and its searches are not restrict-
ed to the known part of the terrain, resulting in
an information limitation. p* avoids this prob-
lem by making assumptions about the
unknown terrain, which makes the planning
tasks again deterministic and, thus, efficient to
solve. p* shares with incremental best-first
search the improvement of its execution cost as
it solves planning tasks with the same goal
states in the same state spaces until it follows a
minimal-cost path to a goal state under the
same conditions described for LRTA*.

Robot Localization in Known Terrain

I now discuss localization and goal-directed
navigation in known terrain with uncertainty
about the initial location. I illustrate these nav-
igation tasks with a similar scenario as before.
Figure 10 shows a simplified example of a goal-
directed navigation task in a grid world. The
robot knows the map of the terrain but is
uncertain about its start pose, where a pose is a
location and orientation (north, east, south,
west). It can move forward one location (unless
the location is untraversable), turn left 90
degrees, or turn right 90 degrees. All action
costs are 1. On-board sensors tell the robot in
every pose which of the four adjacent locations
(front, left, behind, right) are untraversable.
For localization, the robot has to gain certainty
about its pose and then stop. For goal-directed
navigation, the robot has to navigate to a given
goal pose and then stop. Because there might

Articles

o QO w o>

location

Incremental Best-First Search
(Static Heuristic Function)

start goal
location

(Dynamic Heuristic Function)
after rst action e xecution (robot moves right)

D