
■ A Bayesian network is a compact, expressive repre-
sentation of uncertain relationships among para-
meters in a domain. In this article, I introduce
basic methods for computing with Bayesian net-
works, starting with the simple idea of summing
the probabilities of events of interest. The article
introduces major current methods for exact com-
putation, briefly surveys approximation methods,
and closes with a brief discussion of open issues.

In rare cases, primarily involving termino-
logical information or other artificially con-
structed domains, one has the opportunity

to determine categorically the truth of a propo-
sition based on prior knowledge and current
observation. Often, truth is more elusive, and
categorical statements can only be made by
judgment of the likelihood or other ordinal
attribute of competing propositions. Probabil-
ity theory is the oldest and best-understood
theory for representing and reasoning about
such situations, but early AI experimental
efforts at applying probability theory were dis-
appointing and only confirmed a belief among
AI researchers that those who worried about
numbers were “missing the point.”1 The point,
so succinctly stated in Newell and Simon’s
physical symbol system hypothesis,2 was that
structure was the key, not the numeric details.
The problem: The core around which a proba-
bilistic approach revolves is the joint-probabil-
ity distribution (JPD). Unfortunately, for
domains described by a set of discrete parame-
ters, the size of this object and the complexity
of reasoning with it directly can both be expo-
nential in the number of parameters. 

A popular simplification was the naïve
Bayes’s model. This model assumes that the
probability distribution for each observable
parameter (that is, the probability of each val-
ue in the domain of the parameter) depends
only on the root cause and not on the other
parameters. Simplifying assumptions such as
naïve Bayes’s permitted tractable reasoning but

were too extreme: They again provided no
mechanism for representing the qualitative
structure of a domain. 

About 10 years ago, probability, and espe-
cially decision theory, began to attract renewed
interest within the AI community, which was
the result of a felicitous combination of obsta-
cle and opportunity: The issue of ordering pos-
sible beliefs, both for belief revision and for
action selection, was seen as increasingly
important and problematic, and at the same
time, dramatic new developments in computa-
tional probability and decision theory directly
addressed perceived shortcomings. The key
development was the discovery that a relation-
ship could be established between a well-
defined notion of conditional independence in
probability theory and the absence of arcs in a
directed acyclic graph (DAG). This relationship
made it possible to express much of the struc-
tural information in a domain independently
of the detailed numeric information, in a way
that both simplifies knowledge acquisition and
reduces the computational complexity of rea-
soning. The resulting graphic models have
come to be known as Bayesian networks. 

An example Bayesian network is shown in
figure 1. I shortly examine the formal seman-
tics of the graph, but intuitively, it is a repre-
sentation of the following model: Sneezing can
be “caused by” cold or an allergic reaction,3

allergic reaction can be “caused by” the pres-
ence of a cat, and  furniture scratches can be
“caused by” a cat. For reasons we see later, a
Bayes’s net must be a DAG. Still, we could add
several more arcs without violating the acyclic-
ity requirement. The missing arcs encode infor-
mation: The chance I have a cold is unrelated
to the presence of a cat, colds don’t cause fur-
niture scratches, cat’s don’t cause sneezing
except through initiation of an allergic reac-
tion, and sneezing and scratches are unrelated
except through their shared possible causes.
We have described the structure of the model
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Formally, however, no notion of causality is
needed or used. Begin with the chain rule or
probability: For any (all) ordering of the para-
meters of a probability model, it is always true
that the JPD can be written as the product over
all parameters of the conditional distribution
of each parameter conditioned on all parame-
ters that precede it in the ordering. A Bayesian
network simply encodes the fact that most of
these distributions are independent of most of
the predecessors. For each parameter in turn,
we select a subset of the parameters that pre-
cede it in the ordering and that, if known, ren-
der its probability distribution independent of
the remaining parameters that precede it. This
subset defines the incoming arcs into the cor-
responding node in the graph. 

For example, consider a health problem in
which we are trying to build a model relating
(1) cold (the illness), (2) the presence of a cat,
(3) allergic reaction, (4) sneezing, and (5) furni-
ture scratches. Assume the ordering we estab-
lish is as given. Cold has no parameters preced-
ing it, so it must be a root in the graph. Let’s
say we believe the presence of a cat is indepen-
dent of cold—in this case, cat presence is also
a root in the graph.5 That is, the lack of an arc
between cold and cat is an assertion that my
belief in whether or not there is a cat present is
unchanged if I notice that I have a cold (in the
presence of no other information). Allergy has
two parameters that precede it: (1) cold and (2)
cat. I am allergic to cats (and have four, sigh),6

so allergic reaction definitely is not indepen-
dent of cat presence but is unaffected by
whether or not I have a cold, so I draw an arc
from cat to allergy. Sneeze is an interesting
parameter. It seems to depend on all three of
its predecessors in the ordering. That is, I am
certainly more likely to be sneezing if I have a
cold, also if I am currently suffering an allergic
reaction. I am also more likely to sneeze if
there is a cat around. 

However, let’s assume that if I already know
that I am currently having an allergic reaction,
then knowing that there is a cat doesn’t
increase my belief that I will sneeze. This
might arise, for example, if I believe that the
causal mechanism by which cats induce sneez-
ing in me is through initiation of an allergic
reaction. In this case, I need only draw arcs
from cold and allergic reaction; I can omit the
arc from cat to sneeze. Notice that I say can,
not must. It is never wrong to add an arc, but
the goal is to construct as sparse a graph as pos-
sible, consistent with the realities of the
domain. Omission of the arc from cat to sneeze
is a statement that sneezing is conditionally
independent of cat presence given knowledge

without specifying a single number and have
done so in an intuitive and easily understand-
able form. 

The probability model (the JPD across the
parameters) is completed by specifying a set of
local probability distributions, one associated
with each node in the graph. That is, the
breakthrough was the discovery that the graph
and the set of local distributions associated
with it uniquely determine the joint distribu-
tion. The number of probability values needed
is linear in the number of parameters and
exponential in the number of immediate par-
ents of a parameter.4 Thus, if the graph is
sparse, few numbers will be needed to com-
plete the model. It is believed that for domains
in which humans can reason effectively, the
graph is often sparse.

This article is concerned with inference, that
is, computational methods for deriving answers
to queries given a probability model expressed
as a Bayesian network. We see that this sparse-
ness of the graph can be exploited to make rea-
soning tractable, even when the number of
parameters grows quite large. I begin with a
review of the kinds of question that can be
asked of such a model (that is,  the tasks) and
of the basic computational approaches to
inference, survey the applicability of ap-
proaches to the tasks, and conclude with a dis-
cussion of open problems in inference. 

Bayesian Networks—
The Representation

I previously described the Bayes’s net in figure
1 using the term cause to describe the meaning
of arcs. Graphs are often constructed causally,
that is, starting from an expert’s understanding
of the causal relationships among parameters.
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of whether or not I have a cold and an allergic
reaction. Finally, let’s say that I believe the
probability of furniture scratches is indepen-
dent of cold, sneeze, and allergic reaction, giv-
en cat (again, this statement is that once I
know whether or not a cat is present, knowing
whether or not I have a cold, am sneezing, or
have active allergies will not further change
my belief that I am likely to find scratches on
the furniture). Our final network, then, is as
shown in figure 1.

The graph is a visual statement of a set of
independence relations. Critical, as we saw in
the construction phase, are the arcs that are
missing. Many find it convenient to interpret
the arcs as representing causality, as I suggested
earlier. However, formally, they are simply
statements about the structure of the JPD. We
could have chosen a different ordering of the
variables and gotten a different graph. There is,
however, at least in “natural” domains, an
apparent relation between Bayes’s nets and
causality: Graphs drawn in the natural, or
causal, direction tend to be sparse. Consider,
for example, the simple three-node network
relating cold, allergy, and sneeze. If we had
chosen to order sneeze first, the graph would
have been fully connected, as shown in figure
2. The apparent loss of independence is easy to
see: If I am sneezing, then the chance that I am
having an allergic reaction is certainly reduced
if I know I have a cold.

Why do we care if the graph is sparse?
Sparseness can be exploited in both knowledge
acquisition and inference. The graph specifies
a factorization of the joint, in particular, given
the graph in figure 1.

P(Cold, Allergy, Sneeze, Cat, Scratches) 
= P(Scratches | Cat) 
* P(Sneeze | Cold, Allergy) 
* P(Allergy | Cat) * P(Cold) * P(Cat)

That is, we need only specify the conditional
probability of each parameter given its immedi-
ate parents in the graph (or the marginal for
parameters at roots of the graph). Details of why
this is so are beyond the scope of this article, but
the ability to recover the JPD from the local dis-
tributions, plus the graph topology, is the fun-
damental theorem of Bayes’s nets—Given the
conditional independence implied by the miss-
ing arcs in the graph, the JPD (or, simply, joint)
can be recovered from the previous factoriza-
tion. Thus, as long as the necessary conditionals
and marginals are locally coherent, we are guar-
anteed to have defined a unique, globally
coherent joint. Bayes’s nets separate structure
from numerics in a simple, intuitive graphic
form. Further, they dramatically reduce the
magnitude of the knowledge-acquisition prob-

lem (“Where do you get all those numbers?”):
Instead of needing an exponential number of
numbers, we now only need to acquire a num-
ber of numeric parameters linear in the number
of variables (although still exponential in the
number of immediate parents; I return to this
point later). Thus, Bayes’s nets directly respond
to the criticisms of probability theory leveled a
generation ago. 

Inference Tasks
To this point, we have an expressive, concise
representation that is purportedly easy to
acquire because of a good cognitive match, but
how can we use it? We could use the chain
rule, recover the full joint, and answer ques-
tions from the full joint, as I now demonstrate.
For example, consider table 1 for our example
problem.

This table, if all the parts were combined
using the chain rule described earlier, yields
the joint distribution for the domain. The
joint enumerates all possible states of the sys-
tem. The joint will have 32 entries, 1 for each
element in the cross-product of the variable
domains. I list it in table 2.

Answering a query is, from the perspective
of the joint, simply a matter of summing the
values as appropriate subset cells of this table.
Some important queries are described in the
following paragraphs:

Single marginal: A marginal probability is
the probability of some subset of the parame-
ters in a model. The prior (before any evidence)
marginal probability of, for example, cold =
true, is simply the sum of the values in all the
cells labeled with cold = true. In this case, the
value is

P(cold = true) 
= .00001 + .00001 + .00112 + … + .00010 
= .05
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Cold = False Cold = True

.95 .05

Cat Presence =
False

Cat Presence =
True

.98 .02

Cat Presence Allergic Reaction
= False

Allergic Reaction
= True

False .95 .05

True .25 .75

Cold Allergic Reaction Sneeze = False Sneeze = True

False False .99 .01

False True .3 .7

True False .2 .8

True True .1 .9

Cat Presence Scratches = False Scratches = True

False .95 .05

True .5 .5

Cold Cat Allergy Sneeze =
False &

Scratches =
False

Sneeze =
False &

Scratches =
True

Sneeze  =
True &

Scratches =
False

Sneeze =
True &

Scratches =
True

True True False .00001 .00001 .00012 .00012
True True True .00001 .00004 .00035 .00035
True False False .00884 .00047 .03538 .00186
True False True .00047 .00002 .00186 .00010
False True False .00071 .00071 .00166 .00166
False True True .00214 .00214 .00499 .00499
False False False .83183 .04378 .00840 .00044
False False True .04378 .00230 .00044 .00002

Table 2. Joint Probability Distribution Function Induced by Simple Bayes’s Net.

Table 1. Numeric Details of Simple Bayes’s Net.1



Formally, we could write such a computa-
tion as

P(cold = true) 
= ΣScratches,Cat,Sneeze,Allergy
P(Scratches | Cat) 
* P(Sneeze | Cold = True, Allergy) 
* P(Allergy | Cat) * P(Cold = True) 
* P(Cat)

where the multiplications reconstruct the joint
and the summation adds elements in the
appropriate cells, as before. A prior probability,
then, is simply the probability over the entire
set of possible situations. If we want the prob-
ability distribution across cold, we simply scan
the entire joint, adding entries into the answer
for P(Cold = True) or P(Cold = False) according
to their labels. In this case, we simply recover
the prior probability for cold, as expected. 

An important situation arises when, after
constructing such a table, we learn that certain
subsets of cells are impossible. For example,
suppose we start sneezing. Then it is certainly
the case that none of the cells (situations)
labeled with sneeze = false apply at present; so,
in determining the posterior probability that
cold = true given sneeze = true, we only sum
cells labeled with cold = true and sneeze = true
and renormalize (divide by the sum of all cells
labeled with sneeze = true regardless of their
cold label). Renormalizing enforces the con-
straint that the domain is a partition of the
space of possibilities, and therefore, the proba-
bility distribution over the domain must sum
to one. In this case, we have

.00012 + .00012 +. 00035 +. 00035 +. 03538 
+ .00186 + .00186 + .00010

.00012 + … + .00010 + .00166 + .00166 
+ .00499 + .00499 + .00840 + .00044 
+ .00044 + .00002
= .04014 / .06274 = .63

Again, we can write this computation as
P(Cold = True | Sneeze = True) 

= (ΣScratches,Cat,Allergy P(Scratches | Cat) 
* P(Sneeze = True | Cold = True, Allergy) 
* P(Allergy | Cat) * P(Cold = True) * P(Cat))

/ ( ΣScratches,Cat,Allergy,Cold P(Scratches | Cat) 
* P(Sneeze = True | Cold, Allergy) 
* P(Allergy | Cat) * P(Cold) * P(Cat))

Subjoint: Similarly, we might want to know
the JPD function (JPDF) across a subset of the
parameters. The procedure is the same—we
simply sum all the cells of the JPDF that are
labeled with the same value for the parameters
we care about. For example, we might want to
know the prior probability that we have a cold
and that we are having an allergy attack: 

P(Cold = True & Allergy = True) 

= .00001 + .00004 + .00035 + .00035 
+ .00047 + .00002 + .00186 + .00010 
=  .0032

and can be written as
P(Cold = True & Allergy = True)

= ΣScratches,Cat,Allergy P(Scratches | Cat) 
* P(Sneeze | Cold = True, Allergy = True) 
* P(Allergy = True | Cat) * P(Cold = True) 
* P(Cat) 

Evidence is handled as before.
All marginals: An interesting query is the

computation of the marginal probability of all
parameters rather than merely a single one.
Although we could repeatedly apply the sim-
ple technique described earlier for each para-
meter, quite a bit of redundant computation
would be involved. It would be more efficient
to first compute the joint, then establish sepa-
rate answer cells for each parameter and pass
over the joint only once, adding each cell of
the joint into the appropriate answer cell for
each parameter as we go. Notice that this sin-
gle-pass optimization is a generalization of the
computation of the distribution across a single
parameter, where we suggested the same pro-
cedure.

Arbitrary subset of queries: A natural gen-
eralization of the all-marginals query is to
query for an arbitrary subset of subjoints (for
example, {P(Cold & Allergy), P(Cat)}). 

Conditional: Another useful query is the
conditional. We have already seen an instance
of a conditional query when we wanted to
compute a marginal probability given evi-
dence. More generally, we can ask for a condi-
tional distribution, such as P(Cold | Sneeze).
This query is just four primitive queries, P(Cold
= True | Sneeze = True), P(Cold = False | Sneeze =
True), and so on, but again one might hope for
a more efficient method than performing the
four separate computations.

Boolean: We just discussed subjoint queries
and saw that they are essentially conjunctive
queries. More generally, we can ask any
Boolean query, such as P((Cold = True ∧ Allergy
= False) ∨ (Cold = True ∧ Cat = False))?7 As
before, the answer is simply the sum of the val-
ues in every cell of the joint that satisfies the
query condition. In this case, we get

P((Cold = True ∧ Allergy = False) 
∨ (Cold = True ∧ Cat = False)
= row 2 + row 3 + row 4
= .00001 + .00001 + .00012 + .00012
+ .00012 + .00002 + .00186 + .00010
+ .00884 + .00047 + .03538 + .00186
= .04926

The expression corresponding to this query
is straightforward but beyond the scope of this
survey.
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of how much we should be willing to pay to
obtain information about parameter Y. Sensi-
tivity analysis and value of information are
beyond the scope of this overview.

Inference Methods
To this point, I have introduced a factored rep-
resentation of a JPD and argued that it made
specification of such a distribution a tractable
task. I then reviewed the basic information
one could derive from such an object. Howev-
er, the exposition depended on first recon-
structing the full joint from the factored repre-
sentation. Such explicit reconstruction is
feasible only for toy problems. We now turn to
the core topic of this article, an introduction to
practical methods for inference in Bayesian
networks. I begin our review with, and spend
most of our time on, exact methods. I then sur-
vey approximate methods and conclude with
a brief discussion of open research topics in
inference. 

Exact
Let’s begin our examination of tractable infer-
ence methods by reexamining our first exam-
ple query. We said it could be formulated as

P(Cold) 
= ΣScratches,Cat,Sneeze,Allergy P(Scratches | Cat) 
* P(Sneeze | Cold, Allergy) * P(Allergy | Cat) 
* P(Cold) * P(Cat)

The sum and product operations being per-
formed here are real-number operations, so the
normal associativity, commutivity, and distrib-
utivity properties apply. Thus, we can rewrite
the previous expression as

P(Cold = true) 
= Σ Sneeze,Allergy P(Sneeze | Cold = True, Allergy)
* P(Cold = True) * (ΣCat P(Allergy | Cat) 
* (ΣScratches P(Scratches | Cat) * P(Cat)))

The meaning of a summation within an
expression might seem unclear, but it is quite
straightforward. Consider ΣScratches P(Scratches |
Cat) * P(Cat). We can understand it construc-
tively. First, P(Scratches | Cat) * P(Cat) is simply
a two-dimensional table, where each entry is
the product of an entry from P(Scratches | Cat)
with the entry from P(Cat) (table 3).

Next, the summation operator reduces this
to a one-dimensional table by summing over
values of scratches (table 4).

In this case (no evidence on either scratches
or cat presence), the resulting table is simply
the prior on cat, which is not always the case.
Renormalization is not performed until all
combination is complete, so these intermedi-
ate tables are not true probability distributions.
They are sometimes referred to as generalized

MPE: The most probable explanation (MPE) is
the label on the cell with the highest probabil-
ity. In this case, it is

Cold = False, Cat = False, Scratches = False, 
Allergy = False, Sneeze = False

P = .83183

If we observe that we are sneezing, then we
eliminate all cells with sneeze = false, and the
remaining cell with the largest value is 

Cold = True, , Cat = False, Scratches = False, 
Allergy = False, Sneeze = True
P = .03538 (prior), .03538 /.06274 = .56 
(posterior)

A variant of this request is to ask for the m
most likely rather than the single most likely.

Maximum a posteriori probability (MAP):
Often, we are interested in the MPE, not of the
full joint but of a subjoint. For example, we
might want to determine the most likely joint
instantiation of cold and allergy. This is simply
the label of the cell in the subjoint (P(Cold,
Allergy)) with the largest value. Again, the most
likely instantiation can be in the prior or with
respect to evidence.

The previous queries are the basic queries
that one can ask of a JPD. A variety of applica-
tion-specific queries can be composed of these,
including various forms of sensitivity analysis
such as expected entropy and others as well as
decision analyses including expected utility
and value of information. Sensitivity analysis
answers the question of how dependent the
marginal distribution is over parameter X
dependent on the value taken by parameter Y.
Value of information is a decision-theoretic
analysis of the question in a decision context
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Cat Presence Scratches = False Scratches = True

False .931 .049

True .01 .01

Cat Presence = False Cat Presence = True
.98 .02

Table 3. Probability of Scratches on Furniture Given Cat Presence.

Table 4. Probability of Cat Presence.



distributions or potentials.
Although the original form of the expres-

sion requires an explicit reconstruction of the
full joint table, in the rewritten form no inter-
mediate result table is more than three vari-
ables. The problem of determining the optimal
evaluation form for a query was formalized as
the optimal factoring problem by Zhaoyu Li in
1991 (Li 1994) and shown to be NP-hard by
Mark Bloemke in 1998 (Bloemke and Valtorta
1998). 

Further consideration of the previous
expression reveals a few interesting observa-
tions: First, legal rearrangements correspond to
those in which we marginalize out, or sum
over, a parameter only after combining all dis-
tributions naming the parameter into a single
intermediate result. This is a simple conse-
quence of the laws of associativity and com-
mutivity. Second, the expression P(Scratches |
Cat) contributes nothing to the query, which is
obvious if we remember that probabilistic
coherence requires that each “row” of a condi-
tional distribution sum to one. Stating this
independence of the query from P(Scratches |
Cat) somewhat differently,

P(Cat) = ΣScratches P(Scratches | Cat) * P(Cat)

There are linear-time methods for determin-
ing the set of parameters relevant to a query,
given a set of evidence (see Geiger [1989]).
These methods can be thought of as methods
for identifying a subgraph of the original
graph relevant to the query. For the remainder
of this article, I ignore this issue and concen-
trate on the more difficult task of performing
efficient inference given a (sub)network.

Factoring 
One class of methods for answering individual
queries directly uses the method sketched ear-
lier. Because the problem of finding an optimal
evaluation form is intractable, simple greedy
heuristics are typically applied. A very simple
one, the set-factoring heuristic, developed by Li
(1994), operates by selecting pairs of distribu-
tions to combine. It begins with the initial set
of distributions to be combined. It selects a
pair to combine, removes from the initial set of
distributions, and places the result of the com-
bination back into the set. The process iterates
until there is only one distribution left, which
is the answer to the query. The set-factoring
heuristic is simply to pick the pair to combine
next that has the smallest result table. Ties are
broken by selecting the pair combination that
marginalizes over the most parameters. As stat-
ed previously, a parameter can be marginal-
ized, if it does not appear in the query, when it
does not appear in any distributions except the

two being combined. As an example, consider
our initial query for P(Cold). Five distributions
are in the initial set, so there are 10 possible
pairs (order doesn’t matter). However, for sim-
plicity, I consider only those pairs that share at
least one parameter: 

1. For our first step, the candidate pairs are

1. P(Cat) * P(Scratch | Cat) ⇒ P’(Cat) 

2. P(Cat) * P(Allergy | Cat) ⇒ P’(Allergy, Cat)

3. P(Scratch | Cat) * P(Allergy | Cat) ⇒
P’(Allergy | Cat)

4. P(Sneeze | Cold, Allergy) * P(Allergy | Cat) ⇒
P’(Allergy | Cat, Cold)

5. P(Sneeze | Cold, Allergy) * P(Cold) ⇒
P’(Cold | Allergy)

The first choice has the smallest result, so it
is selected. The two input distributions are
removed from the set, and the result is added. 

2. Regenerating the set of candidate pairs, we
now obtain

1. P’(Cat) * P(Allergy | Cat) ⇒ P’(Allergy)

2. P(Sneeze | Cold, Allergy) * P(Allergy | Cat) ⇒
P’(Allergy | Cat, Cold)

3. P(Sneeze | Cold, Allergy) * P(Cold) ⇒
P’(Cold | Allergy)

The first choice again has the smallest result,
so it is selected.

3. Again regenerating the set of candidate
pairs, we obtain

4. P(Sneeze | Cold, Allergy) * P’(Allergy) ⇒
P’(| Cold)

5. P(Sneeze | Cold, Allergy) * P(Cold) ⇒
P’(Cold | Allergy)

The first choice has the smaller result, so it is
selected.

4. There are now only two distributions in the 
set, P(Cold) and P’(| Cold).8 These two are 
combined. 

The overall computation was
P(Cold)  

=  P(Cold) 
* Σ Allergy,Sneeze (P(Sneeze | Cold, Allergy) 
* Σ Cat (P(Allergy | Cat) 
* ΣScratches (P(Scratches | Cat) * P(Cat))))

Direct factoring methods have been devel-
oped for all the single-query tasks, including
MPE and MAP (Li 1993). However, until
recently, it has been unclear how to apply
direct factoring methods to multiple query
tasks (Bloemke 1998).

Variable Elimination
The previous method is very simple to under-
stand, is fairly simple to implement, and offers
excellent performance. Further, its perfor-
mance is limited only by the quality of the
heuristic used. That is, the method is inherent-

Because 
the problem
of finding 
an optimal
evaluation
form is
intractable,
simple 
greedy 
heuristics 
are typically
applied. A
very simple
one, the 
set-factoring
heuristic,
developed by
Li (1994),
operates by
selecting 
pairs of 
distributions
to combine
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then it is removed from the graph. The process
is then repeated until all nodes are eliminated.
Note that the final parameter-elimination
ordering is the reverse of the order in which
nodes are removed from the graph. An excel-
lent review of heuristics for generating elimi-
nation orderings can be found in Kjaerulff
(1992). See also Becker (1996) for nearly opti-
mal methods and Jensen (1994).

Parameter elimination fills roughly the same
niche as direct factoring: It is intended for sin-
gle queries (single parameter or subjoint) and
is available in modified form for the MAP or
MPE query.

Finally, we can ask whether or not the opti-
mal computation is expressible in bucket-elim-
ination form. Surprisingly, the answer is no
but only by a constant factor. To see why not,
consider figure 3.

Let us examine a query for P(G). Assuming
all parameters are binary valued, there are a
number of equivalent optimal computations,
one of which is

P(G) = ΣA,B,C,D,E,FP(G | A, B, C, D, E, F) * ((P(A) 
* P(B)) * P(C))  * (P(D) * (P(E) * P(F))

However, it is not clear how we can obtain
this computation using parameter elimina-
tion. We can’t eliminate G; it is the query para-
meter. Any other parameter we choose to elim-
inate first requires that we combine the
marginal for that parameter with the condi-
tional for G, a clearly suboptimal choice. The
computational significance of this point is
minor: In this example, the optimal computa-
tion is only a constant factor better than one
obtained by eliminating A or B first. Further, it
seems easily fixed. The primary reason for
pointing this suboptimality out is to show that
optimality of inference in Bayes’s nets is not
well understood, and open questions remain.

Junction Trees
To this point, I have presented exact methods
for answering any single marginal or subjoint
query on a Bayes’s net and stated (without
demonstration) that these methods easily
extend to Boolean, MPE, and MAP queries.
What remains is to discuss processing for mul-
tiple queries. Consider our original network
and a query for P(Cold). We might use the fol-
lowing rearrangement of the marginalization
of the chain-rule reconstruction of the joint:

P(Cold) 
= Σ Allergy ((Σ Sneeze P(Sneeze | Cold, Allergy) 
* P(Cold)) * (ΣCat (P(Allergy | Cat) 
* (ΣScratches P(Scratches | Cat) * P(Cat)))))

It is a bit difficult to see the structure of the
computation in linear form. We can display
this computation as a tree (figure 4).

ly capable of expressing the optimal computa-
tion for any single query, whether for a single
parameter or an arbitrary subjoint. However,
although it seems natural, it somewhat
obscures the real problem. It turns out that the
hard problem is identifying an order in which
to marginalize the parameters not in the query.
Once that has been determined, it is simple
(polynomial time) to determine an optimal
combination sequence. Bucket elimination
(Dechter 1996) is a family of algorithms using
this approach. The idea, like that of direct
application of factoring, is simple. First, estab-
lish an elimination ordering for the parameters
not in the result. Then, for each parameter in
the elimination ordering in turn, (1) remove
and gather all distributions indexed by the
parameter; (2) combine them, marginalizing
over the parameter; and (3) place the result in
the distribution set. 

Let’s review our original example from the
variable elimination perspective. Suppose for
the moment that we establish the following
elimination order for the P(Cold) query:
scratch, cat, allergy, sneeze. Then the computa-
tion would be as follows:

1. Gather all distributions indexed over
Scratch, combine, and sum out Scratch:
ΣScratches (P(Scratches | Cat)). 
Call the result P’(| Cat).

2. Gather all distributions indexed over Cat,
combine, and sum out Cat:
ΣCat (P(Allergy | Cat) * P’(| Cat)  
* P(Cat)). Call the result P’(Allergy).

3. Gather all distributions indexed over Aller-
gy, combine, and sum out Allergy: 
ΣAllergy (P(Sneeze | Cold, Allergy)  
* P’(Allergy). 
Call the result P’(Sneeze | Cold).

4. Gather all distributions indexed over
Sneeze, combine, and sum out Sneeze:
ΣSneeze (P’(Sneeze | Cold)).

One advantage of focusing on the problem
of parameter-elimination ordering is the avail-
ability of results from multiple disciplines. The
problem of determining an elimination order-
ing for nodes in a graph has relevance to a
number of problems, including constraint sat-
isfaction and the solving of sparse systems of
equations. Although the general problem is
NP-hard, a variety of approximate methods
have been developed. Minimum deficiency
ordering (MDO) is typical of the widely used
class of simple greedy heuristics and performs
well for Bayes’s net variable elimination.9 An
ordering is established by choosing to elimi-
nate last the parameter with the fewest con-
nections to other nodes. Once the node is cho-
sen, its neighbors are pairwise connected, and
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Now consider a query for P(Cat). Suppose we
build the following computation:

P(Cat) 
= ((ΣScratchesP(Scratches | Cat) * P(Cat)) 
* (ΣAllergy P(Allergy | Cat) 
* (ΣSn,Co (P(Sneeze | Cold, Allergy)  
* P(Cold)))))

Again, we can display this computation as a
tree (figure 5).

There is quite a bit of overlap in the two
computations. In fact, if we align them togeth-
er, we obtain the following information flows
(figure 6).

Although figure 6 informally indicates some
commonality in the two computations, it is a
bit vague about how such commonality might
actually be exploited. Let’s examine how we
might exploit this commonality more general-
ly. Further, let’s assume our goal is to share a
single copy of each of the three core “tables”:

{(P(Sn | Co, Al) * P(Co)), P(Al | Ca),  
(P(Sc | Ca) * P(Ca))}

Then we might use the following computa-
tional sequence:

1. Compute the three tables, P(Sn | Co, Al) *
P(Co), P(Al | Ca), and P(Sc | Ca) * P(Ca) (note
the second one involves only a single distri-
bution and, thus, no actual computation).

2. Marginalize the bottom table as indicated by
the upward arrow (Sn, Co), and multiply the
result by the middle table. Replace the mid-
dle table with the result.

3. Marginalize the middle table as shown in
the next arrow (Al), and multiply the top
table by the result. Replace the top table
with the result.

4. Now, to get P(Cat), simply marginalize the

top table over Sc. Note that we have exactly
reconstructed the original computation
sequence for P(Cat).

5. Next, we will compute P(Cold). However,
notice that the table at the top now has the
wrong information in it. To recover the orig-
inal table needed for the P(Cold) computa-
tion, we need to divide out the message we
just multiplied. We can then marginalize
over Sc, as specified on the upper downward-
pointing arrow and multiply the result by
the middle table. Again, we replace the mid-
dle table with the result of this multiplica-
tion.

6. Once again, if we examine the computation-
al history of the middle table, it includes too
much information. We again can recover
the needed table by dividing out the
“upward” message we previously multiplied
it by and marginalize out Ca as specified in
the middle downward-pointing arrow.

7. We then multiply the bottom table by the
earlier message. Finally, we can obtain
P(Cold) by marginalizing out Al, Sn, as
shown in the bottom downward-pointing
arrow. Again, we have largely reproduced
the original computation of P(Cold).

We could have avoided the need for division
by keeping the original tables, at the cost of a
higher storage-space requirement. 

Junction Trees: In the previous computa-
tional sequence, we generated a unified com-
putational structure for multiple queries by
first determining structures for each of the
individual queries, then merging them. I close
our discussion of exact inference with the
most well-known method of inference in
Bayesian networks, a general procedure for
constructing a single computational structure
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at each step. Remember that to eliminate a
parameter, we must first combine all remain-
ing distributions indexed on the parameter.
Eliminating all parameters involves the follow-
ing steps:

1. To eliminate A, we need to combine P(A),
P(B | A), and P(C | A). Thus, the set of para-
meters mentioned is {A, B, C}. After this
combination and elimination (marginaliza-
tion) of A, the result is P(B, C), and the full
set of remaining distributions is {P(B, C), P(D
| B), P(E | C), P(F | D, E)}. 

2. Next, to eliminate B, we combine P(B, C)
with P(D | B), so the set of parameters men-
tioned is {B, C, D}, and the set of remaining

capable of computing the answer to multiple
queries, without the need for first computing
separate structures for each. A junction tree is a
computational structure for the all-marginals
task, where the query set is the set of all single-
parameter marginals (Lepar 1998; Jensen
1990a, 1990b; Lauritzen 1988). I present junc-
tion trees as directly derived from an elimina-
tion ordering.10 To demonstrate the concepts
involved, I present figure 7.

Using the minimum deficiency ordering
(MDO) heuristic sketched earlier, one-elimina-
tion ordering, we can obtain A, B, C, D, E, F.
Now, let’s actually eliminate each variable in
turn, noticing the other parameters involved
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distributions is {P(D , C), P(E | C), P(F | D, E)}.

3. Eliminating C requires that we combine P(D,
C) with P(E | C) to yield P(D, E) and involves
{C, D, E}. The set of remaining distributions
is {P(D, E), P(F | D, E)}.

4. Finally, eliminating D requires combining
P(D, E) with P(F | D, E) and involves {D, E, F}.

Because we now have only a single distribu-
tion, we can stop—the remaining eliminations
are simply marginalizations of an already-com-
puted subjoint and, thus, are trivial. Now, let’s
arrange the sets of variables involved in the
computations in a graph, where the nodes are
the sets of parameters, and the arcs show data
flow in the elimination computation. We
obtain the junction tree in figure 8.

We see that the essential property of the
nodes (from our perspective focusing on the
joint as the central object) is that they are the
sets of parameters that are involved in elimi-
nating a parameter from the joint.11 An inter-
esting property of a junction tree is that if a
parameter is present in two nodes, it will be
present in all nodes on the path between the
two. 

How can we use such a structure for the
computation of all marginals? Remember our
earlier example of the parallels between the
two queries P(Cold) and P(Cat) in our original
net. First, we populate the nodes of the previ-
ous graph with products of subsets of the dis-
tributions in the original Bayes’s net. Second,
we use a two-phase computation—(1) inward
and then (2) outward—in correspondence
with the two directions of flow of computation
in our earlier example. Specifically, we do the
following:

1. Place each distribution in the original
Bayes’s net into any node that includes all
the parameters indexing the distribution (or,
more simply, into the node corresponding
to the elimination step in which it was con-
sumed).

2. For each node, form the product of all distri-
butions it contains. If it contains none, ini-
tialize it to 1.

3. Pick any node as the root. From each leaf,
send a message to its immediate parent. The
message to be sent from a leaf is the margin-
al of its table, marginalizing out any parame-
ter not in the separator (label on the arc,
intersection of the sets of parameters on
either side of the arc). When a parent
receives a message from a child, it multiplies
its table by the message. When a parent
receives messages from all children, it per-
forms a marginalization according to the
separator on the arc to its parent and sends
the corresponding message up.

4. Once the root receives messages from all its
children, the process is reversed. That is, the
root sends a message down each arc to the
corresponding child. However, the root
must not include information already sent
up by that child; so, it must first divide by
the message previously sent from that
child.12 As before, each child, when it
receives a message from its parent, multi-
plies its table by the message and sends out-
going messages to its children, first, for each
child, dividing by the message it received
from that child. 

5. Once the message passing is complete, mar-
ginals for parameters are available by simply
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ignore this multiplication for our current
purposes.

4. CDE initially contains P(E | C) and gets the
message ΣFP(F | D, E) from DEF and multi-
plies it by current contents, which yields 
P(E | C) * ΣFP(F | D, E).

5. CDE now sends to BCD the message 
ΣEP(E | C) * ΣFP(F | D, E). BCD multiplies by
its current contents, yielding (P(D | B) *
ΣAP(S) * P(B | A) * P(C | A)) * (ΣEP(E | C) *
ΣFP(F | D, E)). However, this is exactly
P(BCD)!

The computation is similar for other nodes
in the junction tree. Regardless of the node
chosen as root, at the end of the computation,
each node holds the joint across the parame-
ters associated with it. Individual parameter
marginals can be obtained by marginalizing
the table at any node containing the parame-
ter of interest.

The method is elegant, and simple, and was
the first and still the only well-understood,
efficient, provably correct method for concur-
rently computing multiple queries. Further-
more, its graph-theoretic origins provide a
number of useful heuristics for finding effi-
cient elimination orderings. However, as with
parameter elimination, we can ask about opti-
mality. If we construct the effective computa-
tions for each node in the junction tree, we see
that they are very closely related and are effec-
tively close variants of the elimination order-
ing we used to generate the tree. Is there any
reason to believe that a single elimination
ordering is optimal across all single-marginal
queries? To say this another way, although we
understand that the method is correct, is it
capable of expressing the optimal computa-
tion for the query (the set of all posterior sin-
gle-parameter marginals)? This turns out to be
a rather difficult question to answer and seems
to depend in part on aspects of the query I
have not yet discussed. Recent results indicate
there might be important cases where the use
of a single-elimination ordering is sub-
optimal.13 Further, the method does not gener-
alize naturally to answering queries about sub-
joints. Nonetheless, junction-tree propagation
in its variant forms (Lepar 1998; Madsen 1998;
Kjaerulff 1997) is currently the dominant
method for exact inference in Bayes’s nets. The
algorithms are reasonably well understood,
good descriptions and efficient implementa-
tions are widely available, and the complexity
of inference does not depend on the particular
query or pattern of evidence.

Approximate
It would be wonderful if exact algorithms were

marginalizing out the other parameters in
the table for any node containing the para-
meter of interest.

With a bit of thought, it should become
apparent that one could reconstruct each mar-
ginal computation from the previous compu-
tation. A junction tree is built from a specific
elimination ordering, but it gives a graphic
representation of a partial order on a possible
elimination ordering, including at least one in
which each parameter occurs last (and, thus,
can be the subject of a single-marginal query).
The partial ordering has the property that
rearrangement preserves the groupings of
parameters in intermediate results and, thus,
maximizes structure sharing for the all-mar-
ginals task. For example, let’s look at the sec-
ond node (BCD). We follow the computation,
assuming CDE is chosen as root.

1. BCD is initialized to P(D | B).

2. ABC will send its contents, marginalized
over A; so, BCD now contains 
P(D | B) * ΣAP(S) * P(B | A) * P(C | A).

3. BCD sends to CDE the message 
ΣBP(D | B) * ΣAP(S) * P(B | A) * P(C | A).
CDE multiplies its contents by this message,
but because it will divide it back out before
sending a message back to BCD, we can

Articles

32 AI MAGAZINE

A

F

B

D

C

E

Figure 7. Sample Bayes’s Net for Junction Tree.



adequate for all inference tasks. However, as
network size scales, exact inference times grow
unpredictably. Relatively small changes in net-
work topology can transform a relatively sim-
ple problem into an intractable one. As a
result, research into approximation methods
has been quite active. The methods fall into
two broad categories: (1) approximate infer-
ence methods and (2) model reduction meth-
ods. The latter methods apply exact methods
to a reduced (and hopefully simpler) form of
the network. Because of the wide variety of
methods in use, I do not attempt to describe
them all in detail but survey a few of the most
well-known families of methods.

Approximate Inference    Simulation: The
most well-known approximate methods are
based on simulation, that is, using the Bayes’s
net to generate randomly selected instantia-
tions of the set of parameters and then count-
ing the number of instantiations of interest.
For example, imagine we want to determine
the probability of finding scratches on the fur-
niture, and for this example, let’s imagine we
have a simple two-parameter model (a subset
of our first example containing just cat and
scratch). 

1. Randomly sample from Cat according to its
prior probability (say, we choose False). 

2. Next, randomly sample from Scratch, using
P(Scratch | Cat = False). If the result is Scratch
= True, tally one for Scratch = True; else tally
one for Scratch = False. 

3. Repeat the process until bored. 

4. Assume the final tallies are {104, 96} for
Scratch = True and False, respectively. The
estimate for the distribution over P(Scratch)
is, therefore, {104/200, 96/200}.

There are a bewilderingly large variety of
variants of this scheme, both in the uncertain-
ty in AI literature (Fung 1994; Shachter 1989;
Henrion 1988; Pearl 1987) and in the tradi-
tional statistical literature. All suffer from three
problems: (1) the basic approximation prob-
lem (for example, the problem of determining
if a probability is less than a specified value) is
NP-hard (Dagum 1993), (2) error decreases as
the square of the number of samples, and (3)
unexpected evidence on nonroot nodes can
reduce the number of useful samples collected.
The last is particularly problematic and has
largely restricted the use of such methods to
the computation of priors; see Fung (1994). 

Search    An alternate approach to approxi-
mation is to rely on the chain rule as in exact
inference but to sum only a subset of the rele-
vant cells of the JPDF. This can give good esti-
mates in short time when (1) a small subset of

the cells contain most of the probability mass
and (2) can easily be found (Huang 1996;
D’Ambrosio 1993; Poole 1993, 1992; Henrion
1991). As an example, consider our initial
query, P(Cold = True). Examining the JPDF table
presented earlier, we see that the two largest
cells have values .83 (Cold = False, …) and .035
(Cold = True, …). Using just these two, we can
estimate the P(Cold = True) as .035/(.83 + .035)
= .04, quite close to the true value of .05.  

One application that often meets the
requirements of this method is diagnosis
(D’Ambrosio 1996). However, Druzdel (1994)
has shown that the first requirement, at least,
might be far more commonly met than might
be expected. Search can be used for all queries,
including MPE and MAP. One disadvantage of
search is that like exact inference, the bound-
aries between reasonable and unreasonable
computation time tend to be sharp and unpre-
dictable. Deterministic search for large cells
has bad worst-case performance. Further, it is
rather complex to implement efficiently; so, it
is rarely used in practice. 

Model Reduction A variety of methods
have been used to find or construct a simpli-
fied network as a method of attacking difficult
inference problems. These methods include
reduction of the domains of parameters
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Dynamic Networks
Dynamic probabilistic networks are compact, fac-
tored representations of Markov processes.
There has been some study of inference meth-
ods, both exact (Xiang 1995) and approximate
(Boyen 1998). The most common applications
include projection of future values and the
integration of observations over time. Koller
argues that stochastic approximation methods
are necessary because independence relation-
ships among variables in a static, factored state
model tend to disappear when reasoning over
time. As a result, exact methods are exponen-
tial in the number of variables in the state
model despite the factored representation of
the prior density.

Summary
Early attempts to use probability theory in AI
led to frustration, largely a result of the inabil-
ity to represent and exploit the structure of
large probabilistic models. The development of
the Bayesian network, a factorized representa-
tion of a probability model that explicitly cap-
tures much of the structure typical in human-
engineered models, has enabled direct
application to problems previously beyond the
reach of rigorous probabilistic methods. In this
article, I introduced the basic problems and
methods of reasoning with a Bayesian network
from the perspective of implicitly recovering
the joint distribution defined by such a net-
work. I attempted to illustrate that differing
methods make differing assumptions about
the nature of the actual computational task
and the structure of the model. Finally, I con-
cluded with a brief survey of some still-open
topics in inference in Bayes’s nets.
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Notes
1. An example is PROSPECTOR, not that PROSPECTOR was
disappointing in its performance but that the use of
probability theory seemed one of the obstacles,
rather than contributors, to its success.

2. Roughly, the ability to reason by construction and
manipulation of structures of symbols is both neces-
sary and sufficient for intelligent behavior.

3. I do not attempt to define causality, nor do I men-
tion it again once we move to a more formal level.

4. For discrete variables, the size of a distribution is
exponential in the number of dimensions or indexes.

5. Mathematically, a Bayesian network simply pre-
sents a probability distribution in factorized form

(D’Ambrosio 1996; Wellman 1994; Chang
1989), elimination of irrelevant arcs (Dechter
1997; Kjaerulff 1994), local or partial evalua-
tion (Draper 1994; Horvitz 1989), variational
methods for fitting simpler parameterized
models (Jaakola and Jordan 1996), and qualita-
tive methods (Liu 1998; Goldzmidt 1995; Well-
man 1990). None of these methods is in wide-
spread use.

Challenges, Other Topics, 
Current Research

There are other aspects of task definition
besides the question being asked. In particular,
I argued (D’Ambrosio 1993) that in general,
inference should be incremental with respect
to query, evidence, precision, and even restrict-
ed forms of model reformulation. However,
there is little known about how such incre-
mentality would affect the tractability or suit-
ability of Bayes’s net inference for various
tasks. 

Local Structure 
Bayesian networks exploit value-independent
conditional independence, that is, conditional
independence properties that hold at the para-
meter level. However, often there are condi-
tional independence relations that hold only
for specific values of a parent or child (D’Am-
brosio 1991). Poole  (1997), Koller (1996), and
Geiger (1991) have addressed ways of repre-
senting and exploiting these relations within
the Bayesian network framework. 

A second kind of independence below the
topological level often occurs among the par-
ents of a parameter. Often, the effect of each
parent can be modeled independently of the
state of the other parents. One very important
such example is the noisy-or, in which we can
quantify independently for each parent the
causal power of the parent on the child. Such
models can be exploited in both network con-
struction and inference (Zhang 1998; D’Am-
brosio 1994; Srinivas 1993; Agosta 1991;
D’Ambrosio 1991; Henrion 1991; Heckerman
1989), although optimal exploitation is still an
open issue (Takikawa 1998).

Continuous Variables
The focus of this article is simple Bayes’s nets
over discrete parameters. There are several
methods for incorporating continuous vari-
ables within Bayesian networks, including
both exact (Chang 1991; Olesen 1991; Lau-
ritzen 1990) and approximate (mostly simula-
tion-based) methods.
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and so is blissfully ignorant of the philo-
sophical wars between “Bayesians” and
“frequentists.” However, as a knowledge
engineering device, it is often used to
express prior, judgmental, or subjective
belief. 

6. In this case, I am building this net to
help me understand circumstances I find
myself in, not as an arbitrary member of
the general population; so my personal sen-
sitivity to cats is the appropriate knowledge
to encode.

7. Note that the two sides of the Or are not
mutually exclusive because there is a
nonzero probability of Allergy = False when
Cat = True. Note also that each cell is count-
ed only once, regardless of how many dis-
juncts it satisfies.

8. P’(| Cold) is simply a table with one col-
umn (that is, no conditioned variables) and
several rows, one for each domain value of
Cold. This subject would be a boring object
if it were a probability distribution because
each row would have to sum to one. How-
ever, remember that it is not a probability
distribution. 

9. This information cam from Rina Dechter
through personal communication.

10. What follows is not the typical way of
presenting junction trees. However, I be-
lieve it provides a better intuition of the
relationship of the structure to the essential
problems of inference in Bayes’s nets than
the standard graph-theoretic presentation.

11. I ignore the case where multiple para-
meters are eliminated simultaneously. It
introduces only minor additional complex-
ity but would obscure the discussion.

12. Details of this division vary with the
specific algorithm; see, for example, Lau-
ritzen (1988) or Jensen (1990b).

13. Here, recent in-preparation work is rep-
resented with Anders Madsen and with
Masami Takikawa.
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