
■ Inherent batch-to-batch variability, aging, and
contamination are major factors contributing to
variability in oil-field cement-slurry performance.
Of particular concern are problems encountered
when a slurry is formulated with one cement
sample and used with a batch having different
properties. Such variability imposes a heavy bur-
den on performance testing and is often a major
factor in operational failure.

We describe methods that allow the identi-
fication, characterization, and prediction of the
variability of oil-field cements. Our approach in-
volves predicting cement compositions, particle-
size distributions, and thickening-time curves
from the diffuse reflectance infrared Fourier trans-
form spectrum of neat cement powders. Predic-
tions make use of artificial neural networks. Slurry
formulation thickening times can be predicted
with uncertainties of less than ±10 percent. Com-
position and particle-size distributions can be pre-
dicted with uncertainties a little greater than mea-
surement error, but general trends and differences
between cements can be determined reliably. 

Our research shows that many key cement
properties are captured within the Fourier trans-
form infrared spectra of cement powders and can
be predicted from these spectra using suitable
neural network techniques. Several case studies
are given to emphasize the use of these tech-
niques, which provide the basis for a valuable
quality control tool now finding commercial use
in the oil field.

Cements are among the most widely used
and the least well understood of all ma-
terials. Although cements are often

viewed as simple “low-tech” materials, they
are, in fact, inherently complex over many
length scales. The starting material, cement

powder, is obtained by grinding cement clink-
er. The cement clinker is manufactured by
firing limestone (providing calcium) and clay
(providing silicon, aluminum, and iron). Gyp-
sum (calcium sulfate dihydrate) is then added
to moderate the subsequent hydration process.
After grinding the clinker and gypsum, the ce-
ment powder consists of multisize, multiphase,
irregularly shaped particles ranging in size
from less than a micrometer to slightly more
than 100 micrometers. When this starting ma-
terial is mixed with water, hydration reactions
occur that ultimately convert the water-ce-
ment suspension into a rigid porous material,
which serves as the matrix phase for concrete,
a cement paste-sand-rock composite.

The various chemical phases within the ce-
ment powder hydrate at different rates and in-
teract with one another to form various reac-
tion products. Some products deposit on the
remaining unhydrated cement particle sur-
faces, but others form as crystals in the water-
filled pore space between cement particles.
Moreover, some of the hydration products
contain nanometer-sized pores, so that the size
range of interest for these materials is from
nanometers to hundreds of micrometers, or
even centimeters if one includes the rock ag-
gregates used in concrete. Because of these
complexities, many questions remain unan-
swered in the science of cementitious materi-
als. As with most materials of industrial impor-
tance, the key relationships between
processing and underlying physicochemical
properties must be elucidated to obtain better
control over the material in use.

The most common application of cement
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is, of course, in building construction, where
it has been used since at least Roman times.
However, the work described here is con-
cerned with another important application
of cement—in the oil industry, where about
three percent of the world’s annual cement
output is deployed. Cement is used to line
oil and gas wells after drilling by pumping a
cement slurry between the well bore and a
steel casing inserted into the well, as shown
in figure 1. During placement, the cement
displaces all the drilling fluid originally pre-
sent from the drilling operation itself. The
cement then sets to form a low-permeability
annulus, which isolates the productive hy-
drocarbon-bearing zones of the well from
the rest of the formations, surplus water,
and the surface.

Cement is used almost exclusively for oil-
field cementing despite the fact that its per-
formance is variable and not completely un-
derstood. Cement variability is observed
between cements from different manufactur-
ers, different cement batches from the same
manufacturer, and samples from the same
batch of cement that might have aged differ-
ently during storage. Because of all these
problems, well cementing has remained un-
til now more a black art than a science. 

Various cement-slurry properties, such as
compressive strength development, perme-
ability to oil and gas, and flow behavior,
need to be specified and controlled, taking
into account the high temperature and pres-
sure conditions prevailing down hole. For
oil-field cement slurries, the thickening time
plays a central role during slurry formula-
tion because it is a measure of the time with-
in which the cement is pumpable (American
Petroleum 1982). Experimentally, it is the
time taken to reach a specified consistency
as measured under defined conditions.
Longer than required thickening times are a
potential waste of drilling time and an in-
efficient use of expensive chemical additives.
Operational problems as a result of short
thickening times are especially dramatic be-
cause the cement can set prematurely in the
casing or pumping equipment. Such major
operating failures (MOFs) can necessitate the
complete redrilling of a many-thousands-of-
feet well bore and can cost from $1 to $2
million; less severe MOFs in which a limited
amount of redrilling is required typically
cost around $0.6 million. Therefore, consid-
erable, time-consuming experimental effort
is devoted to precise control of slurry thick-
ening times.
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Figure 1. Cementing an Oil Well.
The main objective of such well cementing is to

provide complete and permanent isolation of the
formation behind the steel casing previously

placed in the bore hole. The cement must be mixed
to meet appropriate design parameters and is then

pumped down hole, displacing all drilling mud
from the annulus between casing and formation.
Spacers or washes can be used along with top and

bottom plugs to separate cement from drilling
mud. Centralizers on the outside of the casing are
used to keep the annular gap as even as possible.



Application Description: The
FTIR Spectra of Cements

In view of the overwhelming complexity of
cement hydration, a valuable quality control
tool would be a model predicting perfor-
mance properties of a given cement sample
prior to its use. However, the mathematical
modeling of cement hydration based on
mechanistic understanding is still in its in-
fancy (but see Coveney and Humphries
[1996]). The approach taken here is to dis-
pense with detailed physicochemical charac-
terization of the cement particles in favor of
methods based on a combination of statistics
and AI. With this approach, cement composi-
tion and performance properties are correlat-
ed with a judiciously chosen measurement
that implicitly contains key information on
cement composition, particle-size distribu-
tion, and surface chemistry. To give the
method any chance of commercial success,
this measurement also has to be relatively in-
expensive and easy to perform on a routine
basis.

The measurement chosen was based on the
use of infrared spectroscopy, a common analyt-
ic technique used in the chemical sciences. It
is well known that every chemical species has
its own unique infrared spectrum. Indeed,
chemists most commonly use this technique
in a qualitative mode by matching up spec-
tral features in an unknown compound with
previously recorded spectral data on known
compounds available in lookup tables. An ex-
perienced chemist, working in a specified area
of chemistry, can often identify a chemical by
direct visual inspection of its infrared spec-
trum. A more specialized yet equally well-es-
tablished application is quantitative analysis of
chemical mixtures, wherein measured spectra
of unknown chemical composition are re-
gressed against linear combinations of in-
frared spectra either of the pure chemical
components or of mixtures of known chemi-
cal composition (Beebe and Kowalski 1987).

The particular variant used in this work is
that of the Fourier transform infrared (FTIR)
spectrum of dry cement powders, sometimes
known as diffuse reflectance infrared Fourier
transform spectroscopy (DRIFTS). In this tech-
nique, white-light radiation from a Michelson
interferometer is focused on a compacted
sample using a moving mirror. Radiation im-
pinging on the sample undergoes two types of
reflection. The first is specular reflectance,
where the radiation is reflected from the sam-
ple surface as if from a mirror. The second is
diffuse reflectance whereby a proportion of the

radiation penetrates the sample and is reflect-
ed from particle surface to particle surface. At
each reflection, a degree of energy absorption
occurs as indicated in figure 2. 

Energy is absorbed because of the vibration
and stretching of chemical bonds in the
molecules of the powder. The reflected light
reemerges from the sample and is collected
by a second ellipsoidal mirror. The Fourier
transform technique is used to convert the
emergent radiation into a spectrum of ab-
sorbance versus frequency. The experimental
method for collecting FTIR spectra of cement
powders has been described elsewhere (Hugh-
es et al. 1995, 1994). The wavelength range of
the mid-infrared region of the electromagnet-
ic spectrum is approximately 2.5 × 10–3 cm to
2.5 × 10–4 cm or 4000 to 400 wave numbers,
where wave numbers are reciprocal wave-
length in units of cm–1.

Information Contained within 
Cement FTIR Spectra
Particle Size: The extent of diffuse reflectance
is inherently related to the particle size of the
sample but in a generally unknown manner.
Large coarse particles allow the incident radia-
tion to penetrate deeply into the sample, thus
increasing absorption. However, large particles
show greater specular reflectance that distorts
the frequency spectrum. As the particle size of
a sample is reduced, the depth of penetration
and, therefore, absorption is less because more
particles are present to reflect and limit the
depth of penetration. Spectra are therefore
distorted as a function of particle size al-
though sample dilution in KBr minimizes
these effects. Accordingly, our spectral mea-
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Figure 2. Schematic of the Diffuse Reflectance Process.



The Cement Properties Database
The methods we use for making quantitative
predictions are based on establishing statistical
correlations between cement infrared spectra
and selected cement physicochemical parame-
ters. Specifically, we were interested in seeking
to establish unambiguous relationships be-
tween the infrared spectra and cement proper-
ties such as chemical composition, particle-size
distribution, and thickening time. To achieve
such correlations required the construction of
a database containing data on 158 oil well ce-
ments collected worldwide. Our database is
one of the most comprehensive currently
available on oil-field cement properties. It con-
tains the following standard physical and
chemical data on each of the 158 cements:

First is the cement mineral composition ex-
pressed in weight percent (wt%) of the fol-
lowing minerals: alite, belite, aluminate, fer-
rite, gypsum, the sulfates bassanite and
syngenite, calcium hydroxide, and calcium
carbonate.

Second is the cement oxide composition
expressed in weight percent of the following
oxides: SO3, Al2O3, Fe2O3, MgO, Na2O, CaO,
SiO2, P2O5, TiO2, CrO2, MnO2, ZnO, and SrO2.

Third is the binned particle-size distribu-
tion (PSD bin), in volume fraction occupancy,
and mean particle diameter, in microns, as
measured by Cilas granulometry.

Fourth is weight loss on ignition, free lime
content, and insoluble residue.

Fifth is the surface area (in cm2g–1) as mea-
sured by Blaine’s method, which provides an
estimate of the total surface area of all the ce-
ment particles.

Sixth is the digitized thickening-time curve
for a neat cement slurry at 50 °C and solid/
water ratio of 0.44.

Seventh is the digitized thickening-time
curve for a slurry retarded with 0.2-percent
D13 (a Schlumberger Dowell proprietary ce-
ment-setting retarder) at 85 °C and solid/wa-
ter ratio of 0.44. 

Eighth is the diffuse reflectance FTIR spec-
tra recorded at 2 cm–1 resolution using a
Nicolet 5DX spectrometer.

Modeling Techniques
The primary objective of this research was to
construct models to predict cement proper-
ties from FTIR spectra as the sole input data.
The most important cement information that
one would hope to extract from infrared
spectra are (1) chemical composition accord-
ing to the Bogue and oxide representations,
(2) particle-size distribution, and (3) thicken-
ing-time profiles for neat and retarded ce-

surement is made with samples diluted to a
concentration of 10 percent by weight in fine-
ly ground, infrared inactive, potassium bro-
mide.

Composition: To a good first approxima-
tion, the FTIR spectrum of any multicompo-
nent mineral assembly is a linear superposition
of the spectra of the pure mineral com-
ponents. In the case of oil-field cements, the
American Petroleum Institute (API) lays down
notional chemical composition specifications
based on the so-called Bogue clinker phases:
alite (tricalcium silicate), belite (dicalcium sili-
cate), aluminate (tricalcium aluminate), and
aluminoferrite (tetracalcium aluminoferrite).
These Bogue phases, which themselves provide
only an approximate chemical description, are
traditionally specified by means of a linear
transformation of the chemical composition of
the clinker expressed in terms of its major ox-
ides, which can be determined directly by oth-
er, more lengthy, noninfrared methods. Spec-
tral features of the major Bogue cement
chemical phases in the mid-infrared are domi-
nated by vibrations and stretching modes of
water molecules that are located on mineral
surfaces, within the sulfate and carbonate min-
erals, or in calcium hydroxide. Within the
mineral phases present, chemical bonds be-
tween silicon and oxygen, aluminium and
oxygen, and iron and oxygen are also active in
the mid-infrared region. Despite the aforemen-
tioned complexities that are the result of parti-
cle-size distributions and the occlusion of min-
erals, it is established that linear statistical
techniques can be used to correlate spectral
characteristics with cement chemical composi-
tion, provided due care is taken in the sample
preparation (Hughes et al. 1995, 1994).

Other Spectral Attributes: Lack of crys-
tallinity, impurities in minerals, and prehydra-
tion have a more subtle effect on spectra, usu-
ally broadening absorbance peaks and shifting
the frequencies at which absorbance occurs. 

We can therefore assert with confidence
that diffuse reflectance infrared spectra of ce-
ments contain information on the composi-
tion, particle-size distribution, and surface
chemistry of the material, all of which
influence cement hydration.

Methods for Predicting Cement
Properties from FTIR Spectra

In this section, we discuss the design and
construction of a cement properties database,
modeling techniques, and the predictive ca-
pabilities of the models.
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ment slurries. Accordingly, five independent
statistical models were constructed for the
prediction from FTIR spectra of the following
properties selected from the database:

Model A: The concentrations of the four
API-specified Bogue minerals plus gypsum,
syngenite, bassanite, calcium hydroxide, and
calcium carbonate

Model B: The concentrations of the major
oxides together with loss on ignition, free
lime content, and insoluble residue

Model C: Particle-size distributions and
mean particle diameter

Model D: Digitized neat thickening-time
curves

Model E: Digitized retarded thickening-
time curves
These models were subsequently used inde-
pendently of one another.

It has previously been demonstrated that ce-
ment mineral compositions (model A) can be
predicted from FTIR using linear statistical
techniques (Hughes et al. 1994; Fierens and
Verhagen 1972). A suitable procedure, de-
scribed elsewhere (Martens and Naes 1989;
Beebe and Kowalski 1987; Sharf, Illman, and
Kowalski 1986), is based on partial least squares
(PLS). This technique is a variant on simple
multiple linear regression, which has the ca-
pacity to filter noise and redundant informa-
tion from spectra prior to prediction. In this
study, PLS is used for the prediction of mineral
compositions only. All other models make full
use of artificial neural networks (ANNs).

The full relationships between the measur-
able properties of a cement powder and its
slurry performance are not known and are ex-
pected to be complex, that is, highly nonlin-
ear (Coveney and Humphries 1996; Fletcher
and Coveney 1995; Fletcher et al. 1995; Ben-
sted and Beckett 1993; Billingham and Cov-
eney 1993; Hunt 1986). Therefore, it is best to
choose a technique for finding such correla-
tions that makes as few assumptions as possi-
ble regarding their nature. ANNs offer the
possibility of finding input-output correla-
tions of essentially arbitrary complexity and
consequently formed the basis for the AI
methods we used in this work. The main fea-
ture of the neural network methodology is
that input-output information is correlated
using a system of interconnected nodes
(Hush and Hornee 1993; Lippmann 1987;
Rumelhart and McClelland 1986). These
nodes, also called neurons, are the computa-
tional analog of nerve cells in the human
brain. A single node is a processing element
that combines a set of input to produce a sin-
gle numeric output (figure 3).

The strength of the output signal is given
by a nonlinear function called the transfer
function. Commonly, the transfer function is
based on a weighted sum of the input signals.
A complete neural network is constructed
from an arrangement of individual neurons
that link input data to output data by a net-
work of arbitrary complexity. Within any ar-
chitecture the strength of the signal received
by any one node is a weighted sum of input
sent by all the nodes to which it is connected.
In the commonly used, supervised, feed-for-
ward, layered networks, nodes in an input lay-
er first receive signals equal to the values of
the external input data. This information is
passed on in a nonlinearly convolved fashion
to nodes in an output layer representing out-
put data (figure 4). The network architectures
and nonlinear expressions are modified using
a supervised training procedure such that in-
put data are correlated with output data. In
some networks, there can be one or more lay-
ers of neurons connecting the input and out-
put layers. These (hidden) layers add mathe-
matical features to networks necessary to
model complex relationships.

A fully trained ANN is effectively a nonlin-
ear map between specified variables that is ca-
pable of filtering noise in the input data and
has a predictive capacity; that is, it is capable
of making predictions for situations not pre-
viously encountered. The procedures for opti-
mizing ANNs are described elsewhere (Mas-
ters 1993) and use goodness-of-fit criteria
based on minimum residual prediction errors
for test data.

Neural networks have the following valu-
able features: (1) they respond with high
speed to input signals, (2) they have general-
ized mapping capabilities, (3) they filter noise
from data, (4) they can perform classification
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suitable for predicting cement properties em-
ployed Gaussian radial basis functions (Moo-
dy and Darken 1989, 1988) in a single hidden
layer. We preferred these networks because
their underlying learning algorithms are fast,
and based on linear algebra, they are guaran-
teed to find global optima. In such radial basis
function networks, also sometimes referred to as
localized receptive field networks, the nodes in
the hidden layer are different than those in a
multilayer perceptron: They are radial-distri-
bution functions that have centers and widths
expressed in terms of the n-dimensional space
defined by the input data vectors. These Gaus-
sian basis functions produce a nonzero re-
sponse only when an input vector falls within
a small, localized region of this n-dimensional
space centered on the mean and within the
specified width of the basis function. 

The process of constructing and optimizing
such networks involves several stages: First,
an arbitrary number of Gaussian basis func-
tions have to be selected. Their means and
standard deviations (widths) are determined
on the basis of the available data vectors to
be used for training by a procedure such as n-
dimensional K-means clustering. This stan-
dard statistical procedure exploits the natural
clustering of the input data to locate the
means (that is, the centers) of the selected
number of nodes such that their average Eu-
clidean distances from all the input data vec-
tors are minimized. The output from this ar-
bitrarily chosen number of radial basis
functions are then linearly correlated to the
supplied target (output) vectors. The final
stage of network optimization is performed
by systematically varying the number of clus-
ters and overlap parameters to achieve an op-
timum fit with the training data.

For all types of ANN architecture employed
and models constructed (A to E), the net-
works were trained using a subset of the full
database and their predictive capabilities eval-
uated using a completely independent test
data set—that is, one containing data that
had not previously been used by the network
during training—selected randomly from the
database. The importance of network opti-
mization and training in the construction of
reliable and robust ANN models cannot be
overstressed.

The extensive computation time for opti-
mizing even radial basis function neural net-
works becomes an issue when spectral data are
used as input variables. A typical mid-infrared
FTIR spectrum collected at 2-wave– number
resolution of the kind used here has approxi-
mately 2000 digitized points. Thus, to use

as well as function modeling, and (5) they
can encode information by regression or iter-
ative supervised learning.

Some drawbacks of neural network meth-
ods are (1) they are data intensive; (2) train-
ing is computationally intensive and requires
significant elapsed wall-clock time; (3) they
have a tendency to overtrain if the network
topology is not optimized, resulting in their
mapping training data extremely well but be-
coming unreliable in dealing with new data;
and (4) predictions are unreliable if extrapo-
lated beyond the boundaries of the training
data.

Many different types of neural network can
be implemented to solve a wide range of
complex nonlinear problems. We originally
worked with multilayer perceptrons (MLPs),
which are composed of three layers in which
the number of nodes in the input and output
layers were fixed by virtue of the mapping
sought. Thus, the number of nodes in the in-
put layer is equal to the number of individual
pieces of data in a single-cement input data
record (also called an input vector), but the
number of nodes in the output layer is equal
to the number of separate parameters being
predicted from the input vector. However,
there are certain computational drawbacks to
these MLP networks: Finding the optimal
number of nodes in the hidden layer is time
consuming because network training by the
back–propagation-of-errors algorithm is slow,
and in addition, there is some possibility of
the network becoming trapped in a local,
rather than the global, error minimum. 

The network type we found to be the most
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FTIR spectra as input data for neural networks,
it was found necessary to first reduce the
number of variables representing any spec-
trum. This reduction was performed using the
principal component method based on spec-
tral eigenvector analysis and led to a reduc-
tion in the useful information content in each
spectrum to 35 principal components, which
allows network training and validation to be
performed on PCs and workstations. For each
of the models B to E, the spectra were always
reduced to 35 principal components, al-
though the optimum architectures were dif-
ferent for each model. More details of the the-
oretical basis of the modeling procedure are
given elsewhere (Fletcher and Coveney 1996).

Predictive Capabilities of the Models
In this section, we discuss the predictive ca-
pabilities of the five models.

Model A—Mineral Composition Pre-
dictions, PLS Model The expected uncer-
tainties in mineral composition predictions
have been described in detail elsewhere
(Hughes et al. 1995, 1994). They are summa-
rized in table 1, which lists the various chem-
ical phases present as well as the concentra-
tion ranges and associated uncertainties with
which the phases are found (in weight per-
cent). As in all the models to be discussed,
the quoted uncertainties refer to the impreci-
sion of the model predictions (σ is the stan-
dard deviation) compared with the known,
experimentally measured values of the same
quantities. The predictions of the sulfate min-
erals (gypsum, bassanite, and syngenite), cal-
cium hydroxide, calcium carbonate, alumi-
nate, and ferrite are generally good and can
be used to detect aging of cements, as our lat-
er case studies show. The major uncertainties
lie in the prediction of the individual silicate
phases, although total silicates (alite + belite)
is predicted well. 

Model B—Major Oxide Analyses, ANN
Model Table 2 displays the cement chemical
analysis represented more fundamentally in
terms of the major oxides present, together
with the concentration ranges and associated
uncertainties with which these oxides occur.

In all cases, the oxides, weight loss on igni-
tion (LOI), free lime, and insoluble residue
variables are predicted well, although the un-
certainties are greater than expected errors on
the measurements. The major uncertainties
lie in the predictions of the concentrations of
CaO and MgO. These uncertainties arise from
the fact that the variance in the levels of CaO
and MgO is known to be small, and the errors
in prediction are proportionately large.

As with the mineral composition model
A, cement-oxide compositions can be esti-
mated with errors a little greater than those
of the direct composition measurement it-
self, but general trends in chemical compo-
sition can be determined readily from both
models.

Model C—Particle-Size Distribution
Bins and Mean Diameter, ANN Model
Figure 5 shows a typical particle-size–distribu-
tion prediction for an oilwell cement, and
table 3 lists its uncertainties. In all cases, the
prediction errors are greater than the expect-
ed measurement errors, although general
trends are predicted well.

Models D and E—Thickening-Time
Curve Predictions, ANN Model Figure 6
shows predictions of the full digitized thick-
ening-time curves for the retarded and neat
slurries for a typical oil-field cement. In this
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Component Concentration Range Uncertainty/2σ
(wt%) (wt%)

Alite 42–70 ±5
Belite 4–35 ±5
Alite + Belite 70–82 ±1.5
Aluminate 0–15 ±1
Ferrite 5–20 ±1
Syngenite 0–3 ±0.6
Gypsum 0–6 ±0.6
Bassanite 0–6 ±0.6
Ca(OH)2 0–3 ±0.1
CaCO3 0–4 ±0.2

Table 1. Uncertainties in Model A Predictions.

Component Concentration Range Uncertainty/2σ
(wt%) (wt%)

SO3 1.5–4.0 ±0.2
Al2O3 3.0–7.0 ±0.3
Fe2O3 1.8–7.0 ±0.3
MgO 0.5–3.0 ±0.3
Total alkalis 0.2–1.5 ±0.2
CaO 61–67 ±1
SiO2 19.5–24 ±0.4
Insoluble residue 0–0.9 ±0.3
Loss on ignition 0.5–2.5 ±0.3
Free lime 0.4–2.1 ±0.3

Table 2. Uncertainties in Model B Predictions.



example, the digitization simplifies the curve,
yet the general trends, including the point of
departure for cement setting and the actual
thickening time, can be seen clearly.

The expected error limits for thickening-
time predictions for both neat and retarded
formulations are shown in table 4. These un-
certainties are typically less than experimen-
tal thickening-time measurement errors and,
thus, support the use of FTIR as a rapid, quan-
titative predictor of cement-slurry thickening
times.

Application Case Studies
The application offers two basic levels of inter-
pretation: One is the qualitative assessment of
cement FTIR spectral features. The other is the
interpretation of quantitative predictions from
the models. In this section, we provide a few
examples of how this AI-based application
works in commercial operations where it has
been deployed for almost two years.

Qualitative Interpretation
Qualitative interpretation involves identifying
and comparing relevant features of cement
spectra with no reference to the AI system.
The simplest qualitative method is direct vi-
sual inspection of the spectra. This inspection
involves identifying the presence of specific
components by the presence of characteristic
absorbance bands and reference to the spec-
tra of pure components provided in preexist-
ing lookup tables (Hughes et al. 1995, 1994).
The relative spectral changes can give indica-
tors to changes in performance between
batches. An alternative qualitative technique
is spectral subtraction where one FTIR spec-
trum is subtracted from a second to leave a
so-called residual spectrum that is used to
identify differences in the spectra. The residu-
al spectrum is particularly useful in the detec-
tion of contaminants.

Quantitative Interpretation
Quantitative interpretation involves predicting
the composition, particle-size distribution,
and performance properties of the cement us-
ing the ANN-based prediction modules. Most
applications involve comparing the proper-
ties of one cement with another possibly sus-
pect batch using the cement FTIR spectra
passed through our predictive models. Any
statistically significant differences in compo-
sition or particle-size distribution will indi-
cate differences in performance. In some cas-
es, such as the detection of aged cements, the
changes in mineral compositions can indicate
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Figure 5. Measured and Predicted Particle Size 
for a Typical Oil-Field Cement.
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Bin Diameter Range/µm Uncertainty/ 2σ (%)1

1 0–1 ±1
2 1–1.5 ±1
3 1.5–3 ±1
4 2–3 ±1
5 3–4 ±1
6 4–6 ±1
7 6–8 ±1.2
8 8–1 ±1.2
10 16–24 ±1.2
11 24–32 ±1
12 32–48 ±1
13 48–64 ±1
15 96–128 ±1
16 128–192 ±1

1. Error on mean particle diameter 2σ = ±1µm. 

Table 3. Uncertainties in Model C Predictions.



changes in performance. The performance
predictions themselves can be used to sup-
port or confirm the qualitative interpreta-
tions. In some cases, the compositional differ-
ences between cements are subtle and not
easily interpreted. In these cases, direct pre-
diction of performance is informative.

Case A—Detecting a Barite-Contami-
nated Cement A cement sample was ob-
served to yield an unexpectedly long thick-
ening time compared with a normal cement
taken from a different storage silo. A residual
FTIR spectrum was obtained by subtracting
the spectrum of the normal cement from
that of the rogue cement. Figure 7 shows the
residual spectrum compared with the spec-
trum of pure barite; the barite characteristics
are confirmed by table lookup from existing
databases. (Use of the AI system is unneces-
sary for this application). The correspon-
dence of spectral features confirmed the
presence of barite in the rogue sample.
Barite contamination leads to the slurry be-
ing overretarded when the cement is used in
a slurry formulated on the basis of an un-
contaminated cement.

Case B: Detecting an Aged Cement A
cement from one storage silo was observed to
show mixing and pumping problems and
yield a short thickening time compared to ce-
ment samples from other silos. The spectrum
of the problem cement is shown in figure 8,
where it is compared with the spectrum of a
normal cement. Enhanced syngenite features
are visible in the spectrum of the problem ce-
ment; as in the case of the barite-contaminat-
ed sample, the spectral features characteristic
of syngenite are confirmed by table lookup
from existing databases.

The linear partial least squares composition
model A predicted the syngenite content of
the problem cement to be 2.7 wt% compared
with 0.9 wt% for the normal cement. Aging
to form syngenite is consistent with the ob-
served shortening of thickening times and
pumping problems. The retarded slurry per-
formance ANN model predicted the thicken-
ing time for the aged cement to be 50 min-
utes shorter than for the normal cement.

Case C: Identification of a Rogue Ce-
ment Figure 9 shows a retarded thickening-
time curve for an oilwell cement as predicted
from its FTIR spectrum using our ANN model.
The predicted data are compared to an aver-
age thickening-time curve obtained from ex-
perimental measurements on five different
batches of the same cement. An indication of
the normal batch-to-batch variation because
of storage is given by the two standard-devia-
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Figure 6. Measured and Predicted Thickening-Time Curves for a Typical Oil-
Field Cement.

The upper continuous curve displays the artificial neural network 
predictions for a neat slurry, and the continuous lower curve shows 

similar predictions for a retarded slurry. 
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eney 1996). These networks can be used to
investigate the sensitivity of, for example,
changes in thickening time to changes in the
values of input parameters, such as the
amount of aluminum or iron in the cement,
and so on. In some cases, these models have
confirmed previously established qualitative
trends known within the cementing commu-
nity, such as the observation that increasing
the iron content increases thickening times,
but at the same time have made these rela-
tionships more quantitative. However, in
many other instances, including, for exam-
ple, the dependence on composition variables
of the kickoff time (“point of departure”) and
the subsequent rapidity of thickening follow-
ing the usual quiescent period during which
there is essentially constant slurry consisten-
cy (see figures 6 and 9), no previous knowl-
edge—either qualitative or quantitative—ex-
isted. Moreover, we have shown that a
genetic algorithm can be used to invert the
nonlinear forward mapping provided by such
an ANN to furnish the precise physicochemi-
cal composition of a cement needed to deliv-
er specified performance properties. This ca-
pability is particularly remarkable because it
implies that in principle at least, it might one
day be possible to tailor-make a cement to
suit any particular application.

The cement quality-assurance tool that we
have described here is the result of the power-
ful combination of a modern AI technique
(ANNs) and the established laboratory mea-
surement technique of FTIR spectroscopy. The
integration of these two methodologies is
achieved in routine use by passing the digi-
tized output from an FTIR spectrometer into a
486 PC on which the trained ANNs reside. In
this way, a single cement powder FTIR spec-
trum provides information simultaneously on
cement chemical composition, particle-size
distribution, and setting profile (including
thickening time), together with a flag indicat-
ing the degree of statistical reliability to be ex-
pected from the predictions emanating from
the AI device. This flag indicates whether or
not a cement being analyzed lies within the
part of infrared parameter space on which the
ANNs have been trained: If the former, the
predictions are classified as reliable; if the lat-
ter, they are described as unreliable. As a con-
sequence, one can record the FTIR spectrum
of a cement powder and predict its setting
time in about 15 minutes of real time rather
than wait for more than 4 hours to observe
when the slurry will actually set.

Our radial basis function neural network
and other codes were homemade and were

tions limit. The rogue batch is identified as
having a very short thickening time com-
pared to the expected range for this cement
and an unusually high initial consistency.
These predictions were subsequently con-
firmed experimentally.
This example makes critical use of the ANN-
based performance-prediction capability to
identify a rogue cement without recourse to
interpreting cement composition or particle-
size distribution, which, on its own, is likely
to provide ambiguous results. Recall that pre-
mature setting of the slurry, as is the case
here, would likely lead to a costly major oper-
ating failure if such a cement were pumped in
the field.

These case studies indicate the scope and
power of prediction afforded by ANNs. How-
ever, the intriguing issue remains of how
these ANNs actually succeed in making cor-
rect composition and performance predic-
tions from the compressed and convolved
representation of cement FTIR spectra. 

ANNs have been criticized at times because
they appear to work like black boxes. Howev-
er, the substantial quantity of knowledge
they encode is available for more detailed in-
terrogation and can be used effectively in its
own right. To illustrate, we mention in pass-
ing that we have constructed other ANN
models that map chemical compositions and
particle-size distributions directly onto slurry
thickening-time curves (Fletcher and Cov-
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Figure 7. A Barite-Contaminated Cement.
Pure-barite FTIR spectrum and residual spectrum obtained by 

subtracting the FTIR spectrum of a barite-contaminated cement 
from the spectrum of a normal cement.
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developed on UNIX platforms. At the time
when the method was transferred from
Schlumberger Cambridge Research, where it
had been developed, to Schlumberger Dow-
ell’s Europe-Africa Technology Center in Ab-
erdeen, a decision was taken to port all codes
to the MATLAB commercial package—which is
platform independent and, thus, immediately
accessible on a PC available in the field. The
porting of codes to MATLAB reduced the coding
requirements of the commercial product to a
minimum. It should be noted that our ANN
codes made no special use of MATLAB’s intrin-
sic features, nor did MATLAB influence in any
way our choice of network architecture; our
work was completed prior to the availability
of the neural network toolbox within this
package.

Application Use and Payoff
The cement quality control technique de-
scribed here proved so successful in our re-
search laboratories that a decision was made
to turn it into a commercial product, called
CEMQUEST (cement quality estimation). The
technique is now being used in our Aberdeen
regional field laboratories to detect and avoid
cementing problems normally associated
with cement quality and variability. CEMQUEST

can predict, directly from the FTIR spectrum,
composition, particle-size distribution, and
thickening times for certain cement-slurry
formulations.

The advantages of using CEMQUEST compared
with previous cementing practice are mani-
fold. Obviously, there is the large time and per-
sonnel savings that accrues from predicting ce-
ment-setting properties in this way. Other
benefits include the avoidance of operational
cementing failures because of batch-to-batch
variation, aging or cement contamination, and
improved efficiency of cement- slurry formula-
tion design through the identification of im-
portant slurry performance characteristics.

Since early 1995, CEMQUEST has been in rou-
tine use within Schlumberger Dowell, where
it is part of the overall set of techniques em-
ployed for achieving improved cement-slurry
design and reliability on a daily basis. It has
also attracted the attention of cement manu-
facturers and clients (oil companies) for
whom cement quality control work is also
now being done on a regular basis. CEMQUEST

is able to save about $3 to $5 million a year
for each client through its ability to detect
potential major operating failures before they
arise. The costs of slurry formulation are also
reduced by CEMQUEST: Rapid screening and

elimination of bad cements saves about 10
percent of the time taken by the lengthy pro-
cess of formulation optimization. This sav-
ings translates to about $1000 a week for each
formulation in routine laboratory testing.

We expect additional benefits to arise in
time for at least two reasons: The first reason
will be as a result of the buildup of a larger ce-
ment database, extending the domain of va-
lidity of the existing neural network models
(which will require periodic retraining). A sec-
ond reason will be as a result of an enhanced
reputation for Schlumberger Dowell based on
the increasing reliability of its cementing jobs
through the use of the current product on a
day-to-day basis.

Application Development 
and Deployment

The development of the CEMQUEST prototype
at Schlumberger Cambridge Research was the
result of about 12 person-years of effort, be-
ginning in 1991 and ending in mid-1993.
The work involved coordinating a vast ce-
ment data-collection exercise, with samples
sent from all areas of the world in which
Dowell has cementing operations. Thus,
about 160 distinct cements, with various
physicochemical properties—chemical com-
position, particle-size distribution, FTIR spec-
tra, slurry thickening curves, and so on—had
to be recorded. The reproducibility of all
these measurements had to be investigated.
All this work required the cooperation of
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Figure 8. A Syngenite Aged Cement.
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Maintenance
Experience in the transfer of this product
from research to operations showed that the
key limitation is associated with the record-
ing of FTIR spectra in field laboratories. Ow-
ing to the large size of the database and the
technical issues involved in producing accu-
rate predictive models, all these models were
developed in our research laboratory during
1992 to 1993, using FTIR spectra recorded
there. Thus, it was of paramount importance
to ensure that FTIR cement spectra recorded
on different spectrometers in the field center
were closely coincident with the database
spectra recorded in research. Clear guidelines
for ensuring reproducible spectra had to be
laid down by the research group.

Maintenance of the software and the
database is now the responsibility of Ab-
erdeen. To date, it has not proved necessary
to update this knowledge base, owing to the
rather wide representative coverage of the
original cement data. However, data are being
kept on all significant outlier cements detect-
ed by the reliability flag within the current AI
system. Predictions of the physicochemical
and performance properties of such outlier
cements cannot be made reliably using the
existing database; so, at a future stage, their
measured FTIR spectra and performance
properties will be added to supplement the
data set. When an addition is made, new
ANN and other models will also need to be
constructed and validated. This activity will
be carried out entirely in Aberdeen on a peri-
odic basis. 

Summary and Conclusions
Using ANNs and conventional statistical
methods, we showed that the information in
the FTIR powder spectra of cements can be
used to predict composition, particle-size dis-
tributions, and thickening-time curves for
simple slurries. This discovery has established
the FTIR measurement as a signature for ce-
ment performance. The measurement can be
used as a rapid technique to estimate cement
quality and detect batch-to-batch variability
in cements. Specific case studies have demon-
strated that the product can detect batch-to-
batch variability between manufacturers as
well as aging and contamination of a given
cement. Thus, it is capable of preventing the
occurrence of costly major operating failures
in oil-field cementing operations. Under the
name of CEMQUEST, the application is finding
successful commercial application use in the
oil field.

many colleagues in our product center (then
in St Etienne, France) and in Aberdeen. In ad-
dition, some of the chemical-analysis work
was performed externally at low cost. The
samples needed careful storage in the absence
of moisture and carbon dioxide to prevent al-
teration of cement properties with time be-
cause these substances are readily absorbed
by cement powders. The end result was a sub-
stantial cement database that was used for de-
veloping the final neural network models. 

While data were being acquired, approxi-
mately three person-years of effort were de-
voted to an investigation of the feasibility of
cement-quality estimation using FTIR spectra
linked to thickening-time curves. The initial
aim was to establish whether any of the ce-
ment data could reliably be used for such pre-
dictive purposes. When it was decided possi-
ble in late 1991 and early 1992, the target was
to demonstrate that the same could be
achieved on the basis of the single and easily
performed FTIR powder measurement. The
feasibility of this process was fully confirmed
in late 1992 and opened the way to a com-
mercially viable product. During 1993, about
one person-year’s effort was assigned to the
development of the basic MATLAB code for
transfer to Aberdeen in mid-1993. One of the
authors was transferred to Aberdeen to ensure
correct technical implementation of the
product and prepare for its commercializa-
tion. This transfer was seen as important to
guarantee a successful future for the product
because at that site, there was previously only
limited expertise in the recording and inter-
preting of FTIR spectra.
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Figure 9. Thickening-Time Curve Predictions for a Rogue Oil-Field Cement.

0

20

40

60

80

100

0 200 400

Time / Minutes

C
on

si
st

en
cy

 /
 B

c 
 

Rogue API 
Cement

Averaged API 
Cement

2 



Acknowledgments
PVC is grateful to Reid Smith for helpful com-
ments and advice made during the prepara-
tion of this article.

References
American Petroleum. 1982. API Spec 10: Materials
and Testing for Well Cements. Dallas: American
Petroleum Institute.

Beebe, K. R., and Kowalski, B. R. 1987. An Introduc-
tion to Multivariate Calibration and Analysis. Ana-
lytical Chemistry 59:1007A.

Bensted, J., and Beckett, S. J. 1993. Advances in Ce-
ment Research 5:111.

Billingham, J., and Coveney, P. V. 1993. Journal of
the Chemical Society: Faraday Transactions 89:3021.

Coveney, P. V., and Humphries, W. 1996. Journal of
the Chemical Society: Faraday Transactions 92:831.

Fierens, P., and Verhagen, J. P. 1972. Journal of the
American Ceramic Society 55:306.

Fletcher, P., and Coveney, P. V. 1996. Predicting Ce-
ment Composition and Performance with Artificial
Neural Networks and FTIR Spectroscopy. The Amer-
ican Institute of Chemical Engineering Journal. Forth-
coming.

Fletcher P., and Coveney, P. V. 1995. Advanced
Cement Based Materials 2:21.

Fletcher P.; Coveney, P. V.; Hughes, T.; and
Methven, C. M. 1995. Journal of Petroleum Technolo-
gy 47:129.

Hughes, T. L.; Methven, C. M.; Jones, T. G. J.; Pel-
ham, S. E.; Fletcher, P.; and Hall, C. 1995. Advanced
Cement-Based Materials 2:91.

Hughes, T. L.; Methven, C. M.; Jones, T. L. H; Pel-
ham, S. E.; Vidick, B.; and Fletcher, P. 1994. Rapid
Cement Quality Control Method for Improved
Oilfield Cementing. Paper presented at the Off-
shore Technology Conference, 2–5 May, Houston,
Texas.

Hunt, L. P. 1986. Cement and Concrete Research
16:190.

Hush, D. R., and Hornee, B. G. 1993. Progress in
Supervised Neural Networks. IEEE Signal Processing
Magazine 10:8.

Lippmann, R. P. 1987. An Introduction to Comput-
ing with Neural Nets. IEEE Signal Processing Maga-
zine 4:4. 

Martens, H., and Naes, T. 1989. Multivariate Calibra-
tion. Chichester, U.K.: Wiley.

Masters, T. 1993. Practical Neural Network Recipes in
C++. San Diego, Calif.: Academic.

Moody J., and Darken, C. J. 1989. Neural Computa-
tion 1:281.

Moody, J., and Darken, C. J. 1988. Learning with
Localized Receptive Fields. In Proceedings of the
1988 Connectionist Models Summer School, eds. A. N.
Touretzky, G. Hinton, and T. Sejnowski, 133. San
Francisco, Calif.: Morgan Kaufmann.

Rumelhart, D. E., and McClelland, J. J., eds. 1986.
Parallel Distributed Processing: Explorations in the Mi-

crostructure of Cognition, Volume 1. Cambridge,
Mass.: MIT Press.

Sharf, M. A.; Illman, D. L.; and Kowalski, B. R.
1986. Chemometrix. New York: Wiley Interscience.

Peter Coveney is a senior scien-
tist at the Schlumberger Cam-
bridge Research Laboratory, Unit-
ed Kingdom. He holds a B.A., an
M.A., and a D.Phil. from Oxford
University. Before joining
Schlumberger Cambridge Re-
search, he was a lecturer in physi-
cal chemistry at the University of

Wales, a junior research fellow at Oxford Universi-
ty, and a visiting fellow at Princeton University. He
also currently holds a visiting fellowship at Wolf-
son College, Oxford University, in theoretical
physics. Coveney is the coauthor of two books, The
Arrow of Time (Ballantine, 1991) and Frontiers of
Complexity (Ballantine, 1995), both with Roger
Highfield.

Philip Fletcher is a senior scien-
tist and section head at Schlum-
berger Dowell Europe-Africa Tech-
nology Center in Aberdeen,
Scotland. He holds a B.Sc. in
chemistry and a Ph.D. in physical
chemistry. Before joining Schlum-
berger Cambridge Research in
1984, he held research fellow-

ships at Oxford University, the University of Cali-
fornia, and the City University London. He has re-
searched in theoretical physical chemistry, solution
chemistry, mineral chemistry, colloid chemistry,
and applications of statistics. His current work is in
product development and field support. Fletcher is
also the author of an undergraduate textbook in
geochemical thermodynamics.

Trevor Hughes is a research sci-
entist at the Schlumberger Cam-
bridge Research Laboratory, Unit-
ed Kingdom, where he has
worked since 1985. He obtained a
B.Sc. in geochemistry from the
University of Liverpool and an
M.Sc. in mineral chemistry from
the University of Birmingham.

Hughes began his career in the precious metals
mining and refining industry. He holds 5 U.S.
patents concerning techniques for monitoring the
composition of oil-field drilling fluids and has pub-
lished 17 scientific papers.

Articles

WINTER 1996   53



54 AI MAGAZINE

Diagrammatic Reasoning
Cognitive & Computational Perspectives
Edited by Janice Glasgow, N. Hari Narayanan, and B. Chandrasekaran

Foreword by Herbert Simon

ISBN 0-262-57112-9  800 pp., index. $50.00 softcover

The AAAI Press • Distributed by The MIT Press
Massachusetts Institute of Technology, Cambridge, Massachusetts 02142

To order, call toll free: (800) 356-0343 or (617) 625-8569. MasterCard and VISA accepted.

“Understanding diagrammatic thinking will be of special importance to those who design human-computer
interfaces, where the diagrams presented on computer screens must find their way to the Mind’s Eye.… In a
society that is preoccupied with ‘Information Superhighways,’ a deep understanding of diagrammatic rea-
soning will be essential to keep the traffic moving.”  – Herbert Simon

Diagrammatic reasoning—the understanding of concepts and ideas by the use of diagrams and imagery, as op-
posed to linguistic or algebraic representations—not only allows us to gain insight into the way we think but is a
potential base for constructing representations of diagrammatic information that can be stored and processed by
computers.

Diagrammatic Reasoning brings together nearly two dozen recent investigations into the cognitive, the logical, and
particularly the computational characteristics of diagrammatic representations and the reasoning that can be done
with them. Following a foreword by Herbert Simon (coauthor of one of the most influential papers on reasoning
with diagrams, which is included here) and an introduction by the editors, chapters provide an overview of the
recent history of the subject, survey and extend the underlying theory of diagrammatic representation, and pro-
vide numerous examples of diagrammatic reasoning (human and mechanical) that illustrate both its powers and
its limitations. Each of the book’s four sections begins with an introduction by an eminent researcher who pro-
vides an interesting personal perspective while  he or she places the work in proper context. 




