
■ The past five years have seen dramatic advances in
planning algorithms, with an emphasis on propo-
sitional methods such as GRAPHPLAN and compilers
that convert planning problems into propositional
conjunctive normal form formulas for solution
using systematic or stochastic SAT methods.

Related work, in the context of spacecraft control,
advances our understanding of interleaved plan-
ning and execution. In this survey, I explain the
latest techniques and suggest areas for future
research.

The field of AI planning seeks to build
control algorithms that enable an agent
to synthesize a course of action that will

achieve its goals. Although researchers have
studied planning since the early days of AI,
recent developments have revolutionized the
field. Two approaches, in particular, have
attracted much attention: (1) the two-phase
GRAPHPLAN (Blum and Furst 1997) planning
algorithm and (2) methods for compiling plan-
ning problems into propositional formulas for
solution using the latest, speedy systematic
and stochastic SAT algorithms.

These approaches have much in common,
and both are affected by recent progress in con-
straint satisfaction and search technology. The
current level of performance is quite impres-
sive, with several planners quickly solving
problems that are orders of magnitude harder
than the test pieces of only two years ago. As a
single, representative example, the BLACKBOX

planner (Kautz and Selman 1998a) requires
only 6 minutes to find a 105-action logistics
plan in a world with 1016 possible states.

Furthermore, work on propositional plan-
ning is closely related to the algorithms used in
the autonomous controller for the National
Aeronautics and Space Administration (NASA)
Deep Space One spacecraft, launched in October
1998. As a result, our understanding of inter-
leaved planning and execution has advanced

as well as the speed with which we can solve
classical planning problems.

The goal of this survey is to explain these
recent advances and suggest new directions for
research. Because this article requires minimal
AI background (for example, simple logic and
basic search algorithms), it’s suitable for a wide
audience, but my treatment is not exhaustive
because I don’t have the space to discuss every
active topic of planning research.1 I progress as
follows: The remainder of the introduction
defines the planning problem and surveys
freely downloadable planner implementations.
The next sections discuss GRAPHPLAN, SAT compi-
lation, and interleaved planning and execu-
tion. I conclude by quickly mentioning other
recent advances and suggestion topics for
future research.

Preliminaries
A simple “classical” formulation of the plan-
ning problem defines three input: (1) a descrip-
tion of the initial state of the world in some
formal language, (2) a description of the
agent’s goal (that is, what behavior is desired)
in some formal language, and (3) a description
of the possible actions that can be performed
(again, in some formal language). This last
description is often called a domain theory.

The planner’s output is a sequence of
actions that, when executed in any world sat-
isfying the initial state description, will
achieve the goal. Note that this formulation of
the planning problem is quite abstract—in
fact, it really specifies a class of planning prob-
lems parameterized by the languages used to
represent the world, goals, and actions. For
example, one might use propositional logic to
describe the effects of actions, which would
make it quite awkward to describe actions
with universally quantified effects, such as a
machine shop spray paint action that coats all
objects in the hopper. Thus, one might

Articles

SUMMER 1999 93

Recent Advances in
AI Planning

Daniel S. Weld

Copyright © 1999, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1999 / $2.00

AI Magazine Volume 20 Number 2 (1999) (© AAAI)

action’s effect conjunction in turn, eliminat-
ing contradictory literals along the way.

The classical planning problem makes many
simplifying assumptions: atomic time, no
exogenous events, deterministic action effects,
omniscience on the part of the agent, and so
on. I relax some of these assumptions later in
the article.

Many readers will find it helpful to experi-
ment with implementations of the ideas dis-
cussed in this article. Fortunately, there are a
variety of freely distributed alternatives (figure
1), and most accept domains expressed in PDDL

syntax,3 the language used for the AIPS (AI plan-
ning systems) planning competition,4 which I
expect will be adopted widely as a standard for
teaching purposes and collaborative domain
interchange for performance comparison.

GRAPHPLAN and Descendants
Blum and Furst’s (1997, 1995) GRAPHPLAN algo-
rithm is one of the most exciting recent devel-
opments in AI planning for two reasons:

describe the effects of actions with first-order
predicate calculus, which still assumes that all
effects are deterministic. In general, there is a
spectrum of more and more expressive lan-
guages for representing the world, an agent’s
goals, and possible actions. In this article, I
start by explaining algorithms for planning
with the STRIPS representation.2 The STRIPS rep-
resentation describes the initial state of the
world with a complete set of ground literals.
The STRIPS representation is restricted to goals
of attainment, which are defined as a proposi-
tional conjunction; all world states satisfying
the goal formula are considered equally good.
A domain theory (that is, a formal description
of the actions that are available to the agent)
completes a planning problem. In the STRIPS

representation, each action is described with a
conjunctive precondition and a conjunctive
effect that define a transition function from
worlds to worlds. The action can be executed
in any world w satisfying the precondition for-
mula. The result of executing an action in
world w is described by taking w’s state
description and adding each literal from the

Articles

94 AI MAGAZINE

GRAPHPLAN and Its Descendants

■ GRAPHPLAN—The original, somewhat dated, C implementation (Blum
and Furst 1995) is still available at www.cs.cmu.edu/afs/cs.cmu.edu/user/
avrim/www/graphplan.html.

■ IPP (Koehler et al. 1997a) is a highly optimized C implementation of
GRAPHPLAN, extended to handle expressive actions (for example, univer-
sal quantification and conditional effects). It is available at www.
informatik.uni-freiburg.de/˜koehler.

■ STAN (Long and Fox 1998) is another highly optimized C implementa-
tion that uses an in-place graph representation and performs sophisti-
cated type analysis to compute invariants. It is available at www.dur.
ac.uk/˜dcs0www/research/stanstuff/stanpage.html.

■ SGP (Weld, Anderson, and Smith 1998) is a simple, pedagogical Lisp im-
plementation of GRAPHPLAN, extended to handle universal quantifica-
tion, conditional effects, and uncertainty. See www.cs.washington.edu/
research/projects/ai/www/sgp.html.

Systems Based on Compilation to SAT

■ The highest performance SAT compiler is BLACKBOX (Kautz and Selman
1998a). It is available at www.research.att.com/˜kautz/blackbox/index.
html.

■ The MEDIC planner is a flexible test bed, implemented in Lisp, allowing
direct comparison of more than a dozen different SAT encodings. See ftp.
cs.washington.edu/pub/ai/medic.tar.gz.

Figure 1. Several Implemented Planners Are Available for Download.

First, GRAPHPLAN is a simple, elegant algo-
rithm that yields an extremely speedy plan-
ner—in many cases, orders of magnitude faster
than previous systems such as SNLP (McAllester
and Rosenblitt 1991), PRODIGY (Minton et al.
1989), or UCPOP (Penberthy and Weld 1992).

Second, the representations used by GRAPH-
PLAN form the basis of the most successful
encodings of planning problems into proposi-
tional SAT; hence, familiarity with GRAPHPLAN

aids in understanding SAT-based planning sys-
tems (see Compilation of Planning to SAT).
GRAPHPLAN alternates between two phases: (1)
graph expansion and (2) solution extraction.
The graph-expansion phase extends a planning
graph forward in “time” until it has achieved
a necessary (but possibly insufficient) condi-
tion for plan existence. The solution-extraction
phase then performs a backward-chaining
search on the graph, looking for a plan that
solves the problem; if no solution is found,
the cycle repeats by further expanding the
planning graph.

I start our discussion by considering the ini-
tial formulation of GRAPHPLAN, thus restricting
our attention to STRIPS planning problems in a
deterministic, fully specified world. In other
words, both the preconditions and effects of
actions are conjunctions of literals (that is,
positive literals denote entries in the add lists,
and negative literals correspond to elements of
the delete list). After covering the basics, I
describe optimizations and explain how to
handle more expressive action languages.

Expanding the Planning Graph
The planning graph contains two types of
node—(1) proposition and (2) action—
arranged into levels (figure 2). Even-numbered
levels contain proposition nodes (that is,
ground literals), and the zero level consists pre-
cisely of the propositions that are true in the
initial state of the planning problem. Nodes in
odd-numbered levels correspond to action
instances; there is one such node for each
action instance whose preconditions are pre-
sent (and are mutually consistent) at the previ-
ous level. Edges connect proposition nodes to
the action instances (at the next level) whose
preconditions mention these propositions,
and additional edges connect from action
nodes to subsequent propositions made true
by the action’s effects.

Note that the planning graph represents
parallel actions at each action level; thus, a
planning graph with k action levels can repre-
sent a plan with more than k actions. However,
just because two actions are included in the
planning graph at some level doesn’t mean

that it is always possible to execute both at
once. Central to GRAPHPLAN’s efficiency is infer-
ence regarding a binary mutual exclusion rela-
tion (mutex) between nodes at the same level.
I define this relation recursively as follows (see
also figure 3):

First, two action instances at level i are
mutex if either (1) the effect of one action is
the negation of another action’s effect (incon-
sistent effects), (2) one action deletes the pre-
condition of another (interference), or (3) the
actions have preconditions that are mutually
exclusive at level i – 1 (competing needs).

Second, two propositions at level i are
mutex if one is the negation of the other or if
all ways of achieving the propositions (that is,
actions at level i – 1) are pairwise mutex (incon-
sistent support).

For example, consider the problem of prepar-
ing a surprise date for one’s sleeping sweetheart
(figure 4). The goal is to take out the garbage,
fix dinner, and wrap a present. There are four
possible actions: (1) cook, (2) wrap, (3) carry,
and (4) dolly. Cook requires clean hands and
achieves dinner. Wrap has the precondition
quiet (because the gift is a surprise, one mustn’t
wake the recipient) and produces present. Car-
ry eliminates the garbage, but the intimate con-
tact with a smelly container negates clean-

Articles

SUMMER 1999 95

…

…

…

…

0 i – 1 i i + 1

…

…
…

…
…

…

Figure 2. The Planning Graph Alternates Proposition (Circle)
and Action (Square) Layers.

Horizontal gray lines between proposition layers represent maintenance actions,
which encode the possibility that unaffected propositions will persist until the
next layer.

each such literal at level i, GRAPHPLAN chooses
an action a at level i – 1 that achieves the sub-
goal. This choice is a backtrack point: If more
than one action produces a given subgoal,
then GRAPHPLAN must consider all of them to
ensure completeness. If a is consistent (that is,
nonmutex) with all actions that have been
chosen so far at this level, then GRAPHPLAN pro-
ceeds to the next subgoal; otherwise, if no such
choice is available, GRAPHPLAN backtracks to a
previous choice.

After GRAPHPLAN has found a consistent set of
actions at level i – 1, it recursively tries to find
a plan for the set formed by taking the union
of all the preconditions of these actions at level
i – 2. The base case for the recursion is level
zero—if the propositions are present there,
then GRAPHPLAN has found a solution. Other-
wise, if backtracking fails on all combinations
of the possible supporting actions for each sub-
goal (at each level), then GRAPHPLAN extends the
planning graph with additional action and
proposition levels and then tries solution
extraction again.

In the dinner-date example, there are three
subgoals at level two: (1) ¬garbage is support-
ed by carry and dolly, dinner is supported by
cook, and present is supported by wrap. Thus,
GRAPHPLAN must consider two sets of actions at
level one—{carry; cook; wrap} and {dolly;
cook; wrap}—but unfortunately, neither of
these sets is consistent because carry is mutex
with cook, and dolly is mutex with wrap.
Thus, solution extraction fails, and GRAPHPLAN

extends the planning graph to level four, as
shown in figure 6.

Hands. The final action, dolly, also eliminates
the garbage, but because of the noisy
handtruck, it negates quiet. Initially, you have
cleanHands, and the house has garbage and is
quiet; all other propositions are false.

Figure 5 shows the planning graph for the
dinner-date problem expanded from level zero
through one action and proposition level.
Note that the carry action is mutex with the
persistence of garbage because they have
inconsistent effects. Dolly is mutex with wrap
because of interference because dolly deletes
quiet. At proposition level two, ¬quiet is
mutex with present because of inconsistent
support. Recall that the goal of the dinner-date
problem is to achieve ¬garbage ^ dinner ^ pre-
sent. Because all these literals are present at
proposition level two and because none of
them are mutex with each other, there is a
chance that a plan exists. In this case, the sec-
ond phase of GRAPHPLAN is executed: solution
extraction.

Solution Extraction
Suppose that GRAPHPLAN is trying to generate a
plan for a goal with n subgoal conjuncts, and
(as in our example) it has extended the plan-
ning graph to an even level, i, in which all goal
propositions are present, and none are pair-
wise mutex. This condition is necessary (but
insufficient) for plan existence, so GRAPHPLAN

performs solution extraction, a backward-chain-
ing search to see if a plan exists in the current
planning graph.

Solution extraction searches for a plan by
considering each of the n subgoals in turn. For

Articles

96 AI MAGAZINE

Inconsistent
Effects

Interference Competing
Needs

Inconsistent
Support

Figure 3. Graphic Depiction of the Mutex Definition (derived by David Smith).
Circles denote propositions; squares represent actions; and thin, curved lines denote mutex relations. The first three parts illustrate deduc-
tion of a new action-action mutex (between the dark boxes), and the rightmost part depicts the discovery of a new mutex between propo-
sitions (the dark circles).

Note the difference between levels two and
four of the planning graph. Although there are
no new literals present at level four, there are
fewer mutex relations. For example, there is no
mutex between dinner and cleanHands at level
four. The most important difference is at level
three, where there are five additional mainte-
nance actions encoding the possible persis-
tence of literals achieved by level two. Thus,
each of the subgoals has additional supporting

actions for consideration during the backward-
chaining process of solution extraction. Specif-
ically, ¬garbage is supported by carry, dolly,
and a maintenance action. Dinner is support-
ed by cook and a maintenance action. Present
is supported by wrap and a maintenance
action, so solution extraction needs to consid-
er 3 × 2 × 2 = 12 combinations of supporting
actions at level three instead of the 2 × 1 × 1 =
2 combinations during the previous attempt at

Articles

SUMMER 1999 97

Initial Conditions: (and (garbage) (cleanHands) (quiet))
Goal: (and (dinner) (present) (not (garbage)))
Actions:

cook :precondition (cleanHands)
:effect (dinner)

wrap :precondition (quiet)
:effect (present))

carry :precondition
:effect (and (not (garbage)) (not (cleanHands)))

dolly :precondition
:effect (and (not (garbage)) (not (quiet)))

Figure 4. STRIPS Specification of the Dinner-Date Problem.

 0

garb

cleanH

quiet

 2

garb

¬garb

cleanH

¬cleanH

quiet

¬quiet

dinner

present

 1

dolly

cook

wrap

carry

Figure 5. Planning Graph for the Dinner-Date Problem, Expanded Out to Level Two.
Action names are surrounded by boxes, and horizontal gray lines between proposition layers represent main-
tenance actions that encode persistence. Thin, curved lines between actions and propositions at a single level
denote mutex relations.

wrap, can be executed in either order and will
achieve the same effect. Thus, if one wishes a
totally ordered sequence of actions for one’s
plan, one can choose arbitrarily: cook, carry,
wrap.

Optimizations
To this point, we have covered the basic GRAPH-
PLAN algorithm, but several optimizations have
a huge effect on efficiency. The first improve-
ments speed solution extraction: forward
checking, memoization, and explanation-
based learning. The second set of optimiza-
tions concerns the graph-expansion process:
handling of the closed-world assumption,
compilation of action schemata to remove sta-
tic fluents using type analysis, regression focus-
ing, and in-place graph expansion. The benefit
achieved by each of these optimizations
depends on the specific planning problem to
be solved. In the worst case, planning graph
expansion is polynomial time, but solution
extraction is exponential (Blum and Furst
1995). However, in many planning problems,
it is expansion time that dominates, so each of
the optimizations described in the following
subsections is important.

solution extraction. Indeed, this increased flex-
ibility allows solution extraction to find a plan.
There are actually several combinations that
work; I illustrate one below. Support ¬garbage
with carry, support dinner with the mainte-
nance action, and support present with wrap.
None of these actions is mutex with another,
so the choices for level three are consistent.
The selection of these actions leads to the fol-
lowing subgoals for level two: dinner (precon-
dition of the maintenance action) and quiet
(precondition of wrap); because carry has no
preconditions, there are only two level-two
subgoals. Solution extraction recurses and
chooses cook to support dinner and the main-
tenance action to support quiet; these two
actions aren’t mutex, so the selections for level
one are consistent. The preconditions of these
actions create two subgoals for level zero:
cleanHands and quiet. Because these proposi-
tions are present in the initial conditions, the
selection is consistent, and a solution plan
exists!

Figure 7 illustrates the results of solution
extraction. Note that GRAPHPLAN generates an
inherently parallel (partially ordered) plan.
The actions selected for level three, carry and

Articles

98 AI MAGAZINE

 4

garb

¬garb

cleanH

¬cleanH

quiet

¬quiet

dinner

present

 3

cook

wrap

 0

garb

cleanH

quiet

 2

garb

¬garb

cleanH

¬cleanH

quiet

¬quiet

dinner

present

 1

cook

wrap

carry

dolly

carry

dolly

Figure 6. Planning Graph for the Dinner-Date Problem, Expanded to Level Four.
Although no new literals are present at this proposition level, both dinner and present have additional support from persistence actions, and
as a result, GRAPHPLAN’s solution-extraction search can find a plan.

Solution Extraction as Constraint Satis-
faction By observing the connection
between the GRAPHPLAN solution-extraction
process and constraint-satisfaction problems
(CSPs), we can transfer many insights from the
CSP field to planning.5 There are many possi-
ble formulations, but the simplest is in terms
of a dynamic CSP (Falkenhainer and Forbus
1988), that is, a CSP in which the set of vari-
ables and associated constraints changes based
on the selection of values to earlier variables.
There is a CSP variable for subgoal literals at
each proposition level after level zero. The
domain of a variable (that is, its set of possible
values) is the set of supporting actions at the
previous level. The set of constraints is defined
by the mutex relations. For example, consider
the process of solution extraction from the lev-
el-four dinner-date graph shown in figure 6.
Initially, we create a CSP variable for each sub-
goal at level four: V4, ¬garbage takes a value from
{carry, dolly, maintain}, V4;dinner takes a value
from {cook, maintain}, and V4;present takes a
value from {wrap, maintain}. The assignments
V4; ¬garbage = carry, V4;dinner = maintain, and
V4;present = wrap correspond to the first part of
the solution shown in figure 7. Once a solution
is found for the variables at proposition level
four, the actions corresponding to the variable

values define a CSP problem at level two. Note
that there is no requirement to perform this
search level by level. In other words, our previ-
ous description of solution extraction dictated
finding a consistent set of actions at level i
before performing any search at level i – 2.
However, this methodical order is unnecessary
and potentially inefficient. For example, the
BLACKBOX planner (Kautz and Selman 1998a)
takes the planning graph, compiles it to SAT,
and uses fast stochastic methods to perform
the equivalent of solution extraction in which
search jumps around from level to level in a
greedy fashion. Rintanen (1998) describes an
opportunistic, nondirectional search strategy
that bypasses conversion to SAT.

By itself, this CSP formulation of solution
extraction is unremarkable, but it suggests cer-
tain strategies for speeding the search, such as
forward checking, dynamic variable ordering,
memoization, and conflict-directed back-
jumping.

When assigning a value to a variable, simple
CSP solvers check to ensure that this choice is
consistent with all values previously chosen. A
better strategy, called forward checking (Haralick
and Elliott 1980), checks unassigned variables
in addition, shrinking their domain by elimi-
nating any values that are inconsistent with

Articles

SUMMER 1999 99

 3

carry

dolly

cook

wrap

 0

garb

cleanH

quiet

 2

garb

¬garb

cleanH

¬cleanH

quiet

¬quiet

dinner

present

 1

carry

dolly

cook

wrap

 4

garb

¬garb

cleanH

¬cleanH

quiet

¬quiet

dinner

present

Figure 7. One of Four Plans That Might Be Found by Solution Extraction.
Actions in black are to be executed; all others are not.

k, but this time, it will backtrack immediately
rather than perform exhaustive search. The
memoization process trades space for time, and
although the space requirements can be large,
the resulting speedups are significant.

As stated, this memoization process is rather
simplistic, and because more sophisticated
approaches have proven effective in systematic
SAT solvers (Bayardo and Schrag 1997), one
might suspect memoization improvements are
possible. Indeed, recent work by Kambhampati
(1998a) demonstrates dramatic speedups (for
example, between 1.6 and 120 times faster
depending on the domain). The basic idea is to
determine which subset of goals is responsible
for failure at a given level and record only this
subset; if solution extraction ever returns to the
level with this set or a superset, then failure is
justified. This approach leads to much smaller
(and, hence, more general) nogoods; for exam-
ple, it might be the case that subgoals P, Q, and
S are together unachievable, regardless of R.

An additional idea (also described in Kamb-
hampati [1998a]) is the regression of level k
failure explanations through the action defin-
itions for level k + 1 to calculate failure condi-
tions for level k + 2. When these level–k + 2
conditions are short, then many searches can
be terminated quickly. These methods are
based on Kambhampati’s (199b) earlier work
on the relationship between traditional plan-
ning-based speedup methods (for example,
explanation-based learning) and CSP methods.

Closed-World Assumption The closed-
world assumption says that any proposition not
explicitly known to be true in the initial state
can be presumed false. A simple way of imple-
menting the closed-world assumption in
GRAPHPLAN would be to explicitly close the zero
level of the planning graph—that is, to add
negative literals for all possible propositions
that were not explicitly stated to be true.
Because there are an infinite number of possi-
ble propositions, one should restrict this
approach to the relevant subset—that is, those
that were mentioned in the preconditions of
some action or in the goal; other literals can’t
affect any solution.

A better solution is to handle the closed-
world assumption lazily because this approach
shrinks the size of the planning graph and
diminishes the cost of graph expansion. Create
the zero level of the planning graph by adding
only the propositions known to be true in the
initial state (as shown in figure 5). When
expanding the planning graph to action level
i, one does the following: Suppose action A
requires ¬P as precondition. If ¬P is in the plan-
ning graph at level i – 1, simply link to it as

the recent choice. If the domain of any unas-
signed variable collapses (that is, it shrinks to
the empty set), then the CSP solver should
backtrack. Kondrack and van Beek (1997)
show analytically that forward checking is an
excellent strategy, strengthening previous
empirical support.

Dynamic variable ordering refers to a class of
heuristics for choosing which CSP variable
should next be assigned a value (Bacchus and
van Run 1995). Of course, eventually all vari-
ables must have values assigned, but the order
in which they are selected can have a huge
impact on efficiency (Barrett and Weld 1994;
Korf 1987). Note that if a variable has only one
choice, then it is clearly best to make that
assignment immediately. In general, a good
heuristic is to select the variable with the fewest
remaining (nonconflicting) values, and this
information is readily available if forward
checking is used.6 Although not astounding,
these techniques lead to significant (for exam-
ple, 50 percent) performance improvements in
GRAPHPLAN (Kambhampati 1998a). Another
method for determining a good subgoal order-
ing is through structural analysis of subgoal
interactions (Cheng and Irani 1989; Smith
1989; Irani and Cheng 1987). Precomputation
aimed at calculating speedy subgoal orderings
is closely related to the use of abstraction in
planning (Knoblock 1991; Yang and Tenenberg
1990; Tenenberg 1988). In general, one can dis-
tinguish between domain-specific approaches
(which are based on action definitions alone)
and problem-specific approaches (which addi-
tionally use the goal and initial state specifica-
tions); problem-specific approaches typically
provide more leverage, but the cost of domain-
specific precomputation can be amortized
among many planning problems. Koehler
(1998b) describes a problem-specific method
that speeds GRAPHPLAN by orders of magnitude
on problems from many domains.7

The original GRAPHPLAN paper (Blum and
Furst 1995) describes a technique called memo-
ization, which caches for future use the results
learned from exhaustive search about inconsis-
tent subgoal sets. Suppose that solution extrac-
tion is called at level i and, in the course of
search, attempts to achieve subgoals P, Q, R,
and S at level k (where k ≤ i). If none of the com-
binations of supporting actions for these sub-
goals proves consistent (regardless of the level
at which this inconsistency is detected), then
GRAPHPLAN records the set {P; Q; R; S} to be a
nogood at level k. Later, if GRAPHPLAN extends
the planning graph to level i + 2 and once
again attempts solution extraction, it might
attempt to achieve the same four goals at level

The use of
action

schemata
requires a few
changes to the

planning
graph

expansion
routine at

action levels:
The planner

must
instantiate

each
parameterized

schema to
create possible

ground
actions by

considering
all

combinations
of

appropriately
typed

constants.

Articles

100 AI MAGAZINE

usual. However, if ¬P is missing from level i –
1, one must check to see if its negation (that is,
proposition P) is present at level zero. If P is
absent from level zero, then add ¬P to level
zero and add maintenance actions and mutex-
es to carry ¬P to the current level. With this
simple approach, no changes are necessary for
solution extraction.

Note that the issue of the closed-world
assumption never arose with respect to the
dinner-date example because none of the
actions had a negative precondition. Although
the goal did include a negative literal
(¬garbage), the positive proposition garbage was
present in the initial conditions, thus voiding
the closed-world assumption.

Action Schemata, Type Analysis, and
Simplification In the dinner-date example,
all the actions were propositional, but in realis-
tic domains, it is much more convenient to
define parameterized action schemata. For
example, in a logistics domain, one might
define the operation of driving a truck, as
shown in figure 8. The intuition is simply that
at this level of abstraction, driving one vehicle
has the same preconditions and effects as dri-
ving another; so, one should only write it once.

The use of action schemata requires a few
changes to the planning graph expansion rou-
tine at action levels: The planner must instan-
tiate each parameterized schema to create pos-
sible ground actions by considering all
combinations of appropriately typed con-
stants. For example, to handle the drive
schema, the system must create O(n3) ground
drive actions, assuming that there are n con-
stants defined in the initial state of the world.

Many of these ground combinations will be
irrelevant because the selection of constants to
parameters will never satisfy the precondi-
tions. For example, if ?v is bound to Seattle,
then presumably the ground precondition
(vehicle Seattle) will never be satisfied; so, an
important optimization involves type analysis,
which determines which predicates represent
types, calculates the set of constants that form
the extent of each type, and then instantiates
ground actions only for plausibly typed combi-
nations of constants.

The simplest form of type analysis scans the
set of predicates present in the initial condi-
tions that are absent from the effects of any
action schemata. These predicates (for exam-
ple, location and vehicle) are static, so terms
formed with these predicates (for example,
(location Seattle) and (vehicle truck37)) will
never change. Thus, the planner can conclude
that Seattle is in the extent of the location type
and similarly reason about vehicle. Because

one can evaluate static terms at instantiation
time, there is no need to include these terms in
the planning graph at all; action schemata that
include these terms as preconditions can be
simplified (during instantiation) by eliminat-
ing static preconditions. Furthermore, this
simplification is not limited to unary predi-
cates. For example, if vehicle, location, and
road-connected are all static and if instances of
these actions are only instantiated for con-
stants that obey these preconditions, then
planning graph expansion can add ground
action instances (such as the one shown in fig-
ure 9) and eliminate static terms from proposi-
tion levels in the planning graph.

Fox et al. have devised more sophisticated,
polynomial-time, planner-independent type-
inference methods that deduce state invari-
ants, and they demonstrate that this analysis
can significantly speed their version of GRAPH-
PLAN on some domains (Fox and Long 1998).8

Their method is based on the observation that
a planning domain can be viewed as a collec-
tion of finite-state machines where domain
constants traverse between states correspond-
ing to predicates.

Regression Focusing As described previ-
ously, the planning graph with d proposition
levels contains only those actions that could
possibly be executed in the initial state or in a
world reachable from the initial state.9 Howev-
er, many of the actions in the planning graph
can be irrelevant to the goal at hand. In other
words, the graph-expansion algorithm is unin-
formed by the goal of the planning problem,
and as a result, time can be wasted by adding
useless actions and their effects into the graph
and reasoning about mutex relations involv-
ing these irrelevant facts.

Two optimizations have been proposed to
make graph expansion more goal directed: (1)

Articles

SUMMER 1999 101

(defschema (drive)
:parameters (?v ?s ?d)
:precondition (and (vehicle ?v)

 (location ?s)
 (location ?d)
 (road-connected ?s ?d)
 (at ?v ?s))

:effect (and (not (at ?v ?s))
 (at ?v ?d)))

Figure 8. Parameterized Specification of the Action of Driving a
Vehicle from a Source Location to a Destination.

were added during backwards propagation and
adding in mutex relations, then performing
solution extraction if necessary. If solution
extraction failed to find a plan, then Kamb-
hampati’s system would grow the graph back-
wards for another pair of levels, compute a
new (larger) intersection with the initial state
and resume forward growth. Although Kamb-
hampati’s implementation regenerated the
graphs from scratch at each stage (duplicating
discovery of mutex relations), the resulting
planning graph was so much smaller that his
system outperformed the basic GRAPHPLAN on
most problems.

In-Place Graph Expansion One can
avoid duplicated work during regression focus-
ing by exploiting the following observations
concerning monotonicity in the planning
graph:

Propositions are monotonically increas-
ing: If proposition P is present at level i, it will
appear at level i + 2 and in all subsequent
proposition levels.

Actions are monotonically increasing: If
action A is present at level i, it will appear at
level i + 2 and in all subsequent action levels.

Mutexes are monotonically decreasing: If
mutex M between actions A and B is present at
level i, then M is present at all previous action
levels in which both A and B appear. The same
is true of mutexes between propositions.10

Nogoods are monotonically decreasing: If
subgoals P, Q, and R are unachievable at level i,
then they are unachievable at all previous
proposition levels.11

These observations suggest that one can dis-
pense with a multilevel planning graph alto-
gether. Instead, all one needs is a bipartite
graph with action and proposition nodes. Arcs
from propositions to actions denote the pre-
condition relation, and arcs from actions to
propositions encode effects. Action, proposi-
tion, mutex, and nogood structures are all
annotated with an integer label field; for
proposition and action nodes, this integer
denotes the first planning graph level at which
the proposition (or action) appears. For mutex
or nogood nodes, the label marks the last level
at which the relation holds. By adding an addi-
tional set of labels, one can interleave forward
and backward expansion of the planning
graph. With this scheme, the time and space
costs of the expansion phase are vastly
decreased, but the bookkeeping required is sur-
prisingly tricky; see Smith and Weld (1998b)
for details, and see also the STAN planner’s
“wave-front” representation (Long and Fox
1998).

heuristically filtering of the facts from the ini-
tial state with a fact-generation graph (Nebel,
Dimopoulos, and Koehler 1997) and (2) back-
ward expansion of the planning graph (Kamb-
hampati, Lambrecht, and Parker 1997).

A fact-generation graph is an And-Or graph
created from a problem goal and domain
actions as follows: The root of the graph is an
And node corresponding to the goal, and its
children are the conjunctive subgoals. Each
subgoal P is an Or node whose children corre-
spond to the different ground actions that
have P as an effect. This structure would be a
tree, except to avoid exponential blowup,
nodes are reused within levels of the graph. We
say that an Or node is solved if it is in the ini-
tial conditions or if an immediate child is
solved, and an And node is solved if all its chil-
dren are solved. Because the fact-generation
graph ignores subgoal interactions from nega-
tive literals, solution of a depth d fact-genera-
tion graph is a necessary but insufficient con-
dition for solution of a depth d planning
graph. At the risk of incompleteness, one can
try to speed planning by eliminating initial
conditions (or ground actions) that don’t
appear (or appear infrequently) in the fact-gen-
eration graph (Nebel, Dimopoulos, and
Koehler 1997). Note that this approach is sim-
ilar to (and motivated by) McDermott’s (1996)
greedy regression graph heuristic.

A similar approach (Kambhampati, Lam-
brecht, and Parker, 1997) provides speedup
without sacrificing completeness. Recall that
GRAPHPLAN follows a simple loop: Expand the
planning graph with action and proposition
levels, then attempt solution extraction; if no
plan is found, then repeat. Kambhampati
modified the loop to first grow the planning
graph backwards from the subgoals by an
action and proposition level, then grow the
graph forwards from the intersection of the
initial state and the backward propositional
fringe, including only ground actions that

Articles

102 AI MAGAZINE

drive-truck37-Seattle-Tacoma
:precondition (at truck37 Seattle)
:effect (and (not (at truck37 Seattle))

 (at truck37 Tacoma))

Figure 9. Ground Instance of Drive after Type Analysis and Elimination of
“Timeless” (Eternally True, Static) Preconditions.

Compare with the schema in figure 8.

Handling Expressive
Action Languages
Until now, our discussion has been restricted
to the problem of planning with the STRIPS rep-
resentation in which actions are limited to
quantifier-free, conjunctive preconditions and
effects. Because this representation is severely
limited, this subsection discusses extensions to
more expressive representations aimed at com-
plex, real-world domains. I focus on disjunc-
tive preconditions, conditional effects, and
universally quantified preconditions and
effects because these areas have received the
most attention. Koehler (1998a) has developed
methods for handling resource constraints,
and I discuss work on uncertainty at the end of
this article (after describing methods for com-
piling planning problems to SAT). However,
other capabilities such as domain axioms, pro-
cedural attachment, numeric fluents, exoge-
nous events, and actions with temporal dura-
tion beg for exploration.

Disjunctive Preconditions It is easy to
extend GRAPHPLAN to handle disjunctive pre-
conditions. Conceptually, the precondition
(which might contain nested Ands and Ors) is
converted to disjunctive normal form (DNF).
Then when the planning graph is extended
with an action schema whose precondition
contains multiple disjuncts, an action instance
can be added if any disjunct has all its con-
juncts present (nonmutex) in the previous lev-
el. During the solution-extraction phase, if the
planner at level i considers an action with dis-
junctive preconditions, then it must consider
all possible precondition disjuncts at level i – 1
to ensure completeness.

Disjunctive effects are much harder because
they imply nondeterminism—one cannot pre-
dict the precise effect of execution in advance.
As a result, they require a general approach to
uncertainty, which I discuss near the end of
this article.

Conditional Effects Conditional effects are
used to describe actions whose effects are con-
text dependent. The basic idea is simple: We
allow a special when clause in the syntax of
action effects. When takes two arguments: (1)
an antecedent and (2) a consequent; execution
of the action will have the consequent’s effect
just in the case that the antecedent is true
immediately before execution (that is, much
like the action’s precondition determines if
execution itself is legal—for this reason, the
antecedent is sometimes referred to as a sec-
ondary precondition [Pednault 1989]). Note
also that like an action precondition, the
antecedent part refers to the world before the
action is executed, and the consequent refers
to the world after execution. For now, we
assume that the consequent is a conjunction
of positive or negative literals. Figure 10 illus-
trates how conditional effects allow one to
define a single action schema that accounts for
driving a vehicle that can possibly contain a
spare tire or cargo.

Three methods have been devised for allow-
ing GRAPHPLAN-derivative planners to handle
action schemata with conditional effects: (1)
full expansion (Gazen and Knoblock 1997), (2)
factored expansion (Anderson, Smith, and
Weld 1998), and (3) partially factored expan-
sion (Koehler et al. 1997a). The simplest
approach, full expansion, rewrites an action
schema containing conditional effects into a
number of mutually exclusive STRIPS schemata
by considering all minimal consistent combi-
nations of antecedents in the conditional
effects. For example, the action schema in fig-
ure 10 would be broken into four separate
STRIPS schemata (as shown in figure 11): one for
the empty vehicle, one for the vehicle with
cargo, one for the vehicle with spare tire, and
one for the vehicle with both cargo and spare.

Although full expansion has the advantage
of simplicity, it can result in an exponential
explosion in the number of actions. If a spare

Articles

SUMMER 1999 103

(defschema (drive)
 :parameters (?v ?s ?d)
 :precondition (and (vehicle ?v) (at ?v ?s)

 (location ?s) (location ?d)
 (road-connected ?s ?d))

 :effect (and (at ?v ?d) (not (at ?v ?s))
 (when (in cargo ?v)

 (and (at cargo ?v)) (not (at cargo ?s)))
 (when (in spare-tire ?v)
 (and (at spare-tire ?d)) (not (at spare-tire ?s)))))

Figure 10. Conditional Effects Allow the Same Drive Schema to Be Used
When the Vehicle Is Empty or Contains Cargo or a Spare Tire.

mance. By avoiding the need to expand
actions containing conditional effects into an
exponential number of plain STRIPS actions, fac-
tored expansion yields dramatic speedup.
However, this increased performance comes at
the expense of complexity:

Because factored expansion reasons about
individual effects of actions (instead of com-
plete actions), more complex rules are required
to define the necessary mutual exclusion con-
straints during planning graph construction.
The most tricky extension stems from the case
when one conditional effect is induced by
another, that is, when it is impossible to execute
one effect without causing the other to happen
as well (Anderson, Smith, and Weld 1998).

Factored expansion also complicates the
solution extraction because of the need to
perform the analog of confrontation (Weld
1994; Penberthy and Weld 1992), that is, pre-
vent the antecedent of undesirable effects
from occurring.

The IPP planner (Koehler et al. 1997b) uses a
third method for handling conditional effects,

fuel drum could also be in the vehicle, then
full expansion would generate eight STRIPS

schemata. In general, if an action has n condi-
tional effects, each containing m antecedent
conjuncts, then full expansion can produce as
many as nm STRIPS actions (Gazen and
Knoblock 1997). This explosion is common
when the conditional effects are universally
quantified, as in figure 12. In essence, this
schema has one conditional effect for each
object that could possibly be put in the truck.
If there were only 20 such cargo items, full
expansion would yield over a million STRIPS

schemata.
The other two approaches for dealing with

conditional effects consider the conditional
effects themselves as the primitive elements
handled by GRAPHPLAN.12 Note that in contrast
to the STRIPS actions produced by full expan-
sion, an action’s conditional effects are not
mutually exclusive, but neither are they inde-
pendent because the antecedent of one effect
can imply that of another. The advantage of
factored expansion is an increase in perfor-

Articles

104 AI MAGAZINE

(defschema (drive-empty)
 :parameters (?v ?s ?d)
 :precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)
(road-connected ?s ?d)
(not (in cargo ?v)) (not (in spare-tire ?v)))

 :effect (and (at ?v ?d) (not (at ?v ?s))))
(defschema (drive-cargo)
 :parameters (?v ?s ?d)
 :precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)
(road-connected ?s ?d)
(in cargo ?v) (not (in spare-tire ?v)))

 :effect (and (at ?v ?d) (not (at ?v ?s))
(and (at cargo ?v)) (not (at cargo ?s))))

(defschema (drive-spare)
 :parameters (?v ?s ?d)
 :precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)
(road-connected ?s ?d)
(not (in cargo ?v)) (in spare-tire ?v))

 :effect (and (at ?v ?d) (not (at ?v ?s))
(and (at spare-tire ?v)) (not (at spare-tire ?s))))

(defschema (drive-both)
 :parameters (?v ?s ?d)
 :precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)
(road-connected ?s ?d)
(not (in cargo ?v)) (in spare-tire ?v))

 :effect (and (at ?v ?d) (not (at ?v ?s))
(and (at cargo ?v)) (not (at cargo ?s))
(and (at spare-tire ?v)) (not (at spare-tire ?s))))

Figure 11. The Four STRIPS Schemas for Driving with Possible Contents.

which I call partially factored expansion. The pri-
mary difference stems from IPP’s mutex rules
that state that two actions are marked as
mutex only if their unconditional effects and
preconditions are in conflict. This difference
allows IPP to do less computation during graph
expansion but reduces the number of mutex
constraints that will be found. For most
domains, the difference doesn’t matter, but in
some cases (for example, the movie-watching
domain [Anderson, Smith, and Weld 1998]),
factored expansion performs exponentially
better than IPP.

Universal Quantification The GRAPHPLAN

descendants IPP (Koehler et al. 1997a) and SGP

(Anderson, Smith, and Weld 1998) each allow
action schemata with universal quantification.
In preconditions, universal quantification lets
one conveniently describe real-world actions
such as the UNIX rmdir command, which
deletes a directory only if all files inside it have
already been deleted. Universally quantified
effects allow one to describe actions such as
chmod *, which set the protection of all files in
a given directory. Naturally, universal quantifi-
cation is equally useful in describing physical
domains. As shown in figure 12, one can use a
universally quantified conditional effect to say
that all objects on the vehicle will change loca-
tion as a result of driving.

To add universal quantification to GRAPH-
PLAN, it helps to make several simplifying
assumptions. Specifically, assume that the
world being modeled has a finite, static uni-
verse of typed objects. For each object in the
universe, the initial state description must
include a unary atomic sentence declaring its
type.13 For example, the initial description
might include sentences of the form (vehicle
truck37) and (location Renton), where vehicle
and location are types.14 The assumption of a

static universe means that action effects might
not assert type information. For example, if an
action were allowed to assert (not (vehicle
truck37)) as an effect, then it would amount to
the destruction of an object; the assumption
forbids the destruction or the creation of
objects.

To assure systematic establishment of goals
and preconditions that have universally quan-
tified clauses, one must modify the graph
expansion phase to map these formulas into a
corresponding ground version. The Herbrand
base ϒ of a first-order, function-free sentence,
∆, is defined recursively as follows:

ϒ(∆) = ∆ if ∆ contains no quantifiers
ϒ(∀ t1 x ∆(x)) = ϒ(∆1) … ϒ(∆n)

where the ∆i correspond to each possible inter-
pretation of ∆(x) under the universe of dis-
course, {C1; … ; Cn}, that is, the possible objects
of type t1 (Genesereth and Nilsson 1987). In
each ∆i, all references to x have been replaced
with the constant Ci. For example, suppose
that the universe of vehicle is {truck37;
loader55; plane7}. If ∆ is (forall ((vehicle ?v)) (at
?v Seattle)), then the Herbrand base ϒ(∆) is the
following conjunction:

(and (at truck37 Seattle)
(at loader55 Seattle) (at plane7 Seattle)).

Under the static universe assumption, if this
goal is satisfied, then the universally quantified
goal is satisfied as well. Note that the Herbrand
base for a formula containing only universal
quantifiers will always be ground, so one can
use formulas of this form as action effects. It’s
easy to handle existential quantifiers inter-
leaved arbitrarily with universal quantification
when the expression is used as a goal, action
precondition, or the antecedent of a condi-
tional effect. Existential quantifiers are not
allowed in action effects because they are
equivalent to disjunctive effects and (as

Articles

SUMMER 1999 105

(defschema (drive)
 :parameters (?v ?s ?d)
 :precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)
(road-connected ?s ?d))

 :effect (and (at ?v ?d) (not (at ?v ?s))
(forall (object ?o)

(when (in ?o ?v)
 (and (at ?o ?v)) (not (at ?o ?s))))))

Figure 12. Universally Quantified Conditional Schemata for Driving.

tifiers in action effects, but goals, precondi-
tions, and effect antecedents can have inter-
leaved universal and existential quantifiers.
Quantified formulas are compiled into the cor-
responding Herbrand base, and all remaining
variables are treated like action schemata para-
meters during graph expansion. Because the
resulting planning graph contains quantifier-
free ground action instances, no changes are
required during solution extraction.

Compilation of Planning to SAT

Despite the early formulation of planning as
theorem proving (Green 1969), most research-
ers have long assumed that special-purpose
planning algorithms are necessary for practical
performance. Algorithms such as TWEAK (Chap-
man 1987), SNLP (McAllester and Rosenblitt
1991), UCPOP (Penberthy and Weld 1992), and
GRAPHPLAN (Blum and Furst 1995) can all be
viewed as special-purpose theorem provers
aimed at planning problems. However, recent
improvements in the performance of proposi-
tional satisfiability methods (Cook and
Mitchell 1997) call this whole endeavor in
doubt. Initial results for compiling bounded-
length planning problems to SAT were unre-
markable (Kautz and Selman 1992), but recent
experiments (Kautz and Selman 1996) suggest
that compilation to SAT might yield the world’s
fastest STRIPS-style planner.

Figure 13 shows the architecture of a typical
SAT-based planning system, for example, MEDIC

(Ernst, Millstein, and Weld 1997) or BLACKBOX

(Kautz and Selman 1998a). The compiler takes
a planning problem as input, guesses a plan
length, and generates a propositional logic for-
mula, which, if satisfied, implies the existence
of a solution plan; a symbol table records the
correspondence between propositional vari-
ables and the planning instance. The simplifier
uses fast (linear time) techniques such as unit-
clause propagation and pure literal elimina-
tion (for example, Van Gelder and Tsuji [1996])
to shrink the CNF formula. The solver uses sys-
tematic or stochastic methods to find a satisfy-
ing assignment that the decoder translates
(using the symbol table) into a solution plan.
If the solver finds that the formula is unsatisfi-
able, then the compiler generates a new encod-
ing reflecting a longer plan length.

The Space of Encodings
Compilers for high-level programming lan-
guages (for example, Lisp) are compared on the
basis of speed and also on the quality of the
machine code they produce. These same
notions carry over to SAT compilers as well.

described earlier) imply nondeterminism and,
hence, require reasoning about uncertainty.

To handle existential quantification in
goals, one needs to extend the definition of
Herbrand base as follows:

ϒ(∃ t1 y ∆(y))
= t1(y) ∧ ϒ (∆(y))

ϒ(∀ t1 x ∀ t2 y ∆(x, y))
= t2(y1) ∧ ϒ (∆1) ∧ … ∧ t2(yn) ∧ ϒ (∆n)

Once again, the ∆i correspond to each possible
interpretation of ∆(x, y) under the universe of
discourse for type t1: {C1, … , Cn}. In each ∆i,
all references to x have been replaced with the
constant Ci. In addition, references to y have
been replaced with Skolem constants (that is,
the yi).

15 All existential quantifiers are elimi-
nated as well, but the remaining free variables
(which act as Skolem constants) are implicitly
existentially quantified; they will be treated
just like action schemata parameters during
graph expansion. Because we are careful to
generate one such Skolem constant for each
possible assignment of values to the universal-
ly quantified variables in the enclosing scope,
there is no need to generate and reason about
Skolem functions. In other words, instead of
using y = f(x), we enumerate the set {f(C1),
f(C2), …, f(Cn)} for each member of the uni-
verse of x and then generate the appropriate
set of clauses ∆i by substitution and renaming.
Because each type’s universe is assumed finite,
the Herbrand base is guaranteed finite as well.
Two more examples illustrate the handling of
existential quantification: Suppose that the
universe of location is {Seattle, Renton} and
that ∆ is

(exists ((location ?l))
(forall ((vehicle ?v)) (at ?v ?l))]

then the Herbrand base is the following:

(and (location ?l) (at truck37 ?l)
(at loader55 ?l) (at plane7 ?l))

As a final example, suppose ∆ is

(forall ((location ?l))
(exists ((vehicle ?v)) (at ?v ?l)))

Then the universal base contains two
Skolem constants (?v1 and ?v2) that are treated
as parameters:

(and (vehicle ?v1) (at ?v1 Seattle)
(vehicle ?v2) (at ?v2 Renton))

Because there are only two locations, the
Skolem constants ?v1 and ?v2 exhaust the
range of the Skolem function whose domain is
the universe of vehicles. Because of the finite,
static universe assumption, one can always do
this expansion when creating the Herbrand
base.

In summary, we only allow universal quan-

Despite the
early

formulation
of planning as

theorem
proving …,

most
researchers
have long

assumed that
special-
purpose

planning
algorithms are

necessary for
practical

performance.

Articles

106 AI MAGAZINE

One wants a compiler to quickly produce a
small SAT encoding because solver speed can be
exponential in the size of the formula being
tested. However, this measure of size is compli-
cated by the fact that a propositional formula
can be measured in terms of the number of
variables, the number of clauses, or the total
number of literals summed over all clauses;
often a decrease in one parameter (variables,
say) will increase another (for example, claus-
es). Two factors determine these sizes: (1) the
encoding and (2) the optimizations being
used. Because the encoding is the more funda-
mental notion, I focus on it first, presenting a
parameterized space of possibilities (developed
in Ernst, Millstein, and Weld [1997]) with two
dimensions:

First, the choice of a regular, simply split,
overloaded split, or bitwise action representa-
tion specifies the correspondence between
propositional variables and ground (fully
instantiated) plan actions. These choices rep-
resent different points in the trade-off
between the number of variables and the
number of clauses in the formula.

Second, the choice of classical or explan-
atory frame axioms varies the way that station-
ary fluents are constrained.

Each of the encodings uses a standard fluent
model in which time takes nonnegative inte-
ger values. State fluents occur at even-num-
bered times and actions at odd times. For
example, in the context of the dinner-date
problem described previously, the proposition-
al variable garb0 means that there is garbage in
the initial state, ¬garb2 signifies that there is no
garbage after executing the first set of parallel
actions, and carry1 means that the carry action
is executed at time one.

Each of the encodings uses the following set
of universal axioms:

INIT: The initial state is completely specified
at time zero, including all properties presumed
false by the closed-world assumption. For the
dinner-date problem, one gets

garb0 ∧ cleanH0 ∧ quiet0 ∧ ¬dinner0
∧ ¬present0

GOAL: To test for a plan of length n, all
desired goal properties are asserted to be true at
time 2n (but the goal state need not be speci-
fied fully). Assuming a desired dinner-date
plan length of n = 1, one gets

¬garb2 ∧ dinner2 ∧ present2

A ⇒ P,E: Actions imply their preconditions
and effects. For each odd time t between 1 and
2n – 1 and for each consistent ground action,
an axiom asserts that execution of the action
at time t implies that its effects hold at t + 1,
and its preconditions hold at t – 1. The A ⇒ P,E
can generate numerous clauses when applied
to action schemata in the context of a world
with many objects, but for the simple nonpa-
rameterized dinner-date cook action, one gets

(¬cook1 ∨ dinner2) ∧ (¬cook1 ∨ cleanH0)

Action Representation The first major
encoding choice is whether to represent the
names of ground action instances in regular,
simply split, overloaded split, or the bitwise
format. This choice is irrelevant for purely
propositional planning problems (such as the
dinner-date example) but becomes crucial giv-
en parameterized action schemata (for exam-
ple, the STRIPS drive schema shown in figure 8).
In the regular representation, each ground action
is represented by a different logical variable,
for a total of n | Schemata || Dom | Ps such vari-
ables, where n denotes the number of odd time
steps, | Schemata | is the number of action
schema, Ps denotes the maximum number of
parameters for each action schemata, and |

Articles

SUMMER 1999 107

Compiler Simplifier Solver
CNF CNF

Symbol Table

Increment time bound if
unsatisfiable

Decoder
Satisfying

Assignment
PlanInit State

Goal
Actions

Figure 13. Architecture of a Typical SAT-Based Planning System.

resentations so much that afterwards, bitwise
representations had the most variables.

Frame Axioms Every encoding requires
axioms to confront the frame problem
(McCarthy and Hayes 1969).

Frame: Frame axioms constrain unaffected
fluents when an action occurs. There are two
alternatives: classical or explanatory frames.

Classical frame axioms (McCarthy and Hayes
1969) state which fluents are left unchanged
by a given action. For example, one classical
frame axiom for the STRIPS drive schemata (fig-
ure 8) would say, “Driving vehicle Truck37
from Seattle to Renton leaves Truck9’s location
(Kent) unchanged.”

(At(Truck9, Kent, t – 1)
∧ Drive(Truck37, Seattle, Renton, t)
⇒ At(Truck9, Kent, t + 1)

Because the encoding is propositional, one
must write a version of this axiom for each
combination of (1) possible location of Truck9,
(2) source location for Truck37, and (3) desti-
nation for Truck37. If these aren’t the only two
trucks, then there will be even more combina-
tions. Note also the use of the regular action
representation implied by our choice of vari-
able Drive(Truck37, Seattle, Renton, t); if a dif-
ferent representation is desired, then the frame
axiom might contain more literals.

Adding classical frame axioms for each
action and each odd time t to the universal
axioms almost produces a valid encoding of
the planning problem. However, if no action
occurs at time t, the axioms of the encoding
can infer nothing about the truth value of flu-
ents at time t + 1, which can therefore take on
arbitrary values. The solution is to add at-least-
one axioms for each time step.

At-least-one: A disjunction of every possi-
ble, fully instantiated action ensures that some
action occurs at each odd time step. (A main-
tenance action is inserted as a preprocessing
step.) Note that action representation has a
huge effect on the size of this axiom.

The resulting plan consists of a totally
ordered sequence of actions; indeed, it corre-
sponds roughly to a linear encoding in Kautz,
McAllester, and Selman (1996), except that they
include exclusion axioms (see later) to ensure
that at most, one action is active at a time. How-
ever, exclusion axioms are unnecessary because
the classical frame axioms combined with the A
⇒ P,E axioms ensure that any two actions
occurring at time t lead to an identical world
state at time t + 1. Therefore, if more than one
action does occur in a time step, then either one
can be selected to form a valid plan.

Explanatory frame axioms (Haas 1987)
enumerate the set of actions that could have

Dom | is the number of objects in the domain.
Because systematic solvers take worst-case time
that is exponential in the number of variables,
and large numbers of variables also slow sto-
chastic solvers, one would like to reduce this
number.

To reduce the number of variables, Kautz
and Selman (1996) introduced simple action
splitting, which replaces each n-ary action flu-
ent with n unary fluents throughout the
encoding. For example, variables of the form
Drive(Truck37, Seattle, Renton, t) are replaced
with the conjunction of DriveArg1(Truck37, t),
DriveArg2(Seattle, t), DriveArg3(Renton, t).16

Replacing variables with the conjunction for
each action reduces the number of variables
needed to represent all actions to n | Schemata
|| Dom | Ps, but each action (formerly a single
variable) is now described by a conjunction of
Ps variables. With the simple splitting repre-
sentation, only instances of the same action
schemata share propositional variables. An
alternative is overloaded splitting, whereby all
operators share the same split fluents. Over-
loaded splitting replaces Drive(Truck37, Seat-
tle, Renton, t) by the conjunction of Act(Drive,
t) ∧ Arg1(Truck37, t) ∧ Arg2(Seattle, t) ∧
Arg3(Renton, t), and a different action
Load(Truck37, Drum9, t) is replaced with
Act(Load, t) ∧ Arg1(Truck37, t) ∧ Arg2(Drum9,
t). This technique further reduces the number
of variables needed to represent all actions to n
(| Schemata | | Dom | Ps).

The bitwise representation shrinks the num-
ber of variables even more by representing the
action instances with only [log2 | Schemata ||
Dom | Ps] propositional symbols (for each odd
time step), each such variable representing a
bit. The ground action instances are numbered
from 0 to (| Schemata || Dom | Ps) – 1. The
number encoded by the bit symbols deter-
mines the ground action that executes at each
odd time step. For example, if there were four
ground actions, then (¬bit1(t) ∧ ¬bit2(t))
would replace the first action, (¬bit1(t) ∧
bit2(t)) would replace the second, and so on.

Which action representation is the best?
Although more experiments need to be per-
formed, preliminary results suggest that the
regular and simply split representations are
good choices (Ernst, Millstein, and Weld
1997). In contrast, bitwise and overloaded rep-
resentations result in convoluted encodings
that resist simplification and type analysis. For
example, although the bitwise encoding yields
the smallest number of propositional variables
before simplification, the linear-time proce-
dure described in Van Gelder and Tsuji (1996)
shrunk the CNF formulas from the other rep-

Articles

108 AI MAGAZINE

occurred to account for a state change. For
example, an explanatory frame axiom would
say which actions could have caused truck9 to
have left Seattle.

(At(Truck9, Seattle, t – 1) ∧ ¬At(Truck9,
Seattle, t + 1))) ⇒
(Drive(Truck9, Seattle, Renton, t) ∨
Drive(Truck9, Seattle, Kent, t) ∨ … ∨
Drive(Truck9, Seattle, Tacoma, t))

Note (again) that the choice of action repre-
sentation affects the length of the frame
axioms. Furthermore, note that the axiom can
be simplified dramatically if a different repre-
sentation is chosen. For example, if we use the
simply split representation, then a straight
translation yields.

At(Truck9, Seattle, t – 1) ∧ ¬At(Truck9,
Seattle, t + 1)) ((DriveArg1(Truck9, t) ⇒
DriveArg2(Seattle, t) ∧
DriveArg3(Renton, t)) ∨
(DriveArg1(Truck9, t) ∧
DriveArg2(Seattle, t) ∧
DriveArg3(Kent, t)) ∨ … ∨
(DriveArg1(Truck9, t) ∧
DriveArg2(Seattle, t) ∧
DriveArg3(Tacoma, t)))

However, this disjunction is really just enu-
merating all the possible destinations, which is
silly, so the compiler can do a factoring opti-
mization (Ernst, Millstein, and Weld 1997) by
recognizing which parameters affect which lit-
erals and generating simplified frames
axioms.17 For this example, the compiler
should generate (the vastly simpler)

At(Truck9, Seattle, t – 1) ∧
¬At(Truck9, Seattle, t + 1))
(DriveArg1(Truck9, t) ∧
DriveArg2(Seattle, t))

As a supplement to the universal axioms,
explanatory frame axioms must be added for
each ground fluent and each odd time t to pro-
duce a reasonable encoding. With explanatory
frames, a change in a fluent’s truth value
implies that some action occurs, so (contrapos-
itively) if no action occurs at a time step, the
lack of an action occurring will be correctly
treated as a maintenance action. Therefore, no
at-least-one axioms are required.

The use of explanatory frame axioms brings
an important benefit: Because they do not
explicitly force the fluents unaffected by an
executing action to remain unchanged,
explanatory frames permit parallelism. Speci-
fically, any actions whose preconditions are
satisfied at time t and whose effects do not
contradict each other can be executed in par-
allel. Parallelism is important because it allows
one to encode an n step plan with less than n

odd time steps, and small encodings are good.
However, uncontrolled parallelism is problem-
atic because it can create valid plans that have
no linear solution. For example, suppose
action α has precondition X and effect Y , but
action β has precondition ¬Y and effect ¬X.
Although these actions might be executed in
parallel (because their effects are not contradic-
tory), there is no legal total ordering of the two
actions. Hence, one must explicitly rule out
this type of pathologic behavior with more
axioms.

Exclusion: Linearizability of resulting plans
is guaranteed by restricting which actions can
occur simultaneously.

Two kinds of exclusion enforce different
constraints in the resulting plan:

First, with complete exclusion, for each odd
time step, and for all distinct, fully instantiated
action pairs α, β, add clauses of the form ¬αt ∨
¬βt. Complete exclusion ensures that only one
action occurs at each time step, guaranteeing a
totally ordered plan.

Second, with conflict exclusion, for each odd
time step, and for all distinct, fully instantiat-
ed, conflicting action pairs α, β, add clauses of
the form ¬αt ∨ ¬βt. In our framework, two
actions conflict if one’s precondition is incon-
sistent with the other’s effect.18 Conflict exclu-
sion results in plans whose actions form a par-
tial order. Any total order consistent with the
partial order is a valid plan.

Note that conflict exclusion cannot be used
in isolation given a split action representation
because splitting causes there not to be a
unique variable for each fully instantiated
action. For example, with simple splitting, it
would be impossible to have two instantia-
tions of the same action schema execute at the
same time because their split fluents would
interfere. Overloaded splitting further disal-
lows two instantiations of different actions to
execute at the same time, so it requires com-
plete exclusion. Simple splitting can be used
with conflict exclusion when augmented with
additional axioms that ban multiple instances
of a single schema from executing.

The bitwise action representation requires
no action exclusion axioms. At any time step,
only one fully instantiated action’s index can
be represented by the bit symbols, so a total
ordering is guaranteed.

What is the best way to represent frame
axioms? Experience (Ernst, Millstein, and Weld
1997; Kautz and Selman 1996) shows that
explanatory frame axioms are clearly superior
to classical frames in almost every case. Because
parallel actions encode longer plans with the
same number of time steps, conflict exclusion

Articles

SUMMER 1999 109

¬garb4 ⇒ (dolly3 ∨ carry3
∨ maintain-no-garb3)

Kautz, McAllester, and Selman (1996)
observe that this encoding is close to the com-
bination of explanatory frames with a regular
action representation; there are two differ-
ences: First, this encoding does not explicitly
include explanatory frame axioms, but they
can be generated by resolving axioms of type 4
with the “actions imply their preconditions”
axioms for the maintenance actions. Second,
there are no axioms stating that actions imply
their effects, so spurious actions can be includ-
ed in the solution (these can be removed later
by the decoder). Fortunately, the conflict-
exclusion axioms prevent these spurious
actions from interfering with the rest of the
plan.

The BLACKBOX system (Kautz and Selman
1998a) uses this GRAPHPLAN-based encoding to
provide a very fast planner. BLACKBOX uses the
graph-expansion phase of IPP (Koehler et al.
1997a) to create the planning graph, then con-
verts the graph into CNF rather than perform
traditional solution extraction. One of the keys
to BLACKBOX’s performance is the observation
that the simplification algorithm employed by
GRAPHPLAN is more powerful than the unit
propagation used in the previous SAT planning
system (Kautz and Selman 1998a; Kambham-
pati 1997a). Specifically, GRAPHPLAN uses nega-
tive binary propagation in a limited way: Bina-
ry exclusion clauses corresponding to mutex
relations (for example, {¬p ∨ ¬q}) are resolved
against proposition support sets (for example,
{p ∨ r ∨ s ∨ … }) to infer {¬q ∨ r ∨ s ∨ … }.

Optimizations
There are several ways to improve the encod-
ings discussed previously; in this subsection, I
discuss compile-time–type optimization and
the addition of domain-specific information.

The principles and objectives underlying
type analysis for SAT compilation are the same
as previously discussed in the context of GRAPH-
PLAN. GRAPHPLAN-based approaches (for exam-
ple, inertia optimization [Koehler et al. 1997a]
and TIM [Fox and Long 1998]) aimed to shrink
the size of the planning graph by eliminating
static fluents and avoiding nonsensical action-
schemata instantiations. The same approaches
can be used to shrink the size of the CNF for-
mula that a SAT compiler generates. The MEDIC

compiler performs optimizations that reduce
CNF size by as much at 69 percent on a variety
of problems (Ernst, Millstein, and Weld 1997).

Another way to optimize the CNF formula
produced by a compiler is to add domain-spe-
cific information. Typically, this knowledge is

should be used whenever possible (for exam-
ple, with the regular action representation or
with the minimal additional exclusions neces-
sary for the simply split representation).

Other Kinds of Encoding The MEDIC plan-
ning compiler (Ernst, Millstein, and Weld
1997) uses the taxonomy described earlier to
generate any of 12 different encodings. In
addition, MEDIC incorporates many switch-
selectable optimizations such as type analysis;
these features make MEDIC a powerful test bed
for research in SAT-based planning. However,
several encodings do not fit in our taxonomy
and, hence, cannot be generated by MEDIC.

The causal encoding (Kautz, McAllester, and
Selman 1996) is based on the causal-link repre-
sentation used by partial-order planners such
as SNLP (McAllester and Rosenblitt 1991).
Although this encoding has been shown to
have the smallest encoding when measured
asymptotically, the constant factors are large,
and despite several efforts, no one has succeed-
ed in building a practical compiler based on
the idea.

Work has also been done on exploring ways
of encoding hierarchical task network (HTN)
planning (Erol, Hendler, and Nau 1994) as a
SAT problem (Mali and Kambhampati 1998).

Comparison with GRAPHPLAN Note the
strong similarities between GRAPHPLAN-deriva-
tive and SAT-based planning systems: First,
both approaches convert parameterized action
schemata into a finite propositional structure
(for example, the planning graph and a CNF
formula) representing the space of possible
plans to a given length. Second, both ap-
proaches use local consistency methods (for
example, mutex propagation and proposition-
al simplification) before resorting to exhaus-
tive search. Third, both approaches iteratively
expand their propositional structure until they
find a solution.

Indeed, Kautz and Selman (1996) showed
that the planning graph can be converted auto-
matically into CNF notation for solution with
SAT solvers by constructing propositional formu-
las stating the following: (1) The (fully specified)
initial state holds at level zero, and the goal
holds at the highest level (that is, our init and
goal axioms). (2) Conflicting actions are mutu-
ally exclusive (that is, conflict-based exclusion
axioms). (3) Actions imply their preconditions
(that is, the precondition part of our A ⇒ P, E
axioms). (4) Each fact at a positive even level
implies the disjunction of all actions at the pre-
vious level that have this fact in their effects
(including a maintenance action if it exists). For
example, consider the dinner-date proposition
¬garb at level 4 in figure 6; one obtains

MEDIC

incorporates
many

switch-
selectable

optimizations
such as type

analysis;
these features
make MEDIC a
powerful test

bed for
research in

SAT-based
planning.

Articles

110 AI MAGAZINE

impossible to express in terms of STRIPS actions
but is natural when writing general logical
axioms and can be induced when processing
action schemata and initial state specifica-
tions. For example, in the blocks world, one
might state axioms to the effect that the rela-
tion On is both noncommutative and irreflex-
ive, only one block can be on another at any
time, and so on. Ernst et al. show that adding
these types of axiom increased the clause size
of the resulting CNF formulas but decreased
the number of variables (after simplification)
by 15 percent and speed up solver time signif-
icantly. Domain axioms can be classified in
terms of the logical relationship between the
knowledge encoded and the original problem
statement (Kautz and Selman 1998b):

First, action conflicts and derived effects are
entailed solely by the preconditions and effects
of the domain’s action schemata.

Second, heuristics that are entailed by the
initial state in conjunction with the domain’s
action schemata include state invariants. For
example, a vehicle can only be in one location
at a time.

Third, optimality heuristics restrict plans by
disallowing unnecessary subplans. For exam-
ple, in a package delivery domain, one might
specify that packages should never be returned
to their original location.

Fourth, simplifying assumptions are not log-
ically entailed by the domain definition or
goal but can restrict search without eliminat-
ing plans. For example, one might specify that
once trucks are loaded, they should immedi-
ately move.

DISCOPLAN (Gerevini and Schubert 1998) is a
preprocessing system that infers state con-
straints from domain definitions. The basic
idea is to look for four general axiom patterns
(which can be discovered with low-order poly-
nomial effort). For example, a single-valued
constraint would be discovered for the logistics
world, saying that each vehicle can be in only
one place at a time. IPP’s planning graph is used
to discover some of these constraints, and oth-
ers are deduced using special-purpose analysis.
No attempt is made to deduce optimality
heuristics or simplifying assumptions—all con-
straints are completeness preserving. Never-
theless, the CNF formulas with DISCOPLAN-
inferred axioms were solved many times faster
than plain MEDIC or SATPLAN (Kautz and Selman
1996) formulas, regardless of the SAT solver
used. Indeed, in many cases, the plain encod-
ings were unsolvable in the allotted time, and
the DISCOPLAN-augmented encodings quickly
yielded a plan.

Other researchers have devised alternative

methods for detecting constraints. For exam-
ple, Bacchus and Teh (1998) describe a method
similar to DISCOPLAN that, in addition, uses
regression search to further restrict the predi-
cate domains. Rintanen (1998) modified algo-
rithms from computer-aided verification to
discover binary invariants. Earlier work on the
subject is presented in Kelleher and Cohen
(1992). Despite these promising first efforts,
much more exciting work remains to be done
in the area of optimizing SAT encodings for
speedy solution.

SAT Solvers
Without an efficient solver, a planning-to-SAT

compiler is useless; in this subsection, I review
the state of the art. Perhaps the best summary
is that this area of research is highly dynamic.
Each year seems to bring a new method that
eclipses the previous leader. Selman, Kautz,
and McAllester (1997) present an excellent
summary of the state of the art in proposition-
al reasoning and sketch challenges for coming
years. My discussion is therefore brief.

SAT solvers are best distinguished by the type
of search they perform: systematic or stochastic.

Systematic SAT Solvers Although it was
discovered many years ago, the DPLL algorithm
(Davis, Logemann, and Loveland 1962)
remains a central algorithm, and it can be
summarized with a minimum of background.
Let Φ be a CNF formula, that is, a conjunction
of clauses (disjunctions). If one of the clauses is
just a single literal P, then clearly P must be
true to satisfy the conjunction; P is called a
unit clause. Furthermore, if some other literal
Q exists such that every clause in Φ that refers
to Q or ¬Q references Q in the same polarity—
for example, all references are true (or all are
false)—then Q (or ¬Q) is said to be a pure liter-
al. For example, in the CNF formula

ψ = (A ∨ B ∨ ¬E) ∧ (B ∨ ¬C ∨ D) ∧ (¬A)
∧ (B ∨ C ∨ E) ∧ (¬D ∨ ¬E)

¬A is a unit clause, and B is a pure literal. I use
the notation Φ(u) to denote the result of set-
ting literal u true and then simplifying. For
example, ϕ(¬A) is

(B ∨ ¬E) ∧ (B ∨ ¬C ∨ D) ∧ (B ∨ C ∨ E)
∧ (¬D ∨ ¬E)

and ϕ(B) is

(¬A) ∧ (¬D ∨ ¬E)

We can now describe DPLL in simple terms; it
performs a backtracking, depth-first search
through the space of partial truth assignments,
using unit-clause and pure-literal heuristics
(figure 14). TABLEAU (Crawford and Auton 1993)
and SATZ (Li and Anbulagan 1997) are tight
implementations of DPLL with careful attention

Articles

SUMMER 1999 111

lems, a stochastic solver can simply report that
it is unable to find a satisfying assignment in
the allotted time. This output leaves the
observer uninformed because there is no sure
way to distinguish an unsatisfiable formula
from one whose satisfying assignment is diffi-
cult to find. However, stochastic solvers are fre-
quently much faster at finding satisfying
assignments when they exist.

The simple and popular GSAT solver is a ran-
dom-restart, hill-climbing search algorithm
(figure 15) (Selman, Levesque, and Mitchell
1992). The successors of a truth assignment are
assignments that differ only in the value
assigned to a single variable. GSAT performs a
greedy search, preferring one assignment over
another based on the number of satisfied
clauses. Note that the algorithm can move
sideways (no change in the number of satisfied
clauses) or make negative progress. After hill
climbing for a fixed amount of flips (as direct-
ed by Nflips), GSAT starts anew with a freshly
generated, random assignment. After N restarts
many of these restarts, GSAT gives up.

WALKSAT (Selman, Kautz, and Cohen 1996,
1994) improves on GSAT by adding additional
randomness akin to simulated annealing.19

On each flip, WALKSAT does one of two things;
with probability p, it chooses the same variable
GSAT would have chosen; otherwise, it selects a
random variable from an unsatisfied clause.
Many variants on these algorithms have been
constructed and compared, for example, Gent
and Walsh (1993) and McAllester, Selman, and
Kautz (1997).

An especially promising new method,
reported in Gomes, Selman, and Kautz (1998),
exploits the fact that the time required by the
DPLL procedure is highly dependent on the
choice of splitting variable, producing a heavy-
tailed distribution of running times (figure 16).
They augmented a version of DPLL by (1)
adding randomization to the choice of split-
ting variable and (2) causing the algorithm to
quit and restart if it failed to find a solution
after a very small time limit t. These restarts
curtail unpromising choices (that is, ones that
might lead to extremely long running times)
before they consume much time. After a num-
ber of restarts, the odds are high that the algo-
rithm will stumble on a good choice that leads
to a quick solution (that is, one with a running
time less than the time limit t). Because very
little time is wasted on the restarts, the result is
a speedup of several orders of magnitude.

Although stochastic methods can perform
extremely well, their performance is usually
sensitive to a variety of parameters: random
noise p, Nrestarts, Nflips, and so on. Because the

to data structures and indexing. Many addi-
tional heuristics have been proposed to guide
the choice of a splitting variable in preparation
for the divide-and-conquer recursive call. For
example, SATZ selects variables by considering
how much unit propagation is facilitated if it
branches on the variable (Li and Anbulagan
1997). See Cook and Mitchell (1997) for a dis-
cussion of other heuristics.

By incorporating CSP look-back techniques
such as conflict-directed back jumping and its
generalization, relevance-bounded learning,
solver speed was increased substantially
(Bayardo and Schrag 1997).

Another interesting direction is the con-
struction of special-purpose SAT solvers, opti-
mized for CNF encodings of planning prob-
lems. A first effort in this direction is based on
the insight that propositional variables corre-
sponding to action choices are more important
than other variables (for example, those corre-
sponding to fluent values) that follow deter-
ministically from action choices. This insight
suggests a small change to DPLL: Restrict the
choice of splitting variables to action variables.
Interestingly, the result of this restriction is
dramatic: to four orders of magnitude speedup
(Giunchiglia, Massarotto, and Sebastiani
1998). The MODOC solver (Okushi 1998; Van
Gelder and Okushi 1998) also uses the high-
level structure of the planning problem to
speed the SAT solver, but MODOC uses knowl-
edge of which propositions correspond to
goals (rather than to actions) to guide its
search; the resulting solver is competitive with
Walksat (described later).

Stochastic SAT Solvers In contrast to sys-
tematic solvers, stochastic methods search
locally using random moves to escape from
local minima. As a result, stochastic methods
are incomplete—when called on hard prob-

Articles

112 AI MAGAZINE

Procedure DPLL(CNF formula: φ)
If φ is empty, return yes.
Else if there is an empty clause in φ, return no.
Else if there is a pure literal u in φ, return DPLL(φ(u))
Else if there is a unit clause {u} in φ, return DPLL(φ(u))
Else

Choose a variable v mentioned in φ.
If DPLL(φ(v)) = yes, then return yes.
Else return DPLL(φ(¬v)).

Figure 14. Backtracking, Depth-First Search
through the Space of Partial Truth Assignments.

optimal values for these parameters are a func-
tion of the problem being solved and the spe-
cific algorithm in question, it can take consid-
erable experimentation to “tune” these
parameters for a specific problem distribution.
For stochastic methods to reach their poten-
tial, automated tuning methods (which don’t
require solving complete problem instances!)
must be developed; McAllester, Selman, and
Kautz (1997) report on work in this direction.

Incremental SAT Solving The problem of
propositional satisfiability is closely related to
that of truth maintenance (McAllester 1990;
de Kleer 1986; Doyle 1979); I focus on LTMS-
style truth maintenance systems (McAllester
1980). Both problems concern a CNF formula
represented as a set of clauses Σ over a set of
propositional variables V. A SAT solver seeks to
find a truth assignment (that is, a function

from V to {true; false}) that makes Σ true. An
LTMS has two differences: First, an LTMS
manipulates a function from V to {true, false,
unknown}, which is more general than a truth
assignment. Second, an LTMS doesn’t just find
this mapping, it maintains it during incremen-
tal changes (additions and deletions) to the set
of clauses ß.

An LTMS uses unit propagation to update its
mapping. Any unit clauses can be assigned val-
ues immediately, and a clause with a single
unknown literal and all remaining literals
labeled false can also be updated. If a new
clause is added to ß, it can enable additional
inference, and dependency records allow the
LTMS to retract inferences that depended on
clauses later removed from ß. Nayak and
Williams (1997) describe an especially efficient
method for maintaining this mapping (which

Articles

SUMMER 1999 113

Procedure GSAT(CNF formula: φ, integer: Nrestarts , Nflips)
For i equals 1 to Nrestarts,

Set A to a randomly generated truth assignment.
For j equals 1 to Nflips,

If A satisfies φ, then return yes.
Else

Set v to be a variable in φ whose change gives the largest increase
in the number of satisfied clauses; break ties randomly.

Modify A by flipping the truth assignment of v.

Figure 15. Random-restart, Hill-climbing Search through the Space of Complete Truth Assignments.

Time to find a satisfying assignment

 P

ro
ba

bi
li

ty
 f

or
 a

 g
iv

en
va

ri
ab

le
 o

rd
er

in
g

t

Figure 16. The Time Required by DPLL to Find a Satisfying Assignment Is
Highly Dependent on the Order in Which Variables Are Chosen.

Although the distribution of times as a function of variable order varies from problem to problem, many prob-
lems show a heavy-tailed distribution (dashed curve) instead of Gaussian (hairline curve). Although t is mean
of the Gaussian curve, it is simply the most likely point on the tailed distribution. Indeed, the mean value for
a heavy-tailed distribution can be infinite because probability mass stretches rightwards without bound. How-
ever, because there is a sizable probability mass to the left of time t, one is likely to land in this area after a
small number of restarts sample different orderings.

trol unit. During its long voyage toward its des-
tination (perhaps Saturn), as many compo-
nents as possible are turned off to save energy,
so these control units and drivers must be both
turned on and operational before the valves
can be adjusted. Radiation makes space a harsh
environment that can damage both electronic
and physical components. Valves can jam
open or shut, and control units can fail in
either a soft (resettable) or permanent fashion.
To counteract these problems, the engines
have a high degree of redundancy (figure 17).
However, some of these propellant paths are
more flexible than others; for example, pyro
valves are less likely to fail but can be switched
only once.

The spacecraft’s configuration management
system must satisfy high-level goals (for exam-
ple, achieve thrust before orbital insertion) by
identifying when failures have occurred and
executing actions (for example, powering on
control units and switching valves) so that
these goals are quickly achieved at minimum
cost in terms of power and spent pyro valves.
As shown in figure 18, these decisions are made
by a pipeline of three major components:

First, the execution monitor (MI) interprets
limited sensor readings to determine the cur-
rent physical state of the spacecraft,20 includ-

they call an ITMS), and the resulting algorithm
is a powerful foundation for building real-time
planning and execution systems, as I describe
later.

Interleaved Planning and
Execution Monitoring

One of the most exciting recent developments
is a partially SAT-based reactive control system
developed in the context of spacecraft fault
protection and configuration management
(Williams and Nayak 1997, 1996). Parts of this
control system will be demonstrated as part of
the remote-agent experiment on NASA’s Deep
Space One mission, which also includes con-
straint-based temporal planning and schedul-
ing and robust multithreaded execution
(Muscettola et al., 1998; Pell et al. 1998, 1997).
This reactive control system is a model-based
configuration planning and execution system
that is best explained with an example. Figure
17 shows a simplified schematic for the main
engines of a spacecraft. The helium tank pres-
surizes the fuel and oxidizer tanks, so that they
are forced through valves (if open), to combine
in the engines where these propellants ignite
to produce thrust. Valves are opened by valve
drivers by sending commands through a con-

Articles

114 AI MAGAZINE

Valve

Pyro Valve

Main
Engines

Propellant
Tanks

Helium
Tank

Regulator

Figure 17. Schematics for Spacecraft Engine (adapted from Williams and Nayak [1997].)
Closed valves are show filled black. Pyro valves can be opened (or closed) only once.

ing recognizing when an execution failure has
occurred. Frequently, several possible states
will be consistent with previous values and
current sensors, and in this case, the execution
monitor returns the mostly likely single state.

The goal interpreter (MR) determines the set
of spacecraft states that achieve the high-level
goals and are reachable from the current state.
It returns the lowest-cost such state, for exam-
ple, one with minimal power consumption
and the fewest blown pyro valves.

The incremental replanner (MRP) calculates
the first action of a plan to reach the state
selected by goal interpretation.

Propositional Encoding of Spacecraft
Capabilities
Each of these modules uses a propositional
encoding of spacecraft capabilities that
(despite superficial differences) is quite similar
to the STRIPS domain theories considered earlier
in this article. For example, each valve in the
engine is described in terms of the following
modeling variables: valve-mode, fin, fout, pin,
pout. These variables have the domains shown
here

valve-mode ∈
{open, closed, stuck-open, stuck-closed}
fin, fout ∈ {positive, zero, negative}
pin, pout ∈ {high, nominal, low}

Note the use of a discretized, qualitative rep-
resentation (Weld and de Kleer 1989; Bobrow
1984) of the real-valued flow and pressure vari-

ables. The cross-product of these five variables
defines a space of possible valve states, but
many of these states are not physically attain-
able. For example, if the valve is open, there
will be equal pressure on both sides, so pin =
pout. Infeasible states are eliminated by writing
a set of propositional logic formulas in which
the underlying propositions are of the form,
modeling variable = value. For the valve exam-
ple, one can write21

((valve-mode = open) ∨
(valve-mode = stuck-open)) ⇒
((pin = pout) ∧ (fin = fout))

((valve-mode = closed) ∨
(valve-mode = stuck-closed)) ⇒
((fin = zero) ∧ (fout = zero))

Note that these descriptions are implicitly
parameterized. Each valve has its own vari-
ables and, thus, its own propositions. Aug-
menting these domain axioms, control actions
are specified in a temporal, modal logic that
adds a “next” operator, O, to propositional log-
ic. For example, the behavior of a valve driver
can be described in part with the following for-
mulas:22

((driver-mode ≠ failed) ∧ (cmdin = reset)) O
(driver-mode = on)

((driver-mode = on) ∧ (cmdin = open) ∧
(valve-mode ≠ stuck-open) ∧ (valve-mode
≠ stuck-closed)) O (valve-mode = open)

Each of these transition equations is akin to
a STRIPS operator—the antecedent (that is, left-

Articles

SUMMER 1999 115

Execution
Monitoring (MI)

Goal Interpretation (MR)

Control

Action

Percepts

Sp
acecraft

Incremental
Replanning (MRP)

Desired State

Current State

High-Level

Goals

Figure 18. Architecture of the Deep Space One
Spacecraft Configuration Planning and Execution System.

ing deems most likely. Estimating the cost of
reaching a goal state is relatively easy (for
example, one compares the number of
switched pyro valves and the differential pow-
er use), so logical entailment, computed by the
incremental SAT solver, is, again, central.

The incremental replanner takes as input
the (most likely) initial state computed by exe-
cution monitoring, the (least cost) goal state
computed by goal interpretation. As output,
the incremental replanner produces an action
that is guaranteed to be the first step of a suc-
cessful,24 cycle-free plan from the initial state
to the goal. The beauty of Williams and
Nayak’s algorithm is its guarantee of a speedy
response, which at first glance appears to con-
tradict results showing STRIPS planning is PSPACE

complete (Bylander 1991).
Underlying Williams and Nayak’s method is

the insight that spacecraft configuration plan-
ning is far easier than general STRIPS planning
because spacecraft engineers specifically
designed their creations to be controllable.
Williams and Nayak formalize this intuition
with a set of crisp constraints that are satisfied
by the spacecraft domain. The most important
of these restrictions is the presence of a serial-
ization ordering for any (satisfiable) set of
goals. As previous theoretical work has shown
(Barrett and Weld 1994; Korf 1987), serialized
subgoals can be solved extremely quickly
because no backtracking is necessary between
subgoals. To give an intuitive blocks world
example, the set of goals

1. Have block C on the table.
2. Have block B on block C.
3. Have block A on block B.

is serializable, and solving them in the order 1,
2, 3 is the correct serialization. It doesn’t mat-
ter how goal 1 is achieved, goals 2 and 3 can be
solved without making goal 1 false. Once goals
1 and 2 are achieved, they never need to be
violated to solve goal 3. In summary, re-
searchers have long known that serializable
goals were an ideal special case, but Williams
and Nayak’s contribution is twofold: First, they
recognized that their spacecraft configuration
task was serializable (many real-world domains
are not). Second, they developed a fast algo-
rithm for computing the correct order. This
last step is crucial because if one attempts to
solve a serializable problem in the wrong
order, then an exponential amount of time can
be wasted by backtracking search. For exam-
ple, if one solved goal 3 (getting block A on
block B) before solving 1 and 2, the work on
goal 3 might be wasted.

Williams and Nayak’s goal-ordering algo-
rithm is based on the notion of a causal

hand side) of the implication corresponds to
the action name and precondition, and the
consequent (right-hand side) equations that
follow the O are effects that take place in the
next time step. The name-parameter distinc-
tion is a bit subtle because it stems from the
fact that modeling variables are partitioned
into disjoint sets: state variables (for example,
driver-mode), dependent variables (for exam-
ple, fin), and control variables (for example,
cmdin). The subexpression of the antecedent
that consists solely of propositions referring to
control variables corresponds to the name of a
STRIPS action,23 and the remainder of the
antecedent (that is, propositions referring only
to dependent and state variables) corresponds
to the STRIPS action precondition. In summary,
therefore, Williams and Nayak model the
spacecraft with a combination of STRIPS actions
and propositional constraints defining the
space of feasible states.

Real-Time Inference
Suppose that the agent knows the state of all
modeling variables (and, hence, all proposi-
tions) at time zero. This information suffices to
predict which actions will be executed and,
hence, the expected, next spacecraft state.
However, actions don’t always have their
desired effects, so Williams and Nayak includ-
ed additional transition equations that
describe possible failure modes as well. For
example, in contrast to the expected result of
setting cmdin = open shown earlier, a failure
transition might enumerate the possibility
that valve-mode could become stuck-closed.
Both normal and failure transition rules are
annotated with probabilities. Thus, instead of
predicting a unique next spacecraft state, one
can predict a ranked list of possible next states,
ordered by likelihood.

Given this framework, the processes of exe-
cution monitoring and goal interpretation can
be cast in terms of combinatorial optimization
subject to a set of propositional logic con-
straints. As input, execution monitoring takes
a set of observations of the current values of a
subset of the state and dependent variables,
and these observations set the values of the
corresponding propositions. Thus, execution
monitoring is seen to be the problem of find-
ing the most likely next state that is logically
consistent with the observations. An incre-
mental SAT solver forms the core of this opti-
mization computation.

Goal interpretation is similar. The objective
is to find a spacecraft state that entails the
high-level goals and that is most cheaply
reached from the state that execution monitor-

Articles

116 AI MAGAZINE

graph,25 whose vertexes are state variables; a
directed edge is present from v1 to v2 if a
proposition mentioning v1 is in the antecedent
of a transition equation whose consequent
mentions v2.26 Williams and Nayak observe
that the spacecraft-model causal graphs are
acyclic, and thus, a topological sort of the
graph yields a serialization ordering. If the
goals are solved in an upstream order (that is,
goals involving v2 are solved before those of
v1), then no backtracking is required between
goals. Essentially all search is eliminated, and
the incremental replanner generates control
actions in average-case constant time.

Discussion
Although the focus of this article has been on
the dramatic explosion in SAT planning and
GRAPHPLAN-based algorithms, I close by briefly
mentioning some other recent trends.

Planning as Search
Refinement search forms an elegant framework
for comparing different planning algorithms
and representations (Kambhampati, 1997b;
Kambhampati, Knoblock, and Yang 1995).
Recent results extend the theory to handle par-
tially HTN domains (Kambhampati, Mali, and
Srivastava 1998).

McDermott (1996) showed that an emphasis
on (automatically) computing an informative
heuristic can make an otherwise simple plan-
ner extremely effective. TLPLAN uses (user-pro-
vided) domain-specific control information to
offset a simple, forward-chaining search strat-
egy—with impressive results (Bacchus and Teh
1998). Geffner demonstrated impressive per-
formance on planning competition problems
using heuristic search through the space of
world states.

Causal Link Planning
Causal link planners, for example, SNLP

(McAllester and Rosenblitt 1991) and UCPOP

(Penberthy and Weld 1992), have received less
attention in recent years because they are out-
performed by GRAPHPLAN and SATPLAN in most
domains. However, some of the intuitions
underlying these planners have been adopted
by the propositional approaches. For example,
one of the biggest advantages of causal-link
planners, resulting from their backward-chain-
ing regression search, was their insensitivity to
irrelevant information in the initial state.
Regression focusing (described previously) pro-
vides some of these advantages to proposition-
al planners.

One situation where causal link planners

still seem to excel are software domains in
which the domain of discourse is unknown to
the agent (Etzioni and Weld 1994). When an
agent is faced with incomplete information, it
cannot construct the Herbrand base and,
hence, is unable to use propositional planning
methods. Causal-link planners such as XII

(Golden, Etzioni, and Weld 1994) and PUC-CINI

(Golden 1998), however, work competently.

Handling Uncertainty
Starting with work on the CNLP (Peot and
Smith 1992), SENSP (Etzioni et al. 1992), BURIDAN

(Kushmerick, Hanks, and Weld 1995, 1994),
and C-BURIDAN (Draper, Hanks, and Weld 1994)
systems, the AI planning community has more
seriously considered extensions to action lan-
guages that allow the specification of uncer-
tain effects and incomplete information. Of
course, much related work has been performed
by the uncertainty in AI community but usu-
ally with different assumptions. For example,
work on Markov decision processes (MDPs)
typically assumes that an agent has complete,
immediate, free observability of the world
state, even if its own actions are not complete-
ly deterministic. Work on partially observable
MDPs (POMDPs) relaxes this assumption, but
much remains to be done in this area because
POMDP solvers are typically much less effi-
cient than MDPs. MDP and POMDP re-
searchers typically state the agent’s objective in
terms of maximizing a utility function over a
fixed, finite horizon. Planning researchers,
however, usually seek to achieve a fixed goal
configuration, either with complete confi-
dence or with probability greater than some
threshold, but no time horizon is considered.
In the past, it was thought that planning-based
approaches (by their goal-directed natures)
were less sensitive to high-dimension state
descriptions, that is, the presence of many
attributes in the initial state. However, recent
work on MDP abstraction and aggregation
(Dearden and Boutilier 1997; Boutilier, Dear-
den, and Goldszmidt 1995) calls this intuition
into question. For the field to advance, more
work needs to be done comparing these
approaches and testing their relative strengths
and limitations. Initial results in this area are a
start (Littman 1997; Boutilier, Dean, and Han-
ks 1995), but empirical comparisons are badly
needed.

Several researchers have extended GRAPHPLAN

to handle uncertainty. Conformant GRAPHPLAN

(CGP) (Smith and Weld 1998a) handles uncer-
tainty in the initial state and in action effects
but does not allow sensing; the resulting con-
formant plan works in the presence of uncer-

McDermott
(1996)
showed
that an
emphasis
on (automati-
cally)
computing an
informative
heuristic can
make an
otherwise
simple
planner
extremely
effective.

Articles

SUMMER 1999 117

are orders of magnitude harder than those
tackled by the best previous planners. Recent
developments extend these systems to handle
expressive action languages, metric resources,
and uncertainty. Type-theoretic domain analy-
sis promises to provide additional speedup,
and there are likely more ideas in from the
constraint-satisfaction and compiler areas that
could usefully be applied. The use of a modern
planning system to control a real NASA space-
craft demonstrates that AI planning has
matured enough as a field to increase the num-
ber of fielded applications. A common thread
running through all this research is the use of
propositional representations, which support
extremely fast inference.

Acknowledgments
I thank Corin Anderson, Mike Ernst, Mark
Friedman, Rao Kambhampati, Henry Kautz,
Todd Millstein, Bart Selman, David Smith, Bri-
an Williams, and Steve Wolfman for stimulat-
ing collaboration and discussion that shaped
my understanding of the latest planning tech-
niques. This article has been improved by com-
ments and suggestions from many people,
including Jonathan Aldrich, Matthew Cary,
Ernest Davis, Jerry DeJong, Nort Fowler, Alfon-
so Gerevini, Maria Gullickson, Geoff Hulten,
Pandu Nayak, Yongshao Ruan, Jude Shavlik,
Rein Simmons, Alicen Smith, Vassili Sukharev,
Dave Wilkins, and Qiang Yang, but my grati-
tude to them doesn’t imply that they agree
with my perspective on planning. This
research was funded by Office of Naval
Research grant N00014-98-1-0147, National
Science Foundation grant IRI-9303461, and
ARPA/Rome Labs grant F30602-95-1-0024.

Notes
1. In particular, I omit any discussion of HTN or
mixed-initiative (Ferguson, Allen, and Miller 1996;
Ferguson and Allen 1994) planning and have only a
brief discussion of topics such as planning under
uncertainty, machine-learning approaches, and
causal-link planning.

2. The acronym STRIPS stands for Stanford Research
Institute problem solver, a famous and influential
planner built in the 1970s to control an unstable
mobile robot affectionately known as SHAKEY (Fikes
and Nilsson 1971).

3. See ftp.cs.yale.edu/pub/mcdermott/software/pddl.
tar.gz for the PDDL specification.

4. See ftp.cs.yale.edu/pub/mcdermott/aipscomp-
results.html for competition results.

5. Although there is a long history of research apply-
ing ideas from constraint satisfaction to planning, I
focus on applications to GRAPHPLAN in this article
(although compilation of planning to SAT can be
viewed as taking the constraint-satisfaction perspec-
tive to its logical conclusion). See MOLGEN (Stefik

tainty by choosing robust actions that cover all
eventualities. Sensory GRAPHPLAN (SGP) (Weld,
Anderson, and Smith 1998) extends CGP to
allow branching (“contingent”) plans based on
run-time information gathered by noiseless
sensory actions that might have preconditions.
Neither CGP nor SGP incorporates numeric prob-
abilistic reasoning; both build separate plan-
ning graph structures for each possible world
specified by the problem’s uncertainty, so scal-
ing is a concern. PGRAPHPLAN (Blum and Lang-
ford 1998) adopts the MDP framework (that is,
numeric probability, complete observability)
and builds an optimal n-step, contingent plan
using a single planning-graphlike structure to
accelerate forward-chaining search (see also
Boutilier, Dearden, and Goldszmidt [1995]).

Other researchers have investigated the
compilation approach to planning under
uncertainty, but instead of compiling to SAT,
they target a probabilistic variant called E-
MAJSAT:

Given a Boolean formula with choice vari-
ables (variables whose truth status can be
arbitrarily set) and chance variables (vari-
ables whose truth status is determined by
a set of independent probabilities), find
the setting of the choice variables that
maximizes the probability of a satisfying
assignment with respect to the chance
variables. (Littman 1997)

Majercik and Littman (1998a) describe a
planning compiler based on this idea and pre-
sent an E-MAJSAT solver akin to DPLL. Caching
expensive probability calculations leads to
impressive efficiency gains (Majercik and
Littman 1998b).

I would be remiss if I failed to mention alter-
native approaches for handling uncertainty.
Interleaved planning and execution (Golden
1998; Golden, Etzioni, and Weld 1994;
Ambros-Ingerson and Steel 1988) eschews a
contingent plan, instead planning for the
expected case and replanning if expectations
are violated; although this approach has signif-
icant performance advantages, it’s a risky strat-
egy in worlds with irreversible actions where
goal failure is costly. Permissive planning
(DeJong and Bennett 1997) uses machine
learning to bias the planner’s search toward
plans that are likely to succeed; the resulting
planner is fast because uncertainty is repre-
sented only during learning.

Conclusions
In the past few years, the state of the art in AI
planning systems has advanced with extraor-
dinary speed. GRAPHPLAN- and SAT-based plan-
ning systems can quickly solve problems that

Articles

118 AI MAGAZINE

1981) for seminal work on constraint-post-
ing planning. TWEAK (Chapman 1987), SNLP

(McAllester and Rosenblitt 1991), and
UCPOP (Penberthy and Weld 1992) manipu-
lated explicit codesignation and ordering
constraints. Joslin and Pollack (1996)
describe a planner that represented all its
decisions as constraints. Kambhampati
(1997b) provides a formal framework of
planning that compares different planners
in terms of the way they handle con-
straints. GEMPLAN (Lansky 1998) is a modern
constraint-posting planner.

6. Similar heuristics have been investigated
in the context of causal-link planners; see
Smith and Peot (1993); Joslin and Pollack
(1994); Yang and Chan (1994); Srinivasan
and Howe (1995); Gerevini and Schubert
(1996); and Pollack, Joslin, and Paolucci
(1997).

7. See Etzioni (1993) and Smith and Peot
(1996, 1993) for additional uses of precom-
putation based on an analysis of action
interactions.

8. Fox et al. also point out that their
method can dramatically improve the soft-
ware-engineering process of designing,
debugging, and maintaining complex plan-
ning domains.

9. My use of the word only is too strong
because the planning graph might contain
some actions that can’t ever be executed.
Strictly speaking, the planning graph con-
tains a proper superset of the executable
actions that is a close approximation of this
set.

10. Proof sketch: If A and B appear at both
level i and i – 2 and are mutex at level i,
then by definition, this mutex must be the
result of inconsistent effects, interference,
or competing needs. If the mutex is the
result of the first two reasons, then the
mutex will occur at every level containing
A and B. However, if the mutex is the result
of competing needs, then there are precon-
ditions P and Q of A and B, respectively,
such that P is mutex with Q at level i – 1.
This propositional mutex can only result
from the fact that all level i – 3 actions sup-
porting P and Q are pairwise mutex, so an
inductive argument (combined with action
monotonicity) completes the proof.

11. Proof sketch: If they were achievable at
level i – 2, then adding a level of mainte-
nance actions would achieve them at level
i.

12. These approaches make all effects con-
ditional because the action preconditions
are added into the antecedent for each con-
ditional effect, and the unavoidable effects
(for example, changing the vehicle’s loca-
tion) form a new conditional effect with
just the action’s preconditions as an
antecedent.

13. See the previous subsection entitled
Action Schemata, Type Analysis, and Sim-
plification for further explanation of types.

14. It’s fine for a given object to have mul-
tiple types, but having multiple types must
be stated explicitly, or else some form on
inheritance reasoning must be added to the
graph-expansion process.

15. Note that this definition relies on the
fact that type t1 has a finite universe; as a
result, n Skolem constants are generated. If
there were two leading, universally quanti-
fied variables of the same type, then n2

Skolem constants (yi,j) would be necessary.

16. Note that we are using nonstandard
notation here to emphasize the combina-
torics. When we write DriveArg3(Renton, t)
we denote a propositional variable, not a
functional term from first-order predicate
calculus. Thus, DriveArg3(Renton, t) is
treated as if it has no substructure. To make
this aspect clear, I might better write the
symbol DriveArg3Rentont, but I prefer my
notation because it more clearly illustrates
the effects of representational differences
on CNF size.

17. In fact, the factoring optimization
should be applied to all axiom types—not
just frame axioms.

18. Contrast my definition of conflict with
that of GRAPHPLAN (Blum and Furst 1995)
and Kautz and Selman (1996). Unlike Kautz
and Selman’s parallel encoding, but like
their linear one, my encodings have
axioms stating that actions imply their
effects; their parallel encoding prohibits
effect-effect conflicts instead.

19. Download from www.informatik.tu-
darmstadt.de /AI/SATLIB.

20. For clarity and consistency, I use differ-
ent terminology than Williams and Nayak’s
(1997, 1996) original papers, and I include
their acronyms to facilitate correspondence
for reader recourse to primary literature.
Williams and Nayak name the process of
execution monitoring mode identification,
hence the abbreviation MI. The intuition is
that the system’s “mode” is its state, and
hence, execution monitoring determines
whether the system is in the expected state
or if a failure has occurred. The process of
goal interpretation was called mode recon-
figuration (hence MR), and what I call incre-
mental replanning was called model-based
reactive planning (MRP).

21. Note that I am using shorthand here.
Because primitive propositions in this rep-
resentation are of the form modeling vari-
able = value, to encode pin = pout, one must
expand a formula such as (pin = positive ∧
pout = positive) ∨ ….

22. Again, I ignore parameterization.

23. By assumption (Williams and Nayak

Articles

SUMMER 1999 119

1997), every transition equation has at
least one proposition involving control
variables in its antecedent.

24. Here, it is in the absence of failure tran-
sitions.

25. It is interesting to compare this work
with similar research on subgoal ordering
discussed earlier in the subsection entitled
Solution Extraction as Constraint Satisfac-
tion. Problem-space graphs (Etzioni 1993)
and operator graphs (Smith and Peot 1996,
1993) share many resemblances to causal
graphs. Knoblock’s (1990) ALPING abstrac-
tion system can be viewed as finding a seri-
alization ordering, and it can eliminate
most search when given a problem with
acyclic structure such as the towers of
Hanoi (Knoblock 1992).

26. The causal graph is constructed offline
from a compiled version of the domain
theory that eliminates all reference to
dependent variables.

References
Ambros-Ingerson, J., and Steel, S. 1988.
Integrating Planning, Execution, and
Monitoring. In Proceedings of the Seventh
National Conference on Artificial Intelli-
gence, 735–740. Menlo Park, Calif.: Amer-
ican Association for Artificial Intelligence.

Anderson, C.; Smith, D.; and Weld, D.
1998. Conditional Effects in GRAPHPLAN. In
Proceedings of the Fourth International Con-
ference on Artificial Intelligence Planning Sys-
tems, 44–53. Menlo Park, Calif.: AAAI Press.

Bacchus, F., and Teh, Y. W. 1998. Making
Forward-Chaining Relevant. In Proceed-
ings of the Fourth International Confer-
ence on Artificial Intelligence Planning
Systems, 54–61. Menlo Park, Calif.: AAAI
Press.

Bacchus, F., and van Run, P. 1995. Dynam-
ic Variable Ordering in CSPS. In Proceedings
of the 1995 Conference on Principles and
Practice of Constraint Programming,
258–275. Heidelberg, Germany: Springer-
Verlag.

Barrett, A., and Weld, D. 1994. Partial
Order Planning: Evaluating Possible Effi-
ciency Gains. Journal of Artificial Intelligence
67(1): 71–112.

Bayardo, R., and Schrag, R. 1997. Using
CSP Look-Back Techniques to Solve Real-
World SAT Instances. In Proceedings of the
Fourteenth National Conference on Artifi-
cial Intelligence, 203–208. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Blum, A., and Furst, M. 1997. Fast Planning
through Planning Graph Analysis. Journal
of Artificial Intelligence 90(1–2): 281–300.

Blum, A., and Furst, M. 1995. Fast Planning
through Planning Graph Analysis. In Pro-

Menlo Park, Calif.: AAAI Press.

Fikes, R., and Nilsson, N. 1971. STRIPS: A
New Approach to the Application of Theo-
rem Proving to Problem Solving. Journal of
Artificial Intelligence 2(3–4): 189–208.

Fox, M., and Long, D. 1998. The Automatic
Inference of State Invariants in TIM. Techni-
cal Report 11/98, University of Durham.

Gazen, B., and Knoblock, C. 1997. Combin-
ing the Expressivity of UCPOP with the Effi-
ciency of GRAPHPLAN. In Proceedings of the
Fourth European Conference on Planning,
221–233. Berlin: Springer-Verlag.

Genesereth, M., and Nilsson, N. 1987. Log-
ical Foundations of Artificial Intelligence. San
Francisco, Calif.: Morgan Kaufmann.

Gent, I., and Walsh, T. 1993. Towards an
Understanding of Hill-Climbing Procedures
for SAT. In Proceedings of the Eleventh
National Conference on Artificial Intelli-
gence, 28–33. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Gerevini, A., and Schubert, L. 1998. Infer-
ring State Constraints for Domain-Inde-
pendent Planning. In Proceedings of the
Fifteenth National Conference on Artificial
Intelligence, 905–912. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Gerevini, A., and Schubert, L. 1996. Accel-
erating Partial-Order Planners: Some Tech-
niques for Effective Search Control and
Pruning. Journal of Artificial Intelligence
Research 5:95–137.

Giunchiglia, E.; Massarotto, A.; and Sebas-
tiani, R. 1998. Act, and the Rest Will Fol-
low: Exploiting Determinism in Planning
as Satisfiability. In Proceedings of the Fif-
teenth National Conference on Artificial
Intelligence, 948–953. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Golden, K. 1998. Leap before You Look:
Information Gathering in the PUCCINI Plan-
ner. In Proceedings of the Fourth International
Conference on Artificial Intelligence Planning
Systems, 70–77. Menlo Park, Calif.: AAAI
Press.

Golden, K.; Etzioni, O.; and Weld, D. 1994.
Omnipotence without Omniscience: Sen-
sor Management in Planning. In Proceed-
ings of the Twelfth National Conference on
Artificial Intelligence, 1048–1054. Menlo
Park, Calif.: American Association for Arti-
ficial Intelligence.

Gomes, C.; Selman, B.; and Kautz, H. 1998.
Boosting Combinatorial Search through
Randomization. In Proceedings of the Fif-
teenth National Conference on Artificial
Intelligence, 431–437. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Green, C. 1969. Application of Theorem

DeJong, G., and Bennett, S. 1997. Permis-
sive Planning: Extending Classical Plan-
ning to Uncertain Task Domains. Journal of
Artificial Intelligence 89(1–2): 173–217.

de Kleer, J. 1986. An Assumption-Based
Truth Maintenance System. Journal of Arti-
ficial Intelligence 28(2): 127–162.

Doyle, J. 1979. A Truth Maintenance Sys-
tem. Journal of Artificial Intelligence 12(3):
231–272.

Draper, D.; Hanks, S.; and Weld, D. 1994.
Probabilistic Planning with Information
Gathering and Contingent Execution. In
Proceedings of the Second International
Conference on Artificial Intelligence Plan-
ning Systems, 31–36. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Ernst, M.; Millstein, T.; and Weld, D. 1997.
Automatic SAT-Compilation of Planning
Problems. In Proceedings of the Fifteenth
International Joint Conference on Artificial
Intelligence, 1169–1176. Menlo Park,
Calif.: International Joint Conferences on
Artificial Intelligence.

Erol, K.; Hendler, J.; and Nau, D. 1994. HTN
Planning: Complexity and Expressivity. In
Proceedings of the Twelfth National Con-
ference on Artificial Intelligence,
1123–1128. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Etzioni, O. 1993. Acquiring Search-Control
Knowledge via Static Analysis. Artificial
Intelligence 62(2): 255–302.

Etzioni, O., and Weld, D. 1994. A Softbot-
Based Interface to the Internet. Communi-
cations of the ACM 37(7): 72–6.

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.;
Lesh, N.; and Williamson, M. 1992. An
Approach to Planning with Incomplete
Information. In Proceedings of the Third
International Conference on Principles of
Knowledge Representation and Reasoning,
115–125. San Francisco, Calif.: Morgan
Kaufmann.

Falkenhainer, B., and Forbus, K. 1988. Set-
ting Up Large Scale Qualitative Models. In
Proceedings of the Seventh National Con-
ference on Artificial Intelligence, 301–306.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

Ferguson, G., and Allen, J. 1994. Arguing
about Plans: Plan Representation and Rea-
soning in Mixed-Initiative Planning. In
Proceedings of the Second International
Conference on Artificial Intelligence Plan-
ning Systems, 43–48. Menlo Park, Calif.:
AAAI Press.

Ferguson, G.; Allen, J.; and Miller, B. 1996.
TRAINS-95: Towards a Mixed-Initiative Plan-
ning Assistant. In Proceedings of the Third
International Conference on Artificial
Intelligence Planning Systems, 70–77.

Articles

120 AI MAGAZINE

ceedings of the Fourteenth International
Joint Conference on Artificial Intelligence,
1636–1642. Menlo Park, Calif.: Internation-
al Joint Conferences on Artificial Intelli-
gence.

Blum, A. L., and Langford, J. C. 1998. Prob-
abilistic Planning in the GRAPHPLAN Frame-
work. In Proceedings of the AIPS98 Work-
shop on Planning as Combinatorial Search,
8–12. Pittsburgh, Penn.: Carnegie Mellon
University.

Bobrow, D., ed., 1984. Journal of Artificial
Intelligence (Special Issue on Qualitative
Reasoning about Physical Systems) 24(1).

Boutilier, C.; Dean, T.; and Hanks, S. 1995.
Planning under Uncertainty: Structural
Assumptions and Computational Leverage.
In Proceedings of the Second European
Workshop on Planning, 157–171. Amster-
dam, Netherlands: IOS.

Boutilier, C.; Dearden, R.; and Goldszmidt,
M. 1995. Exploiting Structure in Policy
Construction. In Proceedings of the Four-
teenth International Joint Conference on
Artificial Intelligence, 1104–1111. Menlo
Park, Calif.: International Joint Confer-
ences on Artificial Intelligence.

Bylander, T. 1991. Complexity Results for
Planning. In Proceedings of the Twelfth
International Joint Conference on Artificial
Intelligence, 274–279. Menlo Park, Calif.:
International Joint Conferences on Artifi-
cial Intelligence.

Chapman, D. 1987. Planning for Conjunc-
tive Goals. Journal of Artificial Intelligence
32(3): 333–377.

Cheng, J., and Irani, K. B. 1989. Ordering
Problem Subgoals. In Proceedings of the
Eleventh International Joint Conference on
Artificial Intelligence, 931–936. Menlo
Park, Calif.: International Joint Confer-
ences on Artificial Intelligence.

Cook, S., and Mitchell, D. 1997. Finding
Hard Instances of the Satisfiability Problem:
A Survey. In Proceedings of the DIMACS
Workshop on Satisfiability Problems,
11–13. Providence, R.I.: American Mathe-
matical Society.

Crawford, J., and Auton, L. 1993. Experi-
mental Results on the Crossover Point in
Satisfiability Problems. In Proceedings of
the Eleventh National Conference on Arti-
ficial Intelligence, 21–27. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Davis, M.; Logemann, G.; and Loveland, D.
1962. A Machine Program for Theorem
Proving. Communications of the ACM
5:394–397.

Dearden, R., and Boutilier, C. 1997.
Abstraction and Approximate Decision-
Theoretic Planning. Journal of Artificial
Intelligence 89(1–2): 219–283.

Proving to Problem Solving. In Proceedings
of the First International Joint Conference
on Artificial Intelligence, 219–239. Menlo
Park, Calif.: International Joint Confer-
ences on Artificial Intelligence.

Haas, A. 1987. The Case for Domain-Specif-
ic Frame Axioms. In The Frame Problem in
Artificial Intelligence, Proceedings of the 1987
Workshop, 115–128. San Francisco, Calif.:
Morgan Kaufmann.

Haralick, R. M., and Elliott, G. L. 1980.
Increasing Tree Search Efficiency for Con-
straint Satisfaction Problems. Journal of
Artificial Intelligence 14(3): 263–313.

Irani, K. B., and Cheng, J. 1987. Subgoal
Ordering and Goal Augmentation for
Heuristic Problem Solving. In Proceedings
of the Tenth International Joint Confer-
ence on Artificial Intelligence, 1018–1024.
Menlo Park, Calif.: International Joint Con-
ferences on Artificial Intelligence.

Joslin, D., and Pollack, M. 1996. Is “Early
Commitment” in Plan Generation Ever a
Good Idea? In Proceedings of the Thir-
teenth National Conference on Artificial
Intelligence, 1188–1193. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Joslin, D., and Pollack, M. 1994. Least-Cost
Flaw Repair: A Plan Refinement Strategy for
Partial-Order Planning. In Proceedings of
the Twelfth National Conference on Artifi-
cial Intelligence, 1004–1009. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Kambhampati, S. 1998a. EBL and DDB for
GRAPHPLAN. TR-99-008, Department of Com-
puter Science and Engineering, Arizona
State University.

Kambhampati, S. 1998b. On the Relations
between Intelligent Backtracking and Fail-
ure-Driven Explanation-Based Learning in
Constraint Satisfaction and Planning. TR-
97-018, Department of Computer Science
and Engineering, Arizona State University.

Kambhampati, S. 1997a. Challenges in
Bridging Plan Synthesis Paradigms. In Pro-
ceedings of the Fifteenth International
Joint Conference on Artificial Intelligence,
44–49. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Kambhampati, S. 1997b. Refinement Plan-
ning as a Unifying Framework for Plan Syn-
thesis. AI Magazine 18(2): 67–97.

Kambhampati, S.; Knoblock, C.; and Yang,
Q. 1995. Planning as Refinement Search: A
Unified Framework for Evaluating Design
Trade-Offs in Partial Order Planning. Jour-
nal of Artificial Intelligence 76(1–2): 167–238.

Kambhampati, R.; Lambrecht, E.; and Park-
er, E. 1997. Understanding and Extending
GRAPHPLAN. In Proceedings of the Fourth Euro-
pean Conference on Planning, 260–272.

Berlin: Springer-Verlag.

Kambhampati, R.; Mali, A.; and Srivastava,
B. 1998. Hybrid Planning for Partially Hier-
archical Domains. In Proceedings of the Fif-
teenth National Conference on Artificial
Intelligence, 882–888. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Kautz, H., and Selman, B. 1998a. BLACKBOX:
A New Approach to the Application of The-
orem Proving to Problem Solving. In
AIPS98 Workshop on Planning as Combi-
natorial Search, 58–60. Pittsburgh, Penn.:
Carnegie Mellon University.

Kautz, H., and Selman, B. 1998b. The Role
of Domain-Specific Knowledge in the Plan-
ning as Satisfiability Framework. In Pro-
ceedings of the Fourth International Con-
ference on Artificial Intelligence Planning
Systems, 181–189. Menlo Park, Calif.: AAAI
Press.

Kautz, H., and Selman, B. 1996. Pushing
the Envelope: Planning, Propositional Log-
ic, and Stochastic Search. In Proceedings of
the Thirteenth National Conference on
Artificial Intelligence, 1194–1201. Menlo
Park, Calif.: American Association for Arti-
ficial Intelligence.

Kautz, H., and Selman, B. 1992. Planning as
Satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence,
359–363. Chichester, U.K.: Wiley.

Kautz, H.; McAllester, D.; and Selman, B.
1996. Encoding Plans in Propositional Log-
ic. In Proceedings of the Fifth International
Conference on Principles of Knowledge Repre-
sentation and Reasoning, 374–384. San Fran-
cisco, Calif.: Morgan Kaufmann.

Kelleher, K., and Cohen, P. 1992. Automat-
ically Synthesizing Domain Constraints
from Operator Descriptions. In Proceedings
of the Tenth European Conference on Artificial
Intelligence, 653–655. Chichester, U.K.:
Wiley.

Knoblock, C. 1995. Planning, Executing,
Sensing, and Replanning for Information
Gathering. In Proceedings of the Four-
teenth International Joint Conference on
Artificial Intelligence, 1686–1693. Menlo
Park, Calif.: International Joint Confer-
ences on Artificial Intelligence.

Knoblock, C. 1992. An Analysis of ABSTRIPS.
In Proceedings of the First International Con-
ference on Artificial Intelligence Planning Sys-
tems, 126–135. San Francisco, Calif.: Mor-
gan Kaufmann.

Knoblock, C. 1991. Automatically Generat-
ing Abstractions for Problem Solving. Tech-
nical report, CMU-CS-91-120, Ph.D. diss.,
Carnegie Mellon University.

Knoblock, C. 1990. Learning Abstraction
Hierarchies for Problem Solving. In Pro-
ceedings of the Eighth National Confer-

Articles

SUMMER 1999 121

ence on Artificial Intelligence, 923–928.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

Koehler, J. 1998a. Planning under Resource
Constraints. In Proceedings of the Thirteenth
European Conference on Artificial Intelligence,
489–493. Chichester, U.K.: Wiley.

Koehler, J. 1998b. Solving Complex Plan-
ning Tasks through Extraction of Subprob-
lems. In Proceedings of the Fourth Interna-
tional Conference on Artificial Intelligence
Planning Systems, 62–69. Menlo Park,
Calif.: AAAI Press.

Koehler, J.; Nebel, B.; Hoffmann, J.; and
Dimopoulos, Y. 1997a. Extending Planning
Graphs to an ADL Subset. In Proceedings of
the Fourth European Conference on Planning,
273–285. Berlin: Springer-Verlag.

Koehler, J.; Nebel, B.; Hoffmann, J.; and
Dimopoulos, Y. 1997b. Extending Planning
Graphs to an ADL Subset. TR 88, Institute for
Computer Science, University of Freiburg.

Kondrack, G., and van Beek. P. 1997. A The-
oretical Evaluation of Selected Backtracking
Algorithms. Journal of Artificial Intelligence
89(1-2): 365–387.

Korf, R. 1987. Planning as Search: A Quan-
titative Approach. Journal of Artificial Intel-
ligence 33(1): 65–88.

Kushmerick, N.; Hanks, S.; and Weld, D.
1995. An Algorithm for Probabilistic Plan-
ning. Journal of Artificial Intelligence
76(1–2): 239–286.

Kushmerick, N.; Hanks, S.; and Weld, D.
1994. An Algorithm for Probabilistic Least
Commitment Planning. In Proceedings of
the Twelfth National Conference on Artifi-
cial Intelligence, 1073–1078. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Lansky, A. L. 1998. Localized Planning with
Action-Based Constraints. Journal of Artifi-
cial Intelligence 98(1–2): 49–136.

Li, C., and Anbulagan. 1997. Heuristics
Based on Unit Propagation for Satisfiability
Problems. In Proceedings of the Fifteenth
International Joint Conference on Artificial
Intelligence, 366–371. Menlo Park, Calif.:
International Joint Conferences on Artifi-
cial Intelligence.

Littman, M. 1997. Probabilistic Proposi-
tional Planning: Representations and Com-
plexity. In Proceedings of the Fourteenth
National Conference on Artificial Intelli-
gence, 748–754. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Long, D., and Fox, M. 1998. Efficient Imple-
mentation of the PLAN GRAPH in STAN. Tech-
nical Report, TR 14/98, Durham University.

McAllester, D. 1990. Truth Maintenance. In
Proceedings of the Eighth National Confer-
ence on Artificial Intelligence, 1109–1116.
Menlo Park, Calif.: American Association

ings of the Fifteenth International Joint
Conference on Artificial Intelligence,
50–54. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Selman, B.; Levesque, H.; and Mitchell, D.
1992. A New Method for Solving Hard Sat-
isfiability Problems. In Proceedings of the
Tenth National Conference on Artificial
Intelligence, 440–446. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Smith, D. 1989. Controlling Backward
Inference. Journal of Artificial Intelligence
39(2): 145–208.

Smith, D., and Peot, M. 1996. Suspending
Recursion in Causal Link Planning. In Pro-
ceedings of the Third International Confer-
ence on Artificial Intelligence Planning Sys-
tems, 182–189. Menlo Park, Calif.: AAAI
Press.

Smith, D., and Peot, M. 1993. Postponing
Threats in Partial-Order Planning. In Pro-
ceedings of the Eleventh National Confer-
ence on Artificial Intelligence, 500–506.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

Smith, D., and Weld, D. 1998a. Confor-
mant GRAPHPLAN. In Proceedings of the Fif-
teenth National Conference on Artificial
Intelligence, 889–896. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Smith, D., and Weld, D. 1998b. Temporal
GRAPHPLAN. Technical report, 98-09-06,
Department of Computer Science and Engi-
neering, University of Washington.

Srinivasan, R., and Howe, A. 1995. Compar-
ison of Methods for Improving Search Effi-
ciency in a Partial-Order Planner. In Proceed-
ings of the Fourteenth International Joint
Conference on Artificial Intelligence,
1620–1626. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Stefik, M. 1981. Planning with Constraints
(MOLGEN: Part 1). Journal of Artificial Intelli-
gence 14(2): 111–139.

Tenenberg, J. 1988. Abstraction in Plan-
ning. Ph.D. thesis, Department of Comput-
er Science, University of Rochester.

Van Gelder, A., and Okushi, F. 1998. A
Propositional Theorem Prover to Solve
Planning and Other Problems. In Proceed-
ings of the Fifth International Symposium on
Artificial Intelligence and Mathematics. Dor-
drecht, The Netherlands: Kluwer Academic.

Van Gelder, A., and Tsuji, Y. K. 1996. Satis-
fiability Testing with More Reasoning and
Less Guessing. In Cliques, Coloring, and
Satisfiability: Second DIMACS Implementa-
tion Challenge, eds. D. S. Johnson and M.
Trick, 559–586. DIMACS Series in Discrete
Mathematics and Theoretical Computer
Science. Providence, R.I.: American Mathe-

1997. Ignoring Irrelevant Facts and Opera-
tors in Plan Generation. In Proceedings of
the Fourth European Conference on Planning,
338–350. Berlin: Springer-Verlag.

Okushi, F. 1998. Parallel Cooperative
Propositional Theorem Proving. In Proceed-
ings of the Fifth International Symposium on
Artificial Intelligence and Mathematics. Dor-
drecht, The Netherlands: Kluwer Academic.

Pednault, E. 1989. ADL: Exploring the Mid-
dle Ground between STRIPS and the Situa-
tion Calculus. In Proceedings of the First
International Conference on Principles of
Knowledge Representation and Reasoning,
324–332. San Francisco, Calif.: Morgan
Kaufmann.

Pell, B.; Bernard, D.; Chien, S.; Gat, E.;
Muscettola, N.; Nayak, P.; Wagner, M.; and
Williams, B. 1997. An Autonomous Space-
craft Agent Prototype. In Proceedings of the
First International Conference on Auton-
omous Agents, 253–261. New York: Associ-
ation for Computing Machinery.

Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.;
Muscettola, N.; Nayak, P. P.; Wagner, M. D.;
and Williams, B. C. 1998. An Autonomous
Spacecraft Agent Prototype. Autonomous
Robots 5(1): 93–108.

Penberthy, J., and Weld, D. 1992. UCPOP: A
Sound, Complete, Partial Order Planner for
ADL. In Proceedings of the Third International
Conference on Principles of Knowledge Repre-
sentation and Reasoning, 103–114. San Fran-
cisco, Calif.: Morgan Kaufmann.

Peot, M., and Smith, D. 1992. Conditional
Nonlinear Planning. In Proceedings of the
First International Conference on Artificial
Intelligence Planning Systems, 189–197. San
Francisco, Calif.: Morgan Kaufmann.

Pollack, M. E.; Joslin, D.; and Paolucci, M.
1997. Flaw Selection Strategies for Partial-
Order Planning. Journal of Artificial Intelli-
gence Research 6:223–262.

Rintanen, J. T. 1998. A Planning Algorithm
Not Based on Directional Search. In Pro-
ceedings of the Sixth International Conference
on Principles of Knowledge Representation and
Reasoning, 953–960. San Francisco, Calif.:
Morgan Kaufmann.

Selman, B.; Kautz, H.; and Cohen, B. 1996.
Local Search Strategies for Satisfiability
Testing. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science
26:521–532.

Selman, B.; Kautz, H.; and Cohen, B. 1994.
Noise Strategies for Improving Local
Search. In Proceedings of the Twelfth
National Conference on Artificial Intelli-
gence, 337–343. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Selman, B.; Kautz, H.; and McAllester, D.
1997. Computational Challenges in Propo-
sitional Reasoning and Search. In Proceed-

Articles

122 AI MAGAZINE

for Artificial Intelligence.

McAllester, D. 1980. An Outlook on Truth
Maintenance. AI memo, 551, AI Lab, Mass-
achusetts Institute of Technology.

McAllester, D., and Rosenblitt, D. 1991.
Systematic Nonlinear Planning. In Proceed-
ings of the Ninth National Conference on
Artificial Intelligence, 634–639. Menlo
Park, Calif.: American Association for Arti-
ficial Intelligence.

McAllester, D.; Selman, B.; and Kautz, H.
1997. Evidence for Invariants in Local
Search. In Proceedings of the Fourteenth
National Conference on Artificial Intelli-
gence, 321–326. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

McCarthy, J., and Hayes, P. J. 1969. Some
Philosophical Problems from the Stand-
point of Artificial Intelligence. In Machine
Intelligence 4, 463–502. Edinburgh, U.K.:
Edinburgh University Press.

McDermott, D. 1996. A Heuristic Estimator
for Means-Ends Analysis in Planning. In
Proceedings of the Third International
Conference on Artificial Intelligence Plan-
ning Systems, 142–149. Menlo Park, Calif.:
AAAI Press.

Majercik, S. M., and Littman, M. L. 1998a.
MAX-PLAN: A New Approach to Probabilistic
Planning. In Proceedings of the Fourth
International Conference on Artificial
Intelligence Planning Systems, 86–93.
Menlo Park, Calif.: AAAI Press.

Majercik, S. M., and Littman, M. L. 1998b.
Using Caching to Solve Larger Probabilistic
Planning Problems. In Proceedings of the
Fifteenth National Conference on Artificial
Intelligence, 954–960. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Mali, A. D., and Kambhampati, S. 1998.
Encoding HTN Planning in Propositional
Logic. In Proceedings of the Fourth Interna-
tional Conference on Artificial Intelligence
Planning Systems, 190–198. Menlo Park,
Calif.: AAAI Press.

Minton, S.; Carbonell, J. G.; Knoblock, C.
A.; Kuokka, D. R.; Etzioni, O.; and Gil, Y.
1989. Explanation-Based Learning: A Prob-
lem-Solving Perspective. Journal of Artificial
Intelligence 40(1–3): 63–118.

Muscettola, N.; Nayak, P. P.; Pell, B.; and
Williams, B. C. 1998. Remote Agent: To
Boldly Go Where No AI System Has Gone
Before. Artificial Intelligence 103(1-2): 5–48.

Nayak, P., and Williams, B. 1997. Fast Con-
text Switching in Real-Time Propositional
Reasoning. In Proceedings of the Four-
teenth National Conference on Artificial
Intelligence, 50–56. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Nebel, B.; Dimopoulos, Y.; and Koehler, J.

matical Society.

Veloso, M. 1994. Flexible Strategy Learning:
Analogical Replay of Problem-Solving
Episodes. In Proceedings of the Twelfth
National Conference on Artificial Intelli-
gence, 595–600. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Weld, D. 1994. An Introduction to Least
Commitment Planning. AI Magazine 15(4):
27–61.

Weld, D., and de Kleer, J., eds. 1989. Read-
ings in Qualitative Reasoning about Physical
Systems. San Francisco, Calif.: Morgan Kauf-
mann.

Weld, D. S.; Anderson, C. R.; and Smith, D.
E. 1998. Extending GRAPHPLAN to Handle
Uncertainty and Sensing Actions. In Pro-
ceedings of the Fifteenth National Confer-
ence on Artificial Intelligence, 897–904.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

Williams, B. C., and Nayak, P. P. 1997. A
Reactive Planner for a Model-Based Execu-
tion. In Proceedings of the Fifteenth Inter-
national Joint Conference on Artificial

Intelligence, 1178–1185. Menlo Park,
Calif.: International Joint Conferences on
Artificial Intelligence.

Williams, B. C., and Nayak, P. P. 1996. A
Model-Based Approach to Reactive Self-
Configuring Systems. In Proceedings of the
Thirteenth National Conference on Artifi-
cial Intelligence, 971–978. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Yang, Q. 1990. Formalizing Planning
Knowledge for Hierarchical Planning. Com-
putational Intelligence 6(1): 12–24.

Yang, Q., and Chan, A. 1994. Delaying Vari-
able Binding Committments in Planning.
In Proceedings of the Second International
Conference on Artificial Intelligence Plan-
ning Systems, 182–187. Menlo Park, Calif.:
AAAI Press.

Yang, Q., and Tenenberg, J. 1990. ABTWEAK:
Abstracting a Nonlinear, Least Commit-
ment Planner. In Proceedings of the Eighth
National Conference on Artificial Intelli-
gence, 204–209. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Daniel Weld received bachelor’s degrees in
both computer science and biochemistry at
Yale University in 1982. He received a Ph.D.
from the Massachusetts Institute of Tech-
nology Artificial Intelligence Lab in 1988
and immediately joined the Department of
Computer Science and Engineering at the
University of Washington, where he is now
a professor. Weld received a Presidential
Young Investigator’s award in 1989 and an
Office of Naval Research Young Investiga-
tor’s award in 1990 and is a fellow of the
American Association for Artificial Intelli-
gence. Weld is on the advisory board of the
Journal of Artificial Intelligence Research, has
been guest editor for Computational Intelli-
gence and Artificial Intelligence, and was pro-
gram chair for the 1996 National Confer-
ence on Artificial Intelligence. Weld
founded Netbot Inc., which developed the
JANGO comparison shopping agent (now
part of the Excite Shopping Channel), and
AdRelevance, Inc., which is transforming
internet advertising. Weld has published
about 100 technical papers on AI, plan-
ning, data integration, and software agents.

Articles

SUMMER 1999 123

