
■ I report on my experience over the past few years
in introducing automated, model-based diagnos-
tic technologies into industrial settings. In partic-
ular, I discuss the competition that this technolo-
gy has been receiving from handcrafted,
rule-based diagnostic systems that has set some
high standards that must be met by model-based
systems before they can be viewed as viable alter-
natives. The battle between model-based and rule-
based approaches to diagnosis has been over in
the academic literature for many years, but the sit-
uation is different in industry where rule-based
systems are dominant and appear to be attractive
given the considerations of efficiency, embedda-
bility, and cost effectiveness. My goal in this arti-
cle is to provide a perspective on this competition
and discuss a diagnostic tool, called DTOOL/CNETS,
that I have been developing over the years as I
tried to address the major challenges posed by
rule-based systems. In particular, I discuss three
major features of the developed tool that were
either adopted, designed, or innovated to address
these challenges: (1) its compositional modeling
approach, (2) its structure-based computational
approach, and (3) its ability to synthesize embed-
dable diagnostic systems for a variety of software
and hardware platforms.

System diagnostics, a classical engineering
concern, has become more important
than ever given the increasingly complex

systems now central to many industrial, and
nonindustrial, operations. Traditionally, indus-
trial diagnostic systems have been handcrafted
to reflect the knowledge of a domain expert.
They take the form of if-then rules that associ-
ate certain forms of abnormal system behavior
with faults that could have caused this behav-
ior. Although an improvement over manual
diagnostics, the dissatisfaction of industries
with such handcrafted systems has been grow-
ing for a number of reasons: First, the develop-
ment of such systems has proven to be

extremely difficult and time consuming. Sec-
ond, it is almost impossible to provide formal
guarantees on the quality of handcrafted diag-
nostics given the ad hoc manner in which they
are typically developed. Finally, the mainte-
nance of such systems has proven to be almost
infeasible in light of changes to the underlying
system. A little, but subtle, change to the sys-
tem configuration or architecture can invali-
date a large number of diagnostic rules and can
qualify many others. It has proven difficult to
isolate the invalidated rules, let alone update
them, under such changes.1

In an attempt to address these difficulties, I
have been advocating the use of model-based
diagnostic technologies by developing the
DTOOL/CNETS system, which I aim to describe in
this article. A model-based diagnostic
approach works simply as follows (Forbus and
de Kleer 1993; de Kleer and Williams 1987):
One develops a forward (simulation) model of
the system to be diagnosed and then invokes
diagnostic algorithms on this model to decide
whether a certain system behavior is normal or
abnormal. In case the behavior is abnormal,
further algorithms can be invoked to isolate
the system components responsible for the
abnormality.

Model-based approaches to diagnostics
overcome the main difficulties with handcraft-
ed approaches. First, developing a forward sys-
tem model is far easier than identifying diag-
nostic rules.2 Second, algorithms do exist for
answering diagnostic queries based on a sys-
tem model, and these algorithms are known to
be sound and complete.3

Third, model-based approaches do solve the
diagnostics-update problem: If the system con-
figuration or architecture changes, and such
changes are reflected in the model, system
diagnostics are automatically updated. There is
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and design decisions that I have utilized in
DTOOL/CNETS to address this dilemma. In partic-
ular, I start by presenting a simple diagnostic
problem and then discuss how rule-based and
model-based approaches would address this
problem. Here, I contrast the two approaches
and identify the obstacles that model-based
systems must overcome to be competitive with
their rule-based counterparts. I then discuss the
innovations and design decisions that I utilized
in DTOOL/CNETS to overcome these obstacles.

I dedicate a section to a three-layer modeling
approach utilized by DTOOL to shield system
engineers from the difficulties typically associ-
ated with building system models. As we see,
only the very last layer is exposed to average
system engineers, where they only see domain-
specific components from which they can
build system models. The underlying second
level consists of block diagrams, a traditional
engineering tool for building system models.
System engineers who are technologically
aware might want to address this level, but it is
otherwise reserved for AI knowledge engineers
working with domain experts. The third level is
the causal network level on which model-based
diagnostic algorithms operate and is typically
reserved for CNETS developers.

I dedicate another section to an innovative
compilation technique utilized by CNETS to
address the embeddability challenge posed by
rule-based systems. This technique allows CNETS

to compile a system model into an embeddable
diagnostic system that can require modest soft-
ware and hardware resources to operate. More-
over, the compilation technique can easily gen-
erate code for multiple software and hardware
platforms, rendering the deployability of model-
based diagnostic systems an economical reality.

I then dedicate a third section to the perfor-
mance guarantees that one obtains when using
DTOOL/CNETS. I show in this section that CNETS

algorithms are structure based, which means
that the guarantees CNETS offers on the time to
generate and the space to store an embeddable
diagnostic system are a function of the system
structure, its connectivity in particular. The less
connected the system is, the easier it is to diag-
nose and embed. Therefore, the performance
of CNETS is tied to a meaningful engineering
measure, which provides engineers with a cer-
tain level of control through their influence on
the system design process.

Deriving System Diagnostics:
The Problem 

In this section, I start by laying out a simple
diagnostic problem and discussing how it is

no need to change the diagnostic algorithms as
long as the system model is kept up to date.

Despite these attractions, I have found that
users of handcrafted, rule-based diagnostic sys-
tems are reluctant to replace these systems with
model-based ones. It is my current understand-
ing that such reluctance is the result of the fol-
lowing merits of handcrafted, rule-based diag-
nostic systems that are typically not a mark of
standard model-based approaches:

First, rule-based systems are intuitive. Engi-
neers and high-level decision makers under-
stand if-then rules; they also find it easy to
comprehend what a rule evaluator is. However,
model-based approaches require the mastering
of a modeling language, and their associated
algorithms seem to some engineers to perform
magic!

Second, rule-based diagnostics is relatively
straightforward to embed into systems; all that
is needed to implement them is a rule evalua-
tor, which is known to require little software
and hardware resources. Model-based appro-
aches, however, are complex, requiring signifi-
cant software and hardware resources.

Third, rule-based diagnostics raise no effi-
ciency issues because the evaluation of diag-
nostic rules can typically be accomplished in
linear time (in the size of rules) in the worst
case. On the contrary, many model-based
approaches are known to be infeasible practi-
cally given their memory and time demands.

Fourth, rule-based systems can be built
incrementally—in principle, such systems can
be based on a handful of rules! It is perceived,
however, that a model-based system requires a
sophisticated and detailed model before it can
be deployed.

It is for these reasons that industries are reluc-
tant to trade in a rule-based system for a stan-
dard model-based system. From an engineering
viewpoint, these merits of rule-based systems
contribute to the bottom line of cost-effective
system engineering and are not to be given up
easily, even for guarantees of soundness, com-
pleteness, and automatic update, which are the
promises of model-based approaches.

The development of the DTOOL/CNETS system
has been driven by an interest in resolving this
dilemma—that is, offering the benefits of mod-
el-based diagnostics while not compromising
the merits that have made rule-based diagnos-
tics the dominant solution in industry.
DTOOL/CNETS is composed of two main modules:
(1) a compositional modeling module, known
as DTOOL, and (2) a computational engine based
on abstract causal networks, known as CNETS

(Darwiche 1992). The main goal of this article
is to present an overview of the innovations
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typically addressed by a handcrafted, rule-
based approach versus an automated, model-
based one. I explain in more detail the trade-
offs between the two approaches and the
challenges that automated approaches tend
to face when they are introduced as alterna-
tives.

Consider the system in figure 1 that depicts
a number of line replaceable units (LRUs) in an
avionics system. A transmitter on LRU-X puts
data on the wire connecting it to LRU-Y1, …,
LRU-Y4. These data are collected by the corre-
sponding LRUs using receivers. There is a mon-
itor inside each LRU that detects whether the
corresponding receiver is seeing any data. The
problem is as follows: Given a present-absent-
unknown report from each LRU, determine
whether the transmitter or any of the receivers
is faulty.

Rule-Based Diagnostics
To handcraft a rule-based diagnostic system for
this problem, one would identify combina-
tions of reports that would indicate a failure
and then capture them into diagnostic rules.
For example, suppose that LRU-Y1 sends an
absent report, and each of the other three LRUs
sends an unknown report. That is, we know
that no data are being received at LRU-Y1, and
it is not known whether data are being received
at the other LRUs. In such a case, we are not
sure whether the transmitter is faulty (no data
are being transmitted) or whether the Y1-
receiver is faulty (data are being transmitted,
but the receiver is not seeing it). This analysis
leads to the following diagnostic rule:

If R-Y1-Out=Absent,
R-Y2-Out=Unknown, 
R-Y3-Out=Unknown,
R-Y4-Out=Unknown, 

Then either the transmitter of LRU-X is faulty,
or the receiver of LRU-Y1 is faulty. 

Here, R-Y1-Out represents the data status at
receiver R-Y1.

Suppose, however, that LRU-Y1 sends an
absent report, but each of the other LRUs sends
a present report. In this case, the receiver of
LRU-Y1 is to be blamed. A rule would then be
written to this effect:

If R-Y1-Out=Absent,
R-Y2-Out=Present, 
R-Y3-Out=Present,
R-Y4-Out=Present, 

Then the receiver of LRU-Y1 is faulty. 

The crafting of a rule-based diagnostic system is
then a process of identifying such rules
through a reflection process that attempts to
explicate abnormal system behaviors and the
causes for these behaviors. The process is
sketched in figure 2, which identifies two phas-
es: (1) an off-line phase leading to a rule data-
base and (2) an online phase that is typically
embedded.

Table 1 summarizes the pros and cons of
rule-based approaches. I then describe the
model-based approach to this problem.

Model-Based Diagnostics
A model-based approach to this problem would
proceed as follows: We first develop a model of
the system (shown in figure 1). Then, given a
combination of LRU reports, we pass the model
and reports to an algorithm, which comes back
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Figure 1. A Portion of an Avionics System. 



didate diagnosis is a system state of health, rep-
resented by an assignment of a health mode to
each system component. In this example, we
have five components: (1) LRU-X, (2) LRU-Y1,
(3) LRU-Y2, (4) LRU-Y3, and (5) LRU-Y4. Each
of these components can be either faulty or
okay, leading to 25 = 32  candidate diagnoses.
Given a system model D and some observed
behavior a, model-based diagnosis concerns
itself largely with candidates consistent with ∆
� α, which are called consistency-based diag-
noses. Typically, we have many consistency-
based diagnoses, some of which are more plau-
sible than others. One of the most common
methods for measuring plausibility is the mini-
mum-cardinality criterion. That is, a diagnosis is
more plausible than another precisely when it
involves a smaller number of faults. Therefore,
a key computational task in model-based diag-
nosis is the generation of minimum-cardinality,
consistency-based diagnoses. The example I
provided earlier, and the DTOOL/CNETS system, is
based on such an approach.4

The process of developing a model-based
diagnostic system is sketched in figure 4, which

with the components to blame (if any).
There are many frameworks for model-based

diagnostics, each based on a different model-
ing language and, hence, a different set of algo-
rithms. The classical framework, however, is
the one described in Reiter (1987) and de Kleer,
Mackworth, and Reiter (1992), where a system
is modeled using symbolic logic. If we were to
model the previous system using logic, we
would have something like what I show in fig-
ure 3.

Given an appropriate suite of diagnosis algo-
rithms (Darwiche 1998b; de Kleer 1986; Forbus
and de Kleer 1993; Reiter 1987), this model is
all we need to identify faulty components giv-
en a set of LRU reports. For example, if the
reports were such that 

R-Y1-Out=Absent
R-Y2-Out=Present
R-Y3-Out=Present
R-Y4-Out=Present

then the diagnostic algorithms would con-
clude that the Y1 receiver is faulty. 

The notion of a candidate diagnosis is central
to the theory of model-based diagnosis. A can-
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Figure 2. The Process of Handcrafting a Rule-Based Diagnostic System. 
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;;; A transmitter generates data iff it is healthy
If T-X-Mode=Ok, then T-X-Out=Present
If T-X-Mode=Faulty, then T-X-Out=Absent

;;; A receiver detects the transmitted data if it is healthy
If R-Y1-Mode=Ok and R-Y1-In=Present, then R-Y1-Out=Present
If R-Y1-Mode=Ok and R-Y1-In=Absent, then R-Y1-Out=Absent

;;; The transmitter output is connected to the receiver input
T-X-Out=R-Y1-In

;;; Symmetric models for LRU-Y2, LRU-Y3 and LRU-Y4.
.
.
.

Figure 3. A Forward System Model Expressed Using Local If-Then Rules.

Pros The rules are quite intuitive.

They can be embedded in a system cost-effectively.

Executing diagnostic rules can be done efficiently.

Cons The process of rule identification can be error prone.

The quality of identified rules is a reflection of the expert’s trou-
bleshooting abilities.

The rules can be conflicting, requiring subtle resolution techniques.

It is not clear how to test whether the identified rules are correct.

It is not clear how to test whether all applicable rules have been
identified.

Table 1. Pros and Cons of Handcrafted, Rule-Based Diagnostic Systems.

splits the process into two phases: (1) the off-
line phase, which involves model develop-
ment, and (2) the online phase, which com-
prises a system model and a suite of
algorithms. A number of observations can be
made about this approach: First, the system
model shown earlier is expressed using if-then
rules, but these rules are different from diag-
nostic rules; they are local in that each rule ref-
erences only one component. In addition,
they are forward in that each rule specifies the
output of a component in terms of its input
and health.

Diagnostic rules, however, are global and

inverted—they typically reference more than
one component, and they map input and out-
put to components’ health.

Second, table 2 outlines the pros and cons of
this model-based approach.5

As mentioned earlier, the design and devel-
opment of DTOOL/CNETS was driven by the
desire to attain the benefits of model-based
diagnostics and address their drawbacks to the
extent possible. This desire has motivated and
inspired the following innovations and design
decisions: First is a three-layer modeling
approach, which allows system engineers with
different knowledge levels to model systems at



A forward system model, however, is com-
posed of local, forward rules that appear to be
more intuitive than global, inverted ones.6

Despite this apparent intuitive appeal, I have
found that system engineers are reluctant to
pay the cost of specifying a system model to
obtain the benefits of model-based diagnostics.
I have tracked this reluctance to two main
problems: (1) modeling for diagnosis and (2)
modeling language.

With regard to the modeling-for-diagnosis
problem, engineers are accustomed to building
simulation models that are typically detailed
and can be demanding if the system to be mod-
eled is complex enough. It is this demand that
causes engineers to shy away from committing
to the development of the models necessary for
diagnosis because they expect these models to
resemble the ones they typically build for sim-
ulation purposes. It has been my experience,
however, that detailed simulation models are
not necessarily required by model-based diag-
nosis. Instead, the type of models required by

different levels of abstraction. Second is an
approach for compiling system models, which
offers model-based diagnostics in a cost-effec-
tive, cross-platform embeddable form. Third is
a structure-based computational approach that
is known to be efficient for a useful class of sys-
tems. These features are explained in detail in
the following three sections.

A Three-Layer Modeling
Approach

Both rule-based and model-based diagnostic
approaches require input from a domain
expert. In the rule-based approach, the expert
must provide diagnostic rules; in the model-
based approach, the expert must provide a for-
ward system model. As I illustrated in the pre-
vious section, diagnostic rules are global and
inverted: They typically reference multiple
components, and they map a system behavior
into a system’s state of health. 
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Figure 4. The Process of Automatically Generating System Diagnostics Using a Model-Based Approach. 



model-based diagnosis depends mainly on the
type of system failures one is interested in cov-
ering. Consider the system in figure 1 as an
example. If we are only interested in isolating
the failures of transmitters and receivers, then
these components (and their interconnections)
are all we need to model—there is no need to
model the details of each LRU. Therefore,
although a system might be complex, its model
for diagnosis might be simple. Deciding the
scope and granularity of a diagnosis model,
however, is challenging and typically requires
extensive experience in applying model-based
diagnostic techniques. Average system engi-
neers do not seem to have this kind of expertise
and, therefore, are typically not in a position to
provide the models required by model-based
diagnostic approaches.

With regard to the modeling-language prob-
lem, each model-based diagnostic approach is
based on some formal language that is used to
specify the system models of interest. The most
common languages in use are based on either
probability, logic, or a combination of both. It
is on these native languages that model-based
algorithms operate, and it is common for AI
researchers to expect engineers to specify their
models directly using these languages. DTOOL/
CNETS adopts causal networks as the modeling
language, which support both probabilistic
and logical modeling (Darwiche 1998b, 1992;
Darwiche and Pearl 1994). Figure 5 shows an
example causal network. It was my initial ex-
pectation that engineers would model their
systems by building such causal networks,7

which clearly required a certain level of under-
standing on the use of causal networks—and
any adopted modeling language for this pur-
pose. I have found out, however, that system
engineers typically lack the background or

interest necessary to develop this prerequisite
level of understanding.

The choice of causal networks as a modeling
language is driven by a number of technical
considerations, some of which are detailed lat-
er. However, whether causal networks or any
other specialized modeling language were to be
used, the modeling-language problem deman-
ded that average system engineers not be
exposed to it. My solution to this problem has
been to provide engineers with a modeling lan-
guage that they are familiar with and then
translate models specified using this language
into causal network models. This solution is
detailed in the following subsection. 

Block Diagrams
I have chosen block diagrams to address the
modeling-language problem. It is a classical
modeling tool that most engineers are familiar
with. Each system component is modeled as a
block that has input, output, and a health
mode. Once these component blocks are
defined, modeling a system becomes a matter
of creating and connecting blocks together.

Figure 6 depicts the definition of a block that
represents a data-receiver component. The
block has two input, one representing trans-
mitted data and the other representing power.
It has only one output representing received
data. The block definition indicates two health
modes for this component: (1) okay and (2)
faulty. The numbers associated with these
modes represent order-of-magnitude probabil-
ities estimating the likelihood of different
health modes (Darwiche and Goldszmidt
1994).

Once a block is defined, DTOOL makes it avail-
able to the engineer as part of a component
library. To model a system, the user engages in
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Pros It guarantees correct and complete answers to diagnostic queries.
System diagnostics are updated automatically as the model is up-
dated.
Developing a forward system model is far easier than developing
diagnostic rules.

Cons Developing a system model at the correct level of detail is a chal-
lenge.
The online portion of the architecture is demanding as far as soft-
ware and hardware resources are concerned, especially when com-
pared to the online portion of a rule-based approach.
No algorithm exists that can operate efficiently on all possible sys-
tem models—in fact, most of the known algorithms operate ineffi-
ciently on many system models.

Table 2. Pros and Cons of Automated Model-Based Diagnostic Systems.



the local consistency of individual blocks, a
task that can easily be accomplished using a
brute-force approach given the constant size of
blocks. The formal definitions of local and
global consistency of causal network models
are given in Darwiche (1998b) and Darwiche
and Pearl (1994). In particular, a block defini-
tion in DTOOL is intended to implement the
notion of a component description, as defined
in Darwiche (1998b), which formally states the
conditions it must satisfy before it can safely be
plugged into a global system model.

The block-diagram approach for modeling
systems is closely related to a number of mod-
eling languages that appeared in the context of
model-based reasoning (Kuipers [1994]; Franke
and Dvorak [1990]; Davis [1984]; de Kleer and
Brown [1984]; Genesereth [1984]). For exam-
ple, the CC language of Franke and Dvorak
(1990) allows users to model systems using
components and connections and then com-
piles such models into QSIM QDE models
(Kuipers 1994). I note here that block diagrams
are geared toward discrete, static systems.
Extending such diagrams to discrete, dynamic

a process of creating instances of components
(selected from the library) and then connecting
the input and output of these components. Fig-
ure 7 depicts a screen shot from DTOOL showing
a system model that uses the receiver block
defined in figure 6 in addition to a transmitter
block, the details of which are omitted here. 

DTOOL can translate block-diagram models
into causal network models on which causal
network algorithms will operate. Figure 5
depicts the causal network that results from
translating the block diagram in figure 6. The
translation is compositional: Each block repre-
senting a component is translated into a causal
network segment. When blocks are connected,
these causal network segments are connected
together to form a global causal network. This
compositional translation is made possible by
an important property of causal networks: If
the behavioral equations associated with each
causal network segment are locally consistent,
any causal network composed from such seg-
ments is guaranteed to be globally consistent.
Therefore, to ensure the consistency of block-
diagram models, DTOOL needs only to ensure
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If R-Y1-In=Present and R-Y1-Pow=On and R-Mode=Ok, Then R-Y1-Out=Present
If R-Y1-In=Absent and R-Y1-Pow=On and R-Mode=Ok, Then R-Y1-Out=Absent
If R-Y1-Pow=Off, Then R-Y1-Out=Absent

R-Y1-Out

T-X-Out

R-Y2-Out R-Y3-Out R-Y4-Out

R-Y1-In R-Y2-In R-Y3-In T-Y4-In

T-X-Pow

R-Y1-Pow R-Y2-Pow R-Y3-Pow R-Y4-Pow

If T-X-Pow=On and T-Mode=Ok, Then T-X-Out=Present
If T-X-Pow=Off, Then T-X-Out=Absent

If T-X-Out=present, Then R-Y1-In=present
If T-X-Out=absent,  Then R-Y1-In=absent

Causal Network Fragment

Figure 5. A Symbolic Causal Network Generated Automatically for the System Model in Figure 3.
Some of the Boolean equations are omitted for clarity of exposition. Symbolic causal networks are formally defined in Darwiche and Pearl
(1994), and their application to diagnostic reasoning is studied in Darwiche (1998b), where they are called structured system descriptions, fol-
lowing the tradition in model-based diagnosis. In a nutshell, a structured system description has two parts: (1) a system structure repre-
senting component interconnectivity and (2) a set of Boolean equations describing the behavior of system components. The two parts must
satisfy some coherence relations that are outside the scope of this article. 



systems is relatively straightforward but
involves introducing primitives for temporal
delays inside each block. Extending the dia-
grams to continuous, dynamic systems, how-
ever, is nontrivial. One should also note that
translating block diagrams into causal net-
works takes linear time and is technically
straightforward. Therefore, for AI researchers,
the adoption of block diagrams can be viewed
as a syntactic convenience, especially when
such blocks are visualized and edited using
sophisticated graphic user interfaces. However,
for engineers and end users with no AI back-
ground, the use of block diagrams can have a
much more dramatic effect—it can be the fac-
tor in deciding whether the model-based tech-
nology is adopted.

Component Libraries
Mapping block diagrams into causal networks
relieves system engineers from having to be
experienced in the use of causal networks and,
therefore, solves the modeling-language prob-
lem I discussed earlier. This technique, howev-
er, does not address the second problem I iden-
tified: the modeling-for-diagnosis problem. 

Although engineers feel comfortable using
block diagrams to model their systems, they
will need to know at what level of detail this
modeling is to take place. It has been my expe-
rience that the required level of detail is a func-
tion of the diagnostic coverage of interest and
that identifying the required level can be
involved and typically requires extensive expe-
rience in developing model-based diagnostic
applications. I have therefore concluded that
aside from trying to provide engineers with
this experience, the only solution to this prob-
lem is to develop component libraries for dif-
ferent domains and provide engineers with
these libraries to model their systems. 

Take the avionics domain, for example, and
consider the problem of diagnosing communi-
cation failures when transmitting data among
different LRUs. For this domain, I have worked
with engineers to decide the adequate scope
and granularity for system models. The formal
outcome of such a process has been the identi-
fication of a comprehensive set of components
that constitute the building blocks for models
developed for this application. For each of
these of components, we identified the input,
output, health modes, and behavioral equa-
tions, therefore producing block definitions
similar to the one shown in figure 6. The set of
block definitions induces a component library
that engineers can use to model different con-
figurations of systems in this application area.
Note, however, that the component library is

not only system specific but also class of failures
specific. That is, if interest arises in diagnosing
new system failures, it might lead to an extend-
ed (or different) component library. However,
once such a library is defined, diagnostic mod-
els can easily be developed for different config-
urations of the targeted system.

This library-based approach relieves engi-
neers from having to decide on the scope and
granularity of their system models, making the
modeling process a matter of selecting and
connecting system components. However, it
comes, of course, at the expense of generality.
A component library is general enough to han-
dle a system–class-of-failures pair only. Once
the system or the failures of interest change,
experienced knowledge engineers must get
into the loop to extend or amend component
libraries as necessary. Note, however, that a
change in the failures of interest for a given sys-
tem does not occur too often. Therefore, the
compromise worked out between generality
and usability has proven to be reasonable in
practice.
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(define-block-class receiver
(menu-name “Receiver”)
(shape … )
(outputs ((o (title “o”)

(shape …)
(values (present absent)))))

(inputs
((p (title “p”)

(shape …)
(values (true false)))

(i
(title “i”)
(shape …)
(values (present absent)))))

(modes ((ok 0) (faulty 1)))

(equation (
;;;; if mode is ok and power is on, then output = inp
(:if (:and (= mode ok) (= p true) (= i present))

(= o present))
(:if (:and (= mode ok) (= p true) (= i absent))

(= o absent))
;;;; if mode is faulty or power is off,
;;;; then no data on output
(:if (:or (= p false) (= mode faulty))

(= o absent)))
)

Figure 6. A Block Definition for Modeling a Data-Receiver Component. 



into the workings of model-based diagnosis.

Three Layers
The solutions to the modeling-language and
modeling-for-diagnosis problems led to a
three-layer modeling approach, which is
depicted in figure 8. Each of the three layers
serves a specific purpose and is intended for a
certain class of users: 

The causal network layer is introduced to
enable the use of structure-based algorithms
whose performance is governed by the connec-
tivity of a system structure. This layer is moti-
vated by performance considerations and is
typically accessible to CNETS developers only. 

The block-diagram layer is introduced to
shield engineers from having to be informed
about causal networks. It constitutes a solution
to the modeling-language problem and is typi-
cally restricted to knowledge engineers and

One should point out that the notion of
component libraries is hardly new; almost
every compositional modeling approach has its
own notion of such libraries. Therefore, my
message here is not about component libraries
as such but about the distinction between those
who build such libraries and those who use
them to model systems. It is reasonable to
expect that an average engineer would be capa-
ble of modeling a system by instantiating and
composing components from a well-developed
library. However, it is not as reasonable to
expect such an engineer to build a component
library for a particular domain. Building com-
ponent libraries typically requires reasonable
experience with model-based diagnosis because
it hinges on subtle choices regarding scope and
granularity. Moreover, such choices, as I argued
earlier, are specific to the class of failures of
interest and sometimes demand key insights
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Figure 7. A DTOOL Screen Shot Depicting a System Model Specified Using a Block Diagram. 
In this figure, the user has set the reports of receivers Y1, Y2, and Y3 to present and the report of receiver Y4
to absent. DTOOL replies by indicating the existence of a single diagnosis and highlights receiver Y4 as the faulty
component in the identified diagnosis. 



advanced system engineers. 
The component-libraries layer is introduced to

shield engineers from having to decide on the
scope and granularity of their system models. It
represents a solution to the modeling-for-diag-
nosis problem and is accessible to the average
system engineer. 

Compositional system modeling is a desir-
able paradigm that is sought by many model-
based approaches. What distinguishes DTOOL,
however, is the ease with which it has encom-
passed this paradigm. This ease is mainly
attributed to the use of causal networks as the
underlying modeling language, as I described
earlier. I stress, however, that the most impor-
tant element contributing to the success of
DTOOL has not been the notion of composition-
al modeling as such but the existence of com-
ponent libraries that has clearly been enabled
by such compositionality.

Embeddable Diagnostics
DTOOL/CNETS supports two modes of reasoning:
(1) interactive and (2) embedded. In the inter-
active mode, the user poses diagnostic queries
to DTOOL, which transfers them to CNETS. The
results of these queries are computed by CNETS

and handed back to DTOOL, which takes on the
responsibility of displaying them to the user.
Figure 7 depicts an example scenario of this
interactive mode, and figure 9 depicts the cor-
responding information flow. The algorithms
underlying this interactive mode are given in

Darwiche (1998b) together with pseudocode
for implementing them using a procedural pro-
gramming language.8

This interactive mode is the initial mode of
reasoning envisioned for DTOOL/CNETS because
it conforms to the mainstream view of how
model-based diagnostics should be implement-
ed. This mode is important, especially for mod-
el development because it allows one to debug
the model by posing different queries that
explicate the model’s behavior. 

I have encountered key difficulties, however,
when trying to deploy DTOOL/CNETS in a num-
ber of applications because it initially support-
ed only this mode of interaction. In these
applications, the software and hardware plat-
forms hosting the diagnostic system were so
limited that they could not support a complex
and demanding system such as DTOOL/CNETS.
Even when the platforms were rich enough,
they conflicted with the platform for which
DTOOL/CNETS was initially developed (Allegro
Common Lisp on a PC). One application
required implementation on an in-house
processor using ADA. Another application
required the use of a hardware platform known
as a programmable logic controller running a
dedicated programming language known as
LADDER LOGIC (LL) (Darwiche and Provan 1996).
The situation was complicated further by the
existence of handcrafted, rule-based diagnostic
systems on these platforms, which have been
implemented successfully under the men-
tioned constraints.9
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form. CNETS will then generate a corresponding
diagnostic system, which is depicted on the
right of figure 10.

The synthesized embeddable diagnostic sys-
tem is composed of two components: (1) a sys-
tem compilation and (2) a diagnostic evaluator.
The system compilation is simply a Boolean
expression in decomposable negation normal
form (Darwiche 1999b, 1998a). The time to
generate the system compilation and the space
to store it depend on properties of the system
model. Moreover, this Boolean expression
must be regenerated any time the system mod-
el or observables change. The compilation,
however, is independent of the software-hard-
ware platform. The diagnostic evaluator is a sim-
ple piece of software that can answer diagnos-
tic queries by operating in linear time on the
system compilation. The evaluator is devel-
oped only once for a given software-hardware
platform and can operate on the compilation
of any system model. Note that CNETS has a
number of platform-specific evaluators, one of
which is selected and included in the embedd-
able diagnostic system. The simplicity of the
evaluator, however, makes it easy to develop
multiple versions of it, each oriented toward a
specific platform. I now briefly describe these
two components; more detailed descriptions
can be found in Darwiche [1999a, 1998a]).

Suppose that ∆ is a set of Boolean sentences

Trimming DTOOL/CNETS could have helped in
reducing its software and hardware demands,
but one could have only gone that far with
such a solution. Moreover, developing a new
version of DTOOL/CNETS for each platform was
clearly cost ineffective given the complexity of
the system and the multiplicity of platforms to
support. 

To address these problems, I equipped
DTOOL/CNETS with an embeddable mode in addi-
tion to its interactive mode. The embeddable
mode is based on a technique for compiling a
system model into an embeddable diagnostic
system that can easily be targeted toward a par-
ticular platform (Darwiche 1998a; Darwiche
and Provan 1997). According to this compila-
tion approach, the user develops a system
model in DTOOL, specifies which component
ports will be observed, and selects a software-
hardware platform for the embeddable diag-
nostic system.

CNETS will then generate an embeddable
diagnostic system for the selected platform.
Consider figure 10. The user has modeled a sys-
tem that consists of two cascaded inverters by
selecting and connecting two instances of the
inverter component from the digital logic
library. The user has also specified that he/she
wants to collect observations about the input A
and output C of this system. He/she has also
selected C++/PC as the software-hardware plat-

Articles

68 AI MAGAZINE

Query

Result

Block
Diagram

Causal

Network
Jointree

Inference
Engine

DTOOL

CNETS

Figure 9. Information Flow in the Interactive Mode of DTOOL/CNETS.
Key to the computations underlying this interactive mode is the transformation of a causal network into a join
tree, which can be viewed as an aggregation of the system components into a tree structure. The complexity
of reasoning in the interactive mode is governed by the properties of the join tree (Darwiche 1998b). 



that represent a system model. Suppose further
that O and A are sets of atoms appearing in ∆
that represent observables and faults, respec-
tively. If X are all atoms in ∆, excluding observ-
ables and faults, then compiling model ∆ can
be done in two steps: First is eliminating any
reference to atoms X from ∆ to yield another
model ∆′, which is equivalent to ∆ in terms of
answering queries about the observables O and
faults A. This process is known as computing
the consequence of ∆ on O and A (Darwiche
1998b). It is also known as forgetting about X
in ∆ (Lin and Reiter 1994). Second is convert-
ing the transformed model ∆′ into decompos-
able negation normal form (DNNF) ∆′′ (Dar-
wiche 1999b).

Therefore, the result of this compilation is a
model ∆′′ , which (1) mentions only observables
and faults, (2) is equivalent to the original
model ∆ in terms of queries about observables
and faults, and (3) is in DNNF.

A sentence is in negation normal form (NNF)
precisely when it is constructed from literals
using the conjoin and disjoin operators. To be
decomposable, an NNF must satisfy the follow-
ing property: Any time a conjunction α � β
appears in the NNF, the two conjuncts α and β
should not share atoms. A DNNF is represented
using a rooted directed acyclic graph, where
each internal node represents an operator
(and-or), with its children representing
operands (conjuncts-disjuncts). Figure 10
depicts a sentence in DNNF.

DNNF is a tractable form. There are more

than half a dozen logical operations that can be
applied to DNNF in linear time, and these oper-
ations are sufficient to implement the compu-
tational tasks of model-based diagnosis. I
describe some of these operations here:

Testing the satisfiability of a DNNF: This
operation is all we need to decide whether a
certain system behavior is normal (consistent
with the given model).

Computing the minimum cardinality of
solutions that satisfy a DNNF: This operation
can be used to compute the smallest number of
faults implied by a system observation.10

Minimizing a DNNF to exclude solutions
that do not have a minimum cardinality:
This operation can be used to focus on mini-
mum-cardinality diagnoses.

Enumerating the solutions of a DNNF:
This operation can be used to generate diag-
noses.

Each one of these operations can be imple-
mented by simply traversing the structure of a
DNNF while performing a simple operation at
each node in the DNNF. For example, to com-
pute the minimum cardinality of any DNNF
solution, all we need to do is the following:

For each leaf node in the DNNF, assign the
number 0 if the node represents a positive
literal and 1 if it represents a negative lit-
eral.

For each And node in the DNNF, assign
the summation of numbers assigned to its
children.
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tems efficiently. This fact could be dis-
couraging, except that one might not
be interested in compiling all kinds of
systems! As it turns out, the compila-
tion technique I developed is known
to be effective on a certain class of sys-
tems, which is meaningful from an
engineering viewpoint.

Specifically, the basic algorithms
underlying CNETS are structure based,
which means that the amount of work
they perform is a function of the sys-
tem structure on which they operate.
The performance of these algorithms
is sensitive to the connectivity of the
system structure because it will
improve as the system structure
becomes less connected. For example,
if the system structure does not have
cycles, the performance of the algo-
rithms is known to scale linearly in the
size of the system model. Linear scale-
up is attractive, but one rarely has sys-
tems that are cycle free. In such a case,
the performance will degrade (from
being linear) depending on the num-
ber of such cycles and how they inter-
act. Figure 11 depicts three system
structures with the same number of
variables but with increasing connec-
tivity. The performance of CNETS algo-
rithms degrades as we move from left
to right.

The formal connection between the
performance of CNETS algorithms and
the connectivity of a system structure
is given in Darwiche (1998b) for the
interactive reasoning mode and in
Darwiche (1999a, 1998a) for the
embeddable mode. In a nutshell, the
system connectivity is measured using
a graph-theoretic parameter known as
the tree width (Dechter 1992; Robert-
son and Seymour 1986; Arnborg
1985). The CNETS algorithms are
known to be exponential only in the
tree width of the system structure and
linear in all other aspects of the sys-
tem. Therefore, if the tree width is
bounded, then compiling a device can
be accomplished in linear time and
leads to a compilation that can be
stored in linear space. Many important
classes of structures have a universal
bound on their tree width. For exam-
ple, trees and forests have a tree width
no greater than 1. Singly connected
directed graphs (those with no cycles)
have a tree width equal to k, where k is

vious constraints. The compilation
approach I discussed earlier, however,
reduces the online diagnostic system
to a combination of a Boolean expres-
sion and a simple evaluator. This
online system is marked by its small
footprint and its algorithmic simplici-
ty, therefore allowing cost-effective
implementations under the previous
constraints.

Although the space occupied by a
diagnostic evaluator is limited and is
independent of the compiled system,
the storage needed for a system compi-
lation is a function of the system prop-
erties. Depending on the system, the
size of the compilation might or might
not be acceptable. To give some feel of
the resources required by an embed-
ded system, a compiled Lisp evaluator
that implements all DNNF operations
can take less than 25 kilobytes to store.
The DNNF itself can range in size from
a few tens of kilobytes to a few
megabytes, depending on the system
size and connectivity; however, a few
hundred kilobytes is not uncommon
for a system involving a few hundred
components. The diagnostic compiler,
however, does provide some specific
guarantees on the complexity of this
compilation process that are discussed
in the following section. 

The Structure-Based 
Guarantees

When a sophisticated and complex
technology is presented to an engi-
neering audience, one of the first ques-
tions asked about it is, How well does
it scale? Model-based diagnostics is no
exception! Even after beating the
modeling and embeddability barriers,
the question that reared its head is,
Does this really work on real-world
systems? Specifically, how long does it
take to compile a system, and what
should we expect the size of its embed-
ded version to be? Note that answers
to such questions will definitely be
evaluated in light of what is known
about existing systems, rule-based sys-
tems in particular.

As is the case for many interesting
computational tasks, compiling a sys-
tem is intractable in general, which
means that it is unlikely that we would
ever be able to compile all kinds of sys-

For each Or node in the DNNF,
assign the minimum of numbers
assigned to its children.

The number that gets assigned to
the root of the DNNF is then guaran-
teed to be the minimum cardinality
of any solution to the DNNF. If we
apply this process to the DNNF in fig-
ure 10, we get the number 0, which
means that the DNNF has a solution
with cardinality 0. The solution hap-
pens to be A � C � okX � okY in this
case. 

The diagnostic evaluator depicted in
figure 10 is simply a piece of software
that implements the subset of DNNF
operations necessitated by the given
domain application. For example, if
we want to simply determine the min-
imal number of faults present in a
device given a system observation,
then all we need to implement is the
procedure for computing the mini-
mum cardinality of a DNNF. The theo-
retical underpinnings of the compila-
tion approach and the guarantees it
offers on the time to generate (and
space to store) a system compilation
are detailed in Darwiche (1999a,
1999b, 1998a).11 In this article, how-
ever, I only stress the two key prob-
lems alleviated by this compilation
technique: (1) multiple-platform sup-
port and (2) the embeddability of diag-
nostic systems.

Multiple-platform support: To
generate a diagnostic system for a new
software-hardware platform, one
needs to perform only two steps: First,
implement a version of the diagnostic
evaluator that is specific to the plat-
form (Darwiche 1999a, 1998a). Sec-
ond, add the implemented evaluator
to CNETS. The new evaluator will then
be coupled with any system compila-
tion to generate an embeddable diag-
nostic system for this platform. More-
over, the evaluator itself is so simple
that it renders this platform-specific
implementation fast and cost effec-
tive.

Embeddability of diagnostic sys-
tems: Embeddable systems are typical-
ly marked by tight, inflexible con-
straints and interface requirements.
The more complex the embedded sys-
tem is (from algorithmic and footprint
viewpoints), the harder it is to imple-
ment it cost effectively under the pre-
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the maximum number of parents to a
node. Moreover, series-parallel and
outerplanner graphs have a tree width
no greater than 2 (Arnborg, Corneil,
and Proskurowski 1987). Structure-
based algorithms are now dominant in
the probabilistic and constraint litera-
tures where the connectivity of
Bayesian-constraint networks drives
the performance of various key algo-
rithms (Dechter 1992; Jensen, Lau-
ritzen, and Oleson 1990; Pearl 1988).

The version of DTOOL/CNETS dis-
cussed in this article is a prototype
developed under Allegro Common
Lisp on a PC platform. Its modeling
and diagnosis abilities have been
demonstrated on a variety of industri-
al systems, including avionics for com-
mercial airplanes, discrete-event sys-
tems for manufacturing floors,
space-shuttle controllers, and in-flight
entertainment. 

My experience with these industrial
applications has confirmed two
points: First, the most critical step in
the modeling process is the identifica-
tion of library components and the
level of detail at which they should be

modeled. Second, many realistic sys-
tems tend to have manageable tree
widths (less than 15). I note, however,
that it is not uncommon to encounter
system structures with large widths
(greater than 20), leading to compila-
tions of unacceptable size. It is my
belief that dealing with such systems
effectively hinges on extending the
current technology in at least one of
the following directions:

Utilizing nonstructural system
properties (system behavior) in the
compilation process: Computational
approaches that rely on system struc-
ture only are bound not to be optimal
because the system behavior plays a
crucial role in determining the diffi-
culty of a system. Specifically, two sys-
tems can have the same structure, but
one might be easier to, say, compile
than the other because of the differ-
ence in their behavior. Initial results in
this research direction are reported in
Darwiche (1999d).

Trading the completeness of the
diagnostic system with its storage
requirements: In rule-based systems,
one has full control over the degree of
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Figure 11. System Structures with Increasing Connectivity.
The complexity of CNETS algorithms increases from left to right. 

completeness because one is free to
include as many rules as one wants.
Typically, only the most significant
rules are included with the unlikely
ones excluded. The theory of model-
based diagnosis, however, does not
provide a parameter for trading the
completeness of reasoning with its
complexity. This parameter is essen-
tial, however, because many of the
diagnostic queries covered by a com-
plete model-based system concern
system behaviors that are too unlikely
to materialize, rendering the com-
pleteness property a matter of pure
theoretical interest (Keller 1990; Davis
1989). Initial results in this direction
are reported in Darwiche (1999c).

My current research focuses on
addressing these extensions. One of
the key recent developments in this
regard has been the introduction of
the device decomposition tree (Darwiche
1999d), which is a formal tool for
staging structure-based reasoning. I
have proposed decomposition trees as
an alternative to join trees, which are
the current standard for structure-
based reasoning. Using decomposi-



incomplete—that is, they might not be as
strong as our intuition would suggest—if
the model itself is incomplete. One of the
tenets of model-based diagnosis, however,
is that ensuring the completeness of a for-
ward, simulation model is easier than
ensuring the completeness of a set of diag-
nostic rules. This argument has some tech-
nical merits: There are many complete
models that have linear size yet entail an
exponentially sized, complete set of diag-
nostic rules.

6. I am assuming a relatively new system
with which we do not have much experi-
ence. If a system has been in service for a
long time, some technicians tend to devel-
op good understandings of how certain
behaviors associate with certain faults. In
this case, diagnostic rules are not being
developed by reflecting on the behavior of
a newly designed system but are being
recalled from previous experience.

7. This seems to be a widely held expecta-
tion in the literature on causal networks. 

8. The algorithms described in Darwiche
(1998b) are actually more recent than those
implemented in CNETS, which are based on
Darwiche (1992). The algorithms in Dar-
wiche (1998b) are much simpler and offer
stronger complexity guarantees.

9. From a theoretical viewpoint, it is hard
to see how one would prefer a rule-based
system over a model-based one. To appreci-
ate this preference, however, consider the
following argument, which sums up the
perspective in industry. Using a handcraft-
ed, rule-based approach, the problems of
correctness, completeness, and model
update can all be resolved to a large extent
(with high cost and difficulty) before the
diagnostic system is deployed. Once the
online diagnostic system is deployed, one is
guaranteed efficiency and a small footprint,
which is exactly what matters as we embed
a diagnostic system on an artifact. Contrast
this approach with the model-based
approach, which simplifies the develop-
ment of a diagnostic system and provides
correctness and completeness guarantees
yet entails an online diagnostic system
with potential efficiency and footprint
problems. The bottom line is, Do you pay
the penalty in the laboratory—while you
develop and update the diagnostic sys-
tem—or do you pay it with the artifact—as
you embed the diagnostic system? As it
turns out, in many real-world situations, it
makes more sense to pay a one-time cost in
the laboratory (a developer’s territory) than
to pay it on each and every artifact (a user’s
territory).

10. Recall that the cardinality of a solution
is the number of negative literals in the
solution. For example, ¬ A ` ¬ C okX ` okY

sity, Jim Martin at RSC/Palo Alto, and
Sujeet Chand at RSC/Thousand Oaks. 

I also want to thank Gregory Provan
of RSC/Thousand Oaks—where the
DTOOL/CNETS system was adopted and
put to good use—for his continued
interest in this system, and our partner
Chuck Sitter of Collins Commercial
Avionics who strongly believed in this
research effort and provided much
valuable support. Matthew Barry of
Rockwell/Houston Mission Control
Center was the first “real-world” user
of CNETS. His endorsement of the sys-
tem in my early days at RSC/Palo Alto
was crucial in getting RSC to adopt
and nurture model-based technolo-
gies. Finally, my current understand-
ing of device compilations as reflected
in the many references I cite in this
article is owed to the pleasant two
years I spent in Beirut, where I had to
explain my work to mathematicians,
forcing me to establish an abstract
understanding of what started as a
down-to-earth exercise in software
engineering. 

Notes
1. These observations, and related ones
throughout the article, are based on years
of collaborative work with engineers in sev-
eral industries, including aerospace, indus-
trial automation, and commercial avionics.

2. This statement assumes that diagnostic
rules are identified by reflecting on the sys-
tem behavior as opposed to using automat-
ed methods such as fault insertion and sim-
ulation.

3. However, many practical implementa-
tions of these algorithms compromise com-
pleteness or soundness to reduce computa-
tional complexity.

4. An important issue in model-based diag-
nosis is whether to allow multiple faults or
simply assume the existence of a single
fault. Under a single-fault assumption, we
only have a linear number of candidate
diagnoses (instead of exponential), which
simplifies the computational problem con-
siderably. Model-based approaches typical-
ly admit multiple faults. Rule-based
approaches typically allow single faults
only.

5. The completeness of model-based–diag-
nosis algorithms is with respect to the giv-
en model. That is, any diagnostic conclu-
sion that follows from the model and laws
of logic (or probability if a probabilistic
approach is used) are guaranteed to be dis-
covered by these algorithms. However,
such conclusions can be intuitively

tion trees, I was able to exploit system
behavior to achieve orders-of-magni-
tude improvements over purely struc-
ture-based approaches. This improve-
ment has been achieved for the
interactive reasoning mode of CNETS,
and I am currently working on gener-
alizing the technique to the compiled
mode. 

Conclusion
The development of DTOOL/CNETS has
been driven by the competition that
automated, model-based approaches
receive from handcrafted, rule-based
approaches. Although the battle
between these approaches has been
over in the academic literature for
many years now, the situation is differ-
ent in industry where rule-based sys-
tems are dominant and appear to be
attractive given the considerations of
efficiency, embeddability, and cost
effectiveness. 

I presented a perspective on this
competition and discussed my
approach toward addressing two of
the major barriers facing model-based
diagnostics: (1) modeling and (2)
embeddability. Specifically, I presented
a three-layer modeling approach that
renders the process of building system
models a matter of selecting and con-
necting system components. I also
presented a compilation approach
that allows one to synthesize embedd-
able diagnostic systems for different
software and hardware platforms.
Finally, I discussed the formal guaran-
tees that the developed tool offers on
the time to generate and the space to
store embeddable diagnostic systems,
showing that both time and space
complexity are linear in the device
size, assuming that the device struc-
ture has a bounded tree width.
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and ¬ A ` ¬ C ` ¬ okX ` okY are two solutions
for the DNNF in figure 10 with cardinalities
2 and 3, respectively.

11. CNETS (Darwiche 1992) is based on a the-
ory of abstract causal networks that sup-
ports both symbolic (Darwiche and Pearl
1994) and probabilistic (Pearl 1988) causal
networks. Therefore, the compilation tech-
nique is also applicable to probabilistic
causal networks, as is shown in Darwiche
and Provan (1997). In the probabilistic
domain, the compilation is known as a
query directed acyclic graph. In the symbolic
domain, the compilation is known as a
compiled system description following the
tradition in model-based diagnosis where a
system model is referred to as a system
description (Darwiche 1999a, 1998b).
Because DTOOL supports symbolic causal
networks only, compiling a probabilistic
causal network requires direct interaction
between the user and CNETS.
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