
■ Distributed SIPE (DSIPE) is a distributed planning sys-
tem that provides decision support to human
planners in a collaborative planning environment.
The key contributions of our research on DSIPE are
(1) constraint-based, consistent local views of the
global plan that give each planner a view of how
other planners’ subplans relate to their local plan-
ning decisions; (2) methods for automatically
identifying and sharing potentially relevant infor-
mation among distributed planning agents; and
(3) techniques for merging subplans that leverage
the shared subplan structure to generate a com-
plete, final plan. DSIPE is a fully implemented sys-
tem and has been demonstrated to end users in the
maritime (United States Navy and United States
Marine Corps) planning community.

This article describes distributed SIPE-2
(system for interactive planning and exe-
cution) (DSIPE), a distributed version of

the SIPE-2 hierarchical task network (HTN)
planning system (Wilkins 1988). DSIPE provides
the user with semiautomated generation of cri-
sis-response options, in the presence of multi-
ple, competing objectives and constraints,
within a distributed computing environment
that includes multiple planners collaboratively
creating a plan to achieve a set of common
objectives. DSIPE is most closely related to
Corkill’s (1979) distributed version of NOAH, a
nonlinear hierarchical planner from which
SIPE-2 is conceptually descended. DSIPE extends
the ideas in distributed NOAH by focusing on
efficient communication among planners and
the creation of a common partial view of sub-
plans. All the capabilities described in this arti-
cle are part of the current implemented system,
except where noted. Our current application
domain is maritime campaign planning, but
the techniques are domain independent.

Distributed Planning
In our distributed planning environment, mul-

tiple copies of the DSIPE planner run on separate
processors that are connected across a network.
These distributed processes communicate with
each other by message passing.1 Each instance
of DSIPE supports a human planner. We refer to
the human planner as the user, DSIPE as the
planning system, and the user and planning sys-
tem together as a planning cell.

As in SIPE-2, plans in DSIPE are represented as
partially ordered networks of tasks and sub-
goals. Plans are expanded by applying planning
operators, which represent templates or strate-
gies for solving a goal. Each operator has pre-
conditions (gating applicability conditions),
constraints (used for binding variables and as-
signing resources), a plot (a partially ordered
network of tasks and subgoals that expands the
goal being solved), and effects (postconditions
that are expected to be true in the world state
after the plot is applied).

A high-level view of our distributed planning
architecture is shown in figure 1. Goals are dis-
tributed from a coordinating planning cell
down to lower-level planning cells, which
exchange information with each other as they
expand their subplans. (Although only two
lower-level planning cells are shown, the archi-
tecture can support an arbitrary number of
cells. Also, a lower-level planning cell can itself
act in the role of a coordinator for additional
planning cells, resulting in a hierarchy of cells.)
Each planning cell has a partial view of the oth-
er cells’ subplans, with explicit dependencies
and relationships with the local cell’s subplan.

Throughout the article, we demonstrate
DSIPE’s operation using an example from the
maritime planning domain. The scenario is a
noncombatant evacuation operation in which
civilian personnel must be evacuated from a city
where there has been an insurrection. A Marine
Corps planner and a naval planner must work
together to clear and land on a beach, move
inland, and evacuate the civilians to an offshore
vessel. The planners in this example have sepa-
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Figure 3 shows part of the Marine Corps sub-
plan, before the planning cell has received any
postconditions from the naval planning cell.
The hexagons represent goals, and the round-
ed oblongs represent primitive tasks. The
arrows show temporal orderings, and activities
that are not ordered can occur in parallel. In
this subplan, the Prep-Land (prepare to land
on the beach) task is in parallel with another
branch of the plan. In the lower branch, there
are two goals in sequence: (1) Beach-App-Clr
(clear the approach to the beach, that is, the
water immediately adjacent to the beach, of
mines and enemy troops) and (2) Returned-To
(return to the offshore vessel). These two goals
are in parallel with a third goal, Beach-Cleared
(clear the beach itself). These two parallel
branches are followed by several other goals:
Trans-To (transport the marines from the
beach to the evacuation site), Intel-Done
(complete an intelligence survey of the evacu-
ation site), and Evac-Grp-Done (transport the
evacuees to a safe location).

The darker nodes in the display correspond to
goals in the remote (naval) subplan. (These
nodes appear in red in the screen display.) The
other nodes are part of the local (Marine Corps)
subplan. For example, the Prep-Land task and
the Beach-Cleared subgoal are part of the Marine
Corps subplan; the Beach-App-Clr and Returned-
To subgoals belong to the Naval subplan.

rate but related requirements, goals, and priori-
ties. Although their requirements overlap for
this mission, they each have independent goals
(other missions to be performed or supported),
capabilities, and resources.

Distributing Goals
Distributed planning in DSIPE follows the hier-
archical model used by SIPE-2. The coor-
dinating planning cell develops a high-level
plan that achieves the top-level objectives of
the current planning problem. The coordina-
tor then distributes this high-level plan to low-
er-level planning cells, partitioning the sub-
goals among the cells. This model works well
in the military environment because the plan-
ning cell levels naturally correspond to eche-
lons in the military hierarchy. In a less struc-
tured collaborative environment, alternative
models of goal distribution might be required;
for example, each cell might develop its own
goal set and notify the other agents what it was
planning to work on.

As shown in figure 2, the planning cells
expand their subplans separately but share rel-
evant information and constraints, as discussed
in the following sections. At the end of the
planning process, the coordinator merges the
subplans together, as discussed in Plan Merging.
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Common Plan View
We extended SIPE-2’s internal plan representa-
tion so that each planning cell has a complete
representation of its own subplan as well as a
partial representation of the subplans being
developed by other planning cells. Subgoals
being solved by other cells are represented in
the local subplan as goal nodes that are not ex-
panded. These nodes serve as placeholders for
attaching postconditions and other con-
straints, which are sent by the remote plan-
ning cells that are responsible for expanding
these goal nodes. The three types of constraint
that are currently communicated among plan-
ning cells are (1) postconditions, (2) ordering
constraints, and (3) variable constraints
(including temporal variables).

During plan generation, postconditions are
associated with tasks and subgoals through the
process of operator expansion. Each planning
cell automatically identifies postconditions
that might be relevant to other cells, as dis-
cussed in the next section. Suppose the cell A
determines that a set of postconditions are rel-
evant to remote cell B. Suppose further that
these postconditions appear in the expansion
of a high-level goal G in A’s subplan. These
postconditions are sent to cell B, which adds
them to its subplan as additional nodes,
appearing immediately before the placeholder
node that corresponds to G. Along with the
postconditions, ordering links and updated
variable constraints are sent and attached to
the added postcondition nodes.

The parts of a local subplan that a remote
planning cell has been informed of make up a
skeletal subplan that corresponds to the
remote cell’s view in the local cell’s subplan.
The local cell maintains a record of this skele-
tal subplan; that is, it keeps track of the partial
ordering associated with the postconditions
that have been sent to the remote cell. The
ordering links associated with the skeletal sub-
plan are sent to the remote planning cell, so
that it can construct the same partial ordering
for the postconditions. When additional post-
conditions are sent to the remote cell, only the
ordering links necessary to incrementally
update the skeletal plan are sent along with
the postconditions.

All the constraints associated with variables
in the postconditions are also passed to the
remote agent. For example, if a postcondition
is sent that states that unit X is located at point
Y, the constraints on variables X and Y are also
sent. These constraints can include class con-
straints (X is of type Force Reconnaissance
Unit), properties (X has 40 troops), and instan-
tiations (Y is bound to Pacifica-Beach-A).

The result is that each planning cell has a
view of the overall plan that varies in detail:
The view of the cell’s own subplan is complete,
but the view of the parts of the plan being
developed by other cells are more or less
sketchy, depending on how much information
is determined to be relevant.

Information Sharing
The goal of information sharing in DSIPE is to
minimize message passing among planning
cells (especially important in limited-band-
width environments) yet provide conflict
detection and resolution early in the planning
process. This goal is accomplished by sending
constraints that arise during each cell’s plan-
ning process to other cells that might need to
use the constraints or that might generate sub-
plans that conflict with them. Irrelevance rea-
soning is used to filter constraints that are
guaranteed not to be of interest to other cells,
thus reducing the communication require-
ments without sacrificing consistency.
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(that is, which types of knowledge) are used in
the preconditions of the operators that might
be applied to expand the objectives. The post-
conditions within the generated subplan are
matched to the predicates in this tree to deter-
mine whether the postcondition might be
relevant to the remote planner (that is,
whether it potentially matches a precondition
in the remote subplan).

Figure 4 shows a query tree for the Beach-
Cleared goal in the maritime campaign plan-
ning example. The query tree is generated by
identifying operators that could be used to
achieve the Beach-Cleared goal, propagating
any variable class constraints down the tree
and applying the process recursively to goals
identified within the operators in the tree. The
preconditions associated with the operators in
the resulting tree, together with the class con-
straints, describe the classes of ground facts
that are potentially relevant to achieving the
top-level objective(s) in the query tree.

As reported in Wolverton and desJardins
(1998), irrelevance-based filtering can reduce
message traffic substantially. For the two
domains in which we ran experiments—a
logistics domain and the maritime campaign
planning domain presented here—using irrel-
evance-based filtering reduced the number of
messages sent by 18 percent and 94 percent,
respectively. Planning time was also reduced:
Because fewer remote postconditions are
added to the local subplan, less computation
needs to be done to compute the impact of

Throughout the planning process, each
planning system monitors the local cell’s plan-
ning activity for constraints and subgoals that
might be relevant to other planning cells and
notifies the cells of this information. For exam-
ple, the naval planning cell might notify the
Marine Corps planner that a particular landing
area will be swept of mines by a specified time.
Currently, the only constraints that are moni-
tored in this way are the postconditions. In
future work, we will develop methods to mon-
itor temporal and other variables, precondi-
tions, and resource constraints.

Relevant preconditions are conditions that the
local (sending) cell needs (or would like) to
have the remote cell maintain or establish. For
example, sending a precondition could tell the
remote planning cell not to move a needed
unit or to perform a surveillance activity for an
intelligence estimate.

We implemented an algorithm for automat-
ically filtering the postconditions that are sent
from one planning cell to another by eliminat-
ing the postconditions that are provably irrel-
evant to the latter cell’s decision-making
process. The algorithm constructs a query tree
(Levy and Sagiv 1993) for the objectives that
have been assigned to a remote planning cell.2

This tree can be constructed by the local cell if
planning operators are shared by the cells or
can be constructed remotely and sent to the
local cell if each cell has its own set of plan-
ning operators.

The query tree identifies which predicates
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Figure 3. Marine Corps Planning Cell’s Subplan before Receiving Naval Planning Cell’s Postconditions.



these postconditions. Overall planning time
was 35 percent lower in the logistics domain
and 5 percent lower in the maritime planning
domain.

During its planning process, the naval plan-
ning cell (not shown) identifies some poten-
tially relevant postconditions in its subplan. In
particular, it finds that some of the goals and
tasks that were created during the expansion
of its Beach-App-Clr subgoal might be relevant
to the subgoals for which the Marine Corps
planning cell is responsible. These postcondi-
tions correspond to the launching and move-
ment of a small craft that the Navy will use to
clear the approach to the beach. It sends these
postconditions, along with ordering informa-
tion that informs the Marine Corps planning
cell of the order in which the postconditions
should appear. Figure 5 shows the Marine
Corps planner after these postconditions have
been received and inserted into its subplan.

The postconditions are encoded in the dark
rounded rectangles that appear before the
Beach-App-Clr goal.

After the Marine Corps cell has expanded its
subplan further, several dependencies, con-
straining the partial order of the subplan, are
introduced (figure 6). These ordering con-
straints represent dependencies between the
naval planning cell’s postconditions and tasks
in the Marine Corps subplan. For example, the
Marine Corps has determined that it can use
the Navy’s small craft to transport a group of
marines to the beach. The Marine Corps sub-
goal to launch a craft (Craft-To, PM420) can be
solved using the Navy’s craft; the naval launch
(Craft-TO, PM458) is then constrained to occur
before the point in the plan where the Marine
Corps requires the craft. The Marine Corps
then introduces an additional Rendez action
earlier in the plan to rendezvous with the
Navy’s craft for loading. With this dependency
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In the maritime planning example, the sub-
plans are now complete and are submitted to
the coordinating planning cell, which merges
them. (In this case, the naval planning cell
serves as the coordinating planning cell as
well, but in the general case, the coordinating
planning cell could be distinct from the other
planning cells.) Figure 7 shows the merged
plan. Although this display does not show the
complete detailed plan, several parallel interac-
tions can be seen, indicated by the three links
from the upper part of the plan to the lower
parallel branch. These interactions occur
between the Marine Corps and the naval sub-
plans and are all identified during the distrib-
uted planning process, then maintained when
the plans are merged.

Future Work
The primary research directions that we are
exploring are synchronization of planning cells,
conflict resolution and negotiation, and
improved information management. These
areas are discussed in the following subsections.

Synchronization of 
Distributed Planners
One of the central research issues in DSIPE is how
to communicate effectively about the planning
process so that distributed planning cells can
generate subplans on independent timelines,
detect and resolve potential conflicts early,
avoid duplicating effort, and create a high-qual-

in place, it completes its planning, resulting in
a subplan that is conditioned on the Navy’s
planned activities.

Plan Merging
After all the subplans are complete, they are
submitted to the coordinating planning cell
and merged. The shared plan structure (corre-
sponding to the skeletal plans in each cell)
guides the merging process, resulting in a
merged partially ordered network (figure 7).
SIPE-2’s planning critics are then run to identify
conflicts that were not previously detected.

Because the relevant constraints have been
shared during the planning process, the expec-
tation is that few, if any, conflicts will appear
during plan merging. However, because of the
complexity of planning dependencies, con-
flicts can arise. For example, although the tem-
poral constraints between subplans are shared,
propagation of temporal constraints among
subplans is performed only when postcondi-
tions are passed from one cell to another. The
result is that cycles of temporal constraints
that are distributed across subplans might not
be detected until plan-merging time.

If conflicts are detected during plan merging,
in the current system, the coordinating cell
resolves the conflict internally (for example, by
repairing the plan or reallocating resources). In
future work, we will incorporate methods for
the coordinating cell to notify the subplanners
to repair the conflict (see Conflict Resolution).
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Figure 5. Marine Corps Planning Cell’s Subplan after Receiving Relevant Postconditions 
(Dark Rounded Rectangles) from the Naval Planning Cell.



ity merged plan at the end of the process.
The current distributed planning process is

somewhat inflexible in that the primary way
that planning cells share knowledge is by com-
municating postconditions that are created in
one of the subplans. Also, variable constraints
are only posted when potentially relevant
postconditions are generated. Therefore, if one
planning cell’s preconditions depend on the
postconditions of another cell, the part of the
latter’s subplan that produces the necessary
postconditions must be completed first, so that
the former cell can use the postconditions in
constructing its subplan.

We are currently developing a more flexible
process that will update information about
variable constraints and instantiations dynam-
ically as they change during planning. It will
also allow other types of distributed constraint
to be posted; for example, one cell could
inform another cell of preconditions that it
expected to be maintained or created in the
world or could explicitly ask for assistance in
achieving an objective.

We are also extending DSIPE’s search-control
methods so that subplans can be generated in
different ways, depending on the situation. For
example, a planning cell might decide to delay
achievement of a particular objective (while it
continues to plan out other objectives) pend-
ing more information about the other cells’
subplans. To support this flexible search con-
trol, we will explore ways in which a planning
cell can model remote subplans and planning
processes in more detail.

Conflict Resolution
To date, we have focused on methods for rep-
resenting and managing the distributed plan-
ning process and identifying constraint viola-
tions. However, making this technology robust
and applicable to a broad range of distributed
planning problems will also require develop-
ing techniques for resolving these conflicts.

The approach we are taking is to involve the
user in the decision-making process and auto-
mate, as much as possible, those details of con-
flict detection and resolution that do not
require human intervention. When a conflict
is detected (or a potential conflict is predicted),
either during distributed planning or at plan-
merging time, the system will automatically
analyze the conflict and determine a set of
appropriate conflict-resolution strategies.
These strategies can include replanning one or
both subplans; agreeing to violate a precondi-
tion; requesting additional resources from the
coordinating planning cell; or relaxing soft
constraints, such as the arrival time of a unit.
These strategies will be ranked and presented
to the user, with information about the trade-
offs of the various strategies, to facilitate the
decision making. If the conflict occurs during
plan merging, additional heuristics will be
invoked to decide whether the coordinating
planning cell should repair the conflict on its
own or whether the planning cells that gener-
ated the subplans involved in the conflict
should collaboratively repair the conflict.

We are also exploring methods of op-
portunistic plan improvement where no con-
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Figure 6. Interdependencies between the Marine Corps and Naval Subplans, 
from the Viewpoint of the Marine Corps Planning Cell.



tree, so there would be a trade-off between the
bandwidth required for the updates and the
reduction in message traffic that would result
from using the updated trees.

The irrelevance reasoning approach could
also be extended by incorporating notions of
probability and utility: How likely is it that an
agent will in fact need to know a piece of infor-
mation, and how useful will it be to the agent
to know it? STEAM (Tambe 1997), a distributed
agent architecture that extends joint-inten-
tions theory (Levesque, Cohen, and Nunes
1990) to maintain a coherent view of the
team’s goals and plans, uses a decision-theoret-
ic framework that incorporates the costs and
benefits of communication as well as the prob-
ability that other agents already have the
information in question. This approach,
which is also used in Gmytrasiewicz, Durfee,
and Wehe (1991), could be layered on top of
DSIPE’s irrelevance-based filtering to incorpo-
rate additional decision-making factors in
deciding whether and when to communicate
information between planning agents.

Conclusions
We described DSIPE, an implemented system
that extends the state of the art of distributed

flict exists, for example, identifying and re-
moving redundant parts of the plan or replan-
ning to increase cooperation among the plan-
ning cells.

Information Management
The irrelevance-based filtering technique has
been shown to reduce message traffic in DSIPE.
The current implementation considers only the
postconditions that are generated within each
agent’s subplan. The technique is general, how-
ever, and could be applied to other types of
message traffic. For example, irrelevance reason-
ing could be used to determine whether to send
requests for other agents to solve subgoals or
requests to achieve or maintain preconditions.
Another application of irrelevance reasoning
would be to use the query trees to allocate sub-
goals among agents, based on some notion of
locality, to minimize interactions among sub-
plans. This approach is similar to how COLLAGE

(Lansky and Getoor 1995; Lansky 1994) uses
localization to decompose a planning problem.

Query trees could be pruned dynamically as
subplans are generated (for example, when an
alternative planning strategy has been ruled
out, the associated preconditions would no
longer be relevant). This approach would
entail notifying remote cells of updates to the
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HTN planning. DSIPE provides decision support
to human planners in a collaborative planning
environment. The key contributions of this
research are a shared plan representation,
methods for automatically identifying and
sharing relevant information among planners,
and plan-merging techniques. We have also
discussed important future research directions,
including flexible synchronization of distrib-
uted planners, conflict-negotiation and con-
flict-resolution methods, and system evalua-
tion.
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Notes
1. Our system supports messages passed using KQML

(knowledge query message language) (Finin 1997) as
text files or as CORBA-compliant distributed objects,
using Xerox PARC’s ILU implementation (Janssen et
al. 1998).

2. The query tree is similar to an operator graph
(Smith and Peot 1993). Previous planning systems
used operator graphs to identify threats that can be
deferred (Smith and Peot 1993) or further constrain
the applicability of operators (Gerevini and Schubert
1996). In contrast, DSIPE uses the query tree to iden-
tify irrelevant classes of ground facts and prevent
them from being considered by the planner.
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We are seeking participants ... competition
teams, exhibits, and challenge teams!

The Ninth Annual AAAI Mobile Robot
Competition and Exhibition, held in con-
junction with the AAAI National Confer-
ence on Artificial Intelligence, brings
together teams from universities and other
research laboratories to compete, and also
to demonstrate cutting edge, state of the
art research in robotics and artificial intel-
ligence.

The mission of the Mobile Robot Com-
petition and Exhibition is to serve AAAI,
AI-robotics researchers, and the larger AI
community by promoting innovative
research through events which appeal to
media and sponsors, while conducting
these events in a format that facilitates
comparison of approaches, but at low risk
to individual or institutional reputations.
Our goals are to:
■ Foster the sharing of research and tech-

nology 
■ Allow research groups to showcase

their achievements 
■ Encourage students to enter robotics

and artificial intelligence fields at both
the undergraduate and graduate level 

■ Increase awareness of the field 
In previous years, the event has attracted

both local and national news media — the
1996 contest resulted in a segment in Alan
Alda’s “Scientific American Frontiers”
program on the Discovery Channel.

The Competition and Exhibition com-
prises three separate events; participants
may enter any number of these events.

Contest
The contest allows teams from universities
and other labs to show off their best
attempts at solving common tasks in a
competitive environment. Teams compete
for place awards as well as for technical
innovation awards, which reward particu-

larly interesting solutions to problems.
There will be two contest events this year.
Details and rules are now available!

Exhibition
The exhibition gives researchers an oppor-
tunity to demonstrate state-of-the-art
research in a less structured environment.
Exhibits are scheduled through several
days of the conference, and in addition to
live exhibits, a video proceedings is pro-
duced.

Challenge
In addition to the contest and exhibit, we
are adding a new aspect this year — the
Robot Challenge. In this event, a particu-
larly challenging task is defined which is
well beyond current capabilities, will
require multiple years to solve, and should
encourage larger teams and collaborative
efforts. The challenge task is defined by a
long-term committee of researchers. Cur-
rently the task is for a robot to be dropped
off at the front door of the conference
venue, register itself as a student volunteer,
perform various tasks as assigned, and talk
at a session. The challenge will require
integration of many areas of artificial intel-
ligence as well as robotics.

Awards
Win a robot! Robots will be awarded for
first and second place in two contest
events! Contestants in contest and chal-
lenge events are qualified to win these
prizes. Certificates of achievement and par-
ticipation will also be awarded.

Robotics Workshop
On the last day of the conference, a robot-
ics workshop will be held. Teams who
receive travel support must attend and pre-
sent at the workshop. All other partici-

pants will be strongly encouraged to
attend and present. A research paper will
be required within one month after the end
of the workshop, and will be published in
a proceedings. The purpose of this work-
shop is to allow researchers to understand
and benefit from each others efforts.

Conference Proceedings
Each team will be allowed a two-page
abstract in the AAAI Conference Proceed-
ings. In order to have an abstract in the
proceedings, you must register your team
by March 15, and your camera-ready copy
must be submitted by March 30.

Additional Information
For more information, please contact the
chairs at the following address: aaai-
robots@gmu.edu or visit the Robot Com-
petition and Exhibition web site at
www.aaai.org or www.aic.nrl.navy.mil/
~schultz/aaai2000/

Participants are encouranged to join the
aaai-robots moderated mailing list by
sending email to “listproc@gmu.edu” and
sending in the body of the message a
request to join the list:

subscribe aaai-robots your-full-name-
goes-here

Official notices will be posted to this mail-
ing list. 

Committee
General Chair: Alan C. Schultz (NRL)
Competition: Lisa Meeden 

(Swarthmore College)
Exhibition: Marc Bolen (CMU)
Challenge: Tucker Balch (CMU)
Workshop Chair: Karen Haigh 

(Honeywell)
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