
■ LOLA won the Office Cleanup event at the 1995
Robot Competition and Exhibition, held as part
of the Fourteenth International Conference on
Artificial Intelligence. The event called for a robot
to pick up trash in an unstructured environment
and sort it such that the recyclable trash winded
up in the recycle bin and the regular trash in the
trash bin. The only allowable information lola
was given beforehand were model-based descrip-
tions of the trash and recyclables, which it locat-
ed using color vision. Much of LOLA’s success can
be attributed to the simple, fast algorithms and
methods that also model sensor uncertainty. The
ideas and design philosophy that went into LOLA

borrow heavily from those of previous competi-
tors—to which we are greatly indebted. These
methods and ideas are discussed here.

My teammate, Ricardo Gutierrez-
Osuna, had just finished event 1 and
was moving LOLA out of the competi-

tion ring using the joystick. I had been at the
workstation in case LOLA needed a restart, but
I could tell by the look on Ricardo’s face that
LOLA had performed well. He gave me a
thumbs up, and it was confirmed. I returned
with an enthusiastic two thumbs.

There had been considerable talk about
“demo-itis” and Murphy’s Law while we pre-
pared for the competition. “It might work
well now but wait until a hundred or so peo-
ple are watching. Then you’ll know what I’m
talking about...” or so we had been told by
past competitors. But the first event was over,
and Murphy was nowhere to be found. My
head began to fill with gushy thoughts about
the joys of robotics. Yep, today was Murphy’s
day off.

Ricardo handed me the joystick. I looked at
my watch and saw that we had three hours
until we were up for event 2—plenty of time

for a quick test of things and then maybe a
bite to eat. I look at LOLA’s console and see an
unfamiliar message. What’s this? Bad hard-
drive sector?

A week ago I had asked someone after I had
made hard-drive backups, “Do people crash
hard drives these days?” He hadn’t heard of
anyone recently but told me a story about a
guy who had dropped his drive on the kitchen
floor—but that was years ago.

I was thinking to myself as LOLA rebooted,
“Heh heh, what are the chances of our hard
drive crashing on the day of the competition
finals?” After a few more tests, it was con-
firmed: LOLA’s hard drive had decided to crash
at the worst possible time. The irony of the
situation was overwhelming. “I hate robotics,”
I said aloud. I really meant it too.

Of course, we were happy that LOLA went
on to win event 2 (it was awfully close). We’ll
talk more about the problems we encoun-
tered, the solutions we imposed, the people
we’d like to thank, and that mysterious phe-
nomenon called demo-itis—because after the
competition, there was no other logical expla-
nation. In all fairness, though, LOLA did a pret-
ty good job of picking up trash—we’ll talk
about that too.

Hardware
LOLA is a NOMAD 200 with a standard sonar
ring and tactile bumper sensors. Figure 1
shows LOLA holding a Coke can with its fork-
liftlike arm and gripper from Nomadic Tech-
nologies. Because the arm is in the rear, it
doesn’t obstruct any frontal sensors (for
example, sonar, vision, bumpers) and is safe
from collision during forward motion. We
took advantage of the Nomad’s modularity
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ning in parallel. Performing all computation
on board has several advantages: The video
data are not corrupted by radio-transmission
noise, commands are not lost, and there’s no
communication lag that might result in LOLA

crashing into things. These findings are con-
sistent with those of previous competitors
(Nourbakhsh, Powers, and Birchfield 1995).
On the down side, the on-board image pro-
cessor contributes significantly to the battery
drain, which is partly the result of its intend-
ed desktop use. Still, we are able to get about
two hours of operation to each charge.
Nomadic Technologies is currently making
efforts to offer a version that is better suited
for mobile robot use.

Software Architecture
To keep things simple, we reasoned that the
operations for performing trash pickup can
be described by a state machine. Unlike the
first event, state estimation is not critical; if
the robot gets confused, it can always aban-
don what it is doing currently and resort to
looking for another piece of trash. Figure 2
conveys the basic idea of LOLA’s state
machine:

Locate locates either trash or
receptacles in the image.

Turn turns LOLA toward the
object once the trash or receptacle is
located.

Pursue heads LOLA straight toward
the trash or receptacle.

Pickup turns LOLA around and
grasps the trash.

Deposit turns LOLA around and
deposits the trash.

Avoid causes LOLA to attempt to
avoid the obstacle and continue with
Pursue after the obstacle is successfully
avoided if an obstacle is detected by
sonar during Pursue. 

Wander is used if LOLA cannot find
trash or receptacles. 

The idea is that if a robot can accomplish
these basic tasks well, it can perform trash
pickup in an unstructured environment.
LOLA’s state of mind never extends beyond a
single piece of trash at a time; so, there is no
provision for path planning around trash that
is in the way of other trash. To compensate
for the trash that inevitably gets knocked
over as a result, LOLA relies on the ability to
pick up trash on its side. Thus, LOLA doesn’t

and moved three of the rear sonar sensors to
the front, just above the bumper. This
arrangement provided LOLA with the ability to
sense chairs and other potential obstacles
that might otherwise be unseen.

LOLA’s main processor is a 486DX2-66 run-
ning LINUX (UNIX). The combination of LINUX

and radio Ethernet makes code development
on LOLA a real joy. That is, from any worksta-
tion on the network (including the Internet),
we can telnet to LOLA and export the display
for developing, debugging, and executing
code while we monitor LOLA’s status during
operation, which beats having to wheel
around a terminal and an extension cord.
The idea is to do all the development without
leaving your chair.

The vision hardware consists of an on-
board image processor and a single RGB (red,
green, blue) camera mounted on a pan-tilt
unit. LOLA’s image processor was purchased
from Traquair Data Systems and is blessed
with two C40 digital signal processors run-
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Figure 1. LOLA (NOMAD 200).



need to retain much information about the
environment. Only the relative locations of
recently visited receptacles are retained to
help locate them more quickly.

In addition to this framework are (1) a
vision algorithm that locates trash and recep-
tacles and (2) an estimation algorithm that
provides the position estimate of these
objects. We reason that if LOLA can construct
an accurate position estimate of the trash and
receptacles, the manipulation task (picking up
and depositing) becomes easy. That is, the
position estimate tells LOLA when to stop dur-
ing Pursue and exactly where to place the
gripper for Pickup and Deposit. Additionally,
during Avoid, the position estimate is used to
perform a goal-directed avoidance behavior.
Once the obstacle is successfully avoided, the
trash or receptacle can be reacquired in the
image by mapping the position estimate to
the image plane. Thus, obstacles that occlude
the goal won’t confuse LOLA once they are
avoided. However, during the competition,
no obstacles were encountered, and Avoid

wasn’t used. This ability was demonstrated
during the exhibition.

LOLA uses color-histogram back projection
(Swain and Ballard 1991) to locate trash and
receptacles.1 The algorithm is inexpensive and
does a good job of locating targets in an
image, simply given the target’s color his-
togram. More specifically, it provides the cen-
troid location in the image of the best candi-
date (the candidate that forms the best
model-based match). For the competition, we
used three types of trash: (1) orange soda cans
and (2) lime soda cans for recyclable trash and
(3) paper Coke cups for regular trash. Colored
markers were placed around the bottom of
the receptacles: Yellow indicated recyclable
trash, and pink indicated regular trash. Dur-
ing Locate, LOLA refers to a database of color-
histogram models, containing all trash and
receptacle objects, to locate specified objects.

Various methods are used to speed up
Locate, which tends to be the most time con-
suming and boring to watch. To locate trash,
for example, the trash histograms are merged
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centroid of the target was in the previous
frame. The resulting algorithm controls the
placement of the ROI in the image such that
it tracks the target regardless of the camera
motion (or target motion, for that matter). Of
course, the target’s image velocity must be
kept below a maximum, but in practice, this
technique works well for stationary objects
and camera motion induced by normal robot
movement. This technique borrows some
basic ideas from the active vision community
(Ballard 1991; Aloimonos 1990).

The combination of these simple, fast algo-
rithms makes visual serving possible. For exam-
ple, during Pursue, some method must be used
to actively control the robot heading to the tar-
get. LOLA simply uses a proportional-derivative
compensator to compensate for the difference
between the target centroid and the center pix-
el column on the image plane. To give an idea
of how simple this process is, implementing
this in C takes less than 15 lines of code.

into a single histogram by summing them up
binwise. The merged histogram is used to
quickly find generic trash candidates (as
opposed to single types of trash) in the image.
A voting algorithm then identifies the trash
by choosing the trash model with the most
votes. Determining the type of trash (regular
or recyclable) is then a simple lookup.

Once the trash is identified, a smaller
square region of interest (ROI) is formed in
the image closely surrounding the trash can-
didate. Back projection is then applied to the
ROI using the model histogram with the
most votes. For trash targets, the reduced ROI
is typically 100 by 100 pixels, which greatly
boosts the computation speed. For example,
LOLA’s image-processing hardware is able to
perform back projection on an image this size
at about 15 frames a second. At this rate, we
can reasonably assume that the target will
not move far in the image between successive
frames while the robot is moving. This
assumption allows us to perform simple tar-
get tracking by centering the ROI where the
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The Estimation Algorithm
In addition to actively controlling the head-
ing during Pursue, LOLA simultaneously esti-
mates the position of the target by using the
centroid measurements and the camera
motion inferred from the wheel encoders.

Figure 3 illustrates this idea. That is, we are
only interested in the position of the target in
the plane normal to the ground that contains
the target, the camera focal point, and the
line of pursuit. It is assumed, for example,
that an accurate position estimate of a trash
target within this plane is all that is needed
to fully specify the placement of the gripper
for physical pickup. Of course, the assump-
tion requires that the heading error be small
immediately before LOLA turns around to grab
the trash. In practice, the heading error never
exceeds two degrees, which was apparent in
the competition when LOLA would pick up
trash oriented on its side. In this case, there
was only one inch of tolerance on each side
of the forklike gripper before it closed.

Derivation
The algorithm assumes pinhole camera
dynamics with focal length f. Because we are
only estimating within a plane, we only need
to consider the centroid measurement in one
dimension on the image plane, calling this
dimension v:

. (1)

Here, vT is the noiseless projection of the tar-
get centroid onto the image plane, and xT

and yT are the x and y coordinates of the tar-
get in the estimation plane. Next, we assume
that the centroid measurements (vc) from the
back-projection algorithm are corrupted by
Gaussian noise, which implies the condition-
al distribution:

. (2)

For simplicity, we divide equation 1 through
by f and introduce sc, which is the slope of
the measured centroid line. We now rewrite
equation 2 with the pinhole assumption and
introduce a new term, xc, which is the posi-
tion of the camera along the x axis:

. (3)

Thus, we have expressed each centroid mea-
surement as a conditional distribution with
conditioning set {xT, yT}. That is, given any
target location, equation 3 describes the prob-

ability density function (PDF) of sc, and eval-
uating the PDF at a measurement value gives
us the probability of measuring the value
under the target position hypothesis. Howev-
er, what we really want is a bivariate distribu-
tion of the target in the estimation plane giv-
en all the previous centroid measurements.

Applying Bayes’s rule and assuming condi-
tional independence between slope measure-
ments, we get the product form

, (4)

where

.

It is assumed that βk is constant as xT and yT

are varied. Combining equations 3 and 4, we
get the bivariate distribution of the target
within the estimation plane given all previ-
ous measurements: 

. (5)

Here, sj and xCj are the slope and camera posi-
tion measurements at time j, respectively. For
convenience, we create a cost function, 
Ck(xT, yT), as follows:

. (6)

Because ψ < 0, if we minimize Ck(xT, yT), we
maximize equation 5. Thus, min Ck(xT, yT)
provides x^T and y^T, which are the maximum
likelihood estimate of the target position.
Notice that equation 5 describes the shape of
the bivariate probability distribution around
the estimate scaled with the constant γk.

Additionally, it is simple to calibrate a cam-
era for use of this estimation technique. Rec-
ognizing that each measurement is a slope
value in the estimation plane, all that is
required for calibration is a mapping from
each pixel in the v dimension on the image
plane to a corresponding slope value in the
estimation plane. In practice, this mapping
can be created by placing markers in front of
the camera, measuring each marker’s yM / xM

value (M denotes marker) and its projection
onto the image plane, and creating a lookup
table that describes the mapping. By placing
80 pieces of tape on the floor in front of the
camera and linearly interpolating between
their projections on the image plane, our
camera was calibrated in an afternoon
(LeGrand 1995). Thus, none of the intrinsic
parameters of the camera have to be recov-
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and LeGrand (1995) describes quick methods
for recovering both xT and yT estimates simul-
taneously.

Recovering the probability information in
equation 5 requires a little trick because we
don’t know the normalizing constant, γk, but
we’ve presumably found x^T, which is the
maximum of equation 5 within the ground
plane. By evaluating equation 5 at xT, = x^T,
and yT = yground, we obtain the relative–maxi-
mum-likelihood value we call Pmax. We can
then proceed to evaluate equation 5 for sever-
al values by moving along yT = yground in each
direction from x^T and noting where the rela-
tive-probability value drops below a certain
percentage of Pmax (say, 10 percent). This eval-
uation gives a good idea of the upper and
lower bounds of the estimate. Figure 4
demonstrates this idea by showing the upper

ered, and deterministic biases are kept to a
minimum. Although this calibration method
cannot claim to be accurate to much less
than one pixel, higher accuracy is not needed
because the back-projection centroid mea-
surements typically have many more pixels
of noise (five pixels of noise are not unrea-
sonable).

Applying the Estimator
For the competition, we took advantage of
the fact that all the trash was on the ground
and applied a ground-plane assumption. This
assumption meant fixing yT = yground in equa-
tion 6 and minimizing equation 6 with
respect to xT by using a golden-sectioning
optimization algorithm to give the most like-
ly estimate, x^T. In general, however, the
ground-plane assumption is not necessary,

Articles

68 AI MAGAZINE

0 10 20 30 40 50 60
82

84

86

88

90

92

94

96

98

# Measurements

D
ep

th
 E

st
im

at
e 

(in
)

Best

Upper Bound

Lower Bound

Figure 4. Position Estimate Convergence.



and lower bounds of the maximum- likeli-
hood estimate converging as more measure-
ments are taken. This plot was generated
using measurements collected from LOLA

while it pursued a Coke can.
The rationale for all this mess is that a posi-

tion estimate by itself is not useful, but a
position estimate combined with probabilis-
tic information (in this case, an upper- and a
lower-bound metric) can be used by a robot
to make intelligent decisions. For trash pick-
up, the probabilistic information can be used
to determine whether the estimate is good
enough to perform a successful grasp. The
robot might then decide to take more mea-
surements, for example, or give up and look
for another piece of trash. Unfortunately (or
fortunately), at the competition, the esti-
mates were all good enough, and LOLA never
used the probabilistic information in this
way. However, picking up Coke cans on our
wooden lab floor is a different story because
the back-projection algorithm occasionally
confuses parts of the reddish wood for Coke
cans. However, this confusion isn’t a problem
because the misidentified floor tends to have
much noisier centroid measurements, which
result in poorly converged position estimates.
Thus, the problem can be caught before LOLA

tries to pick up a “phantom” Coke can.
Many of these ideas were inspired by last

year’s winning team from Stanford Universi-
ty, which approached the problem of robot
navigation by modeling the sensor uncertain-
ty and retaining the relative uncertainty of
the robot’s many possible states (Nourbakhsh,
Powers, and Birchfield 1995). By assuming
that it’s in the most likely state and making
decisions based on this assumption, the robot
was able to make intelligent decisions on
how to proceed. The previous estimation
algorithm borrows these same ideas. The key
to this technique is modeling the uncertainty
of the robot’s sensors because they are, after
all, uncertain devices.

“Demo-itis”
Unfortunately, LOLA had more in store for us
after we settled the hard-drive problem. LOLA

had performed well during the preliminaries,
with the exception of a single-gripper failure.
This failure happened, as Murphy’s Law dic-
tates, at the worst possible time—when every-
one was watching. LOLA was about to pick up
the first piece of trash when the gripper sim-
ply locked up. I was forced to move LOLA,
using the joystick, out of the competition
ring in shame while it was frozen in a ridicu-

lous about-to-pick-up-trash position. After-
wards, I couldn’t reproduce the error. I
changed some stuff that I thought might be
causing it and kept my fingers crossed going
into the final, but as one might expect, the
same problem occurred three times during
the final. Fortunately, I had prepared a plan
of action in case it did happen again and was
able to recover LOLA after each occurrence and
scrape by with enough points for the win.

We ran debugging runs off and on for two
weeks after the competition and couldn’t
reproduce a single reoccurrence of the error.
It wasn’t until a photographer came out to
take some pictures of LOLA that we reproduced
the error and pinpointed its cause.

The gripper has infrared sensors that indi-
cate when the gripper has opened or closed
beyond its limits of travel. To prevent possi-
ble damage, the controller shuts down any
axis that registers a limit sense. During the
competition, photoflashes from cameras and
infrared emitted from auto-focus mechanisms
contained enough intensity to confuse the
gripper controller into thinking that the grip-
per had reached a limit and should shut
down.2 The software didn’t account for this
situation and waited patiently for the gripper
to finish its business, which it never did.

Unfortunately for LOLA, the most prime
photo and video opportunities were when
LOLA was picking up and depositing
trash—which involves opening and closing
the gripper. It’s funny to think that the grip-
per was being bombarded with infrared exact-
ly when and where it was most vulnerable.
This problem has since been remedied in the
latest revision of the NOMAD arm by using
mechanical limit switches.
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Notes
1. Ironically, the author of this widely used algo-
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