
■ In its early stages, the field of AI had as its main
goal the invention of computer programs having
the general problem-solving abilities of humans.
Along the way, a major shift of emphasis devel-
oped from general-purpose programs toward per-
formance programs, ones whose competence was
highly specialized and limited to particular areas
of expertise. In this article, I claim that AI is now
at the beginning of another transition, one that
will reinvigorate efforts to build programs of gen-
eral, humanlike competence. These programs will
use specialized performance programs as tools,
much like humans do.

Over 40 years ago, soon after the birth
of electronic computers, people began
to think that human levels of intelli-

gence might someday be realized in computer
programs. Alan Turing (1950) was among the
first to speculate that “machines will eventu-
ally compete with men in all purely intellec-
tual fields.” Allen Newell and Herb Simon
(1976) made this speculation more crisp in
their physical symbol system hypothesis: “A
physical symbol system [such as a digital
computer] has the necessary and sufficient
means for general intelligent action” (empha-
sis mine). In its early stages, the field of AI
had as its main goal the invention of comput-
er programs having the general problem-solv-
ing abilities of humans. One such program
was the GENERAL PROBLEM SOLVER (GPS) (Newell,
Shaw, and Simon 1960), which used what
have come to be called weak methods to
search for solutions to simple problems.

Diversions from the Main Goal
Many of the early AI programs dealt with toy
problems, puzzles and games that humans
sometimes find challenging but that they can
usually solve without special training. When
these early AI techniques were tried on much
more difficult problems, it was found that the
methods did not scale well. They were not

sufficiently powerful to solve large problems
of real-world consequence. In their efforts to
get past the barrier separating toy problems
from real ones, AI researchers became
absorbed in two important diversions from
their original goal of developing general,
intelligent systems. One diversion was toward
developing performance programs, ones whose
competence was highly specialized and limit-
ed to particular areas of expertise. Another
diversion was toward refining specialized
techniques beyond those required for general-
purpose intelligence. In this article, I specu-
late about the reasons for these diversions
and then describe growing forces that are
pushing AI to resume work on its original
goal of building programs of general, human-
like competence.

The Shift to 
Performance Programs

Sometime during the 1970s, AI changed its
focus from developing general problem-solv-
ing systems to developing expert programs
whose performance was superior to that of
any human not having specialized training,
experience, and tools. A representative perfor-
mance program was DENDRAL (Feigenbaum et
al. 1971). Edward Feigenbaum and colleagues
(1971, p. 187), who are credited with having
led the way toward the development of
expert systems, put it this way:

General problem-solvers are too weak to
be used as the basis for building high
performance systems. The behavior of
the best general problem-solvers we
know, human problem solvers, is
observed to be weak and shallow, except
in the areas in which the human prob-
lem-solver is a specialist.

Observations such as these resulted in a
shift toward programs containing large bodies
of specialized knowledge and the techniques
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much beyond what I think are required by
general, intelligent systems. I’ll give some
examples.

Let’s look first at automatic planning. It is
clear that a general, intelligent system will
need to be able to plan its actions. An exten-
sive spectrum of work on automatic planning
has been done by AI researchers. Early work
was done by Newell, Shaw, and Simon (1960);
McCarthy and Hayes (1969); Green (1969);
and Fikes and Nilsson (1971). These early pro-
grams and ideas were clearly deficient in
many respects. While working on one part of
a problem, they sometimes undid an already
solved part; they had to do too much work to
verify that their actions left most of their sur-
roundings unchanged; and they made the
unrealistic assumption that their worlds
remained frozen while they made their plans.
Some of the deficiencies were ameliorated by
subsequent research (Sacerdoti 1977; Tate
1977; Waldinger 1977; Sussman 1975).
Recent work by Wilkins (1988), Currie and
Tate (1991), and Chapman (1987) led to quite
complex and useful planning and scheduling
systems. Somewhere along this spectrum,
however, we began to develop specialized
planning capabilities that I do not think are
required of a general, intelligent system. After
all, even the smartest human cannot (with-
out the aid of special tools) plan missions for
the National Aeronautics and Space Adminis-
tration or lay out a factory schedule, but
automatic planning programs can now do
these things (Deale et al. 1994; Fox 1984).

Other examples of refinement occur in the
research area dealing with reasoning under
uncertainty. Elaborate probabilistic reasoning
schemes have been developed, and perhaps
some of these computational processes are
needed by intelligent systems. What I think is
not needed (to give just one example) is a
dynamic programming system for calculating
paths of minimal expected costs between
states in a Markov decision problem, yet
some high-quality AI research is devoted to
this and similar problems (which do arise in
special settings). More examples exist in sev-
eral other branches of AI, including automat-
ed theorem proving, intelligent database
retrieval, design automation, intelligent con-
trol, and program verification and synthesis.

The development of performance programs
and refined techniques has focused AI
research on systems that solve problems
beyond what humans can ordinarily do. Of
course, a program must be equipped with the
skills and knowledge that it truly needs in its
area of application. What I am arguing for

required to deploy this knowledge. The shift
was very fruitful. It is estimated that several
thousand knowledge-based expert systems are
used in industry today. The American Associ-
ation for Artificial Intelligence (AAAI) spon-
sors an annual conference entitled Innovative
Applications of Artificial Intelligence, and the
proceedings of these conferences give ample
evidence of AI’s successes.1 I won’t try to
summarize the application work here, but the
following list taken from a recent article in
Business Week (1992) is representative of the
kinds of programs in operation:

Shearson Lehman uses neural networks to
predict the performance of stocks and bonds.

Merced County in California has an expert
system that decides if applicants should
receive welfare benefits. 

NYNEX has a system that helps unskilled
workers diagnose customer phone problems.

Arco and Texaco use neural networks to
help pinpoint oil and gas deposits deep below
the earth’s surface.

The Internal Revenue Service is testing soft-
ware designed to read tax returns and spot
fraud.

Spiegel uses neural networks to determine
who on a vast mailing list are the most likely
buyers of its products.

American Airlines has an expert system
that schedules the routine maintenance of its
airplanes.

High-performance programs such as these
are all very useful; they are important and
worthy projects for AI, and undoubtedly, they
have been excellent investments. Do they
move AI closer to its original, main goal of
developing a general, intelligent system? I
think not. The components and knowledge
needed for extreme specialization are not
necessarily those that will be needed for gen-
eral intelligence. Some medical diagnosis pro-
grams, for example, have expert medical
knowledge comparable to that of human
physicians who have had years of training
and practice (Miller et al. 1982). However,
these doctors were already far more intelli-
gent—generally, before attending medical
school—than the best of our AI systems. They
had the ability then to acquire the knowledge
that they would need in their specialty—an
ability AI programs do not yet have.

Ever-More–Refined Techniques
In parallel with the move toward perfor-
mance programs, AI researchers working on
techniques (rather than on specific applica-
tions) began to sharpen these techniques
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here is that these skills and knowledge bases
be regarded as tools—separate from the intelli-
gent programs that use them. It is time to
begin to distinguish between general, intelli-
gent programs and the special performance
systems, that is, tools, that they use. AI has for
many years now been working mainly on the
tools—expert systems and highly refined tech-
niques. Building the tools is important—no
question. Working on the tools alone does
not move us closer to AI’s original goal—pro-
ducing intelligent programs that are able to
use tools. Such general programs do not need
to have the skills and knowledge within them
as refined and detailed as that in the tools
they use. Instead, they need to be able to find
out about what knowledge and tools are avail-
able to match the problems they face and to
learn how to use them. Curiously, this view
that general intelligence needs to be regarded
as something separate from specialist intelli-
gence was mentioned in the same paper that
helped to move the field toward concentrat-
ing on special intelligence. Feigenbaum and
his colleagues (1971, p. 187) said:

The “big switch” hypothesis holds that
generality in problem solving is achieved
by arraying specialists at the terminals of
a big switch. The big switch is moved
from specialist to specialist as the prob-
lem solver switches its attention from
one problem area to another. […The
kinds of problem-solving processes, if
any, which are involved in “setting the
switch” (selecting a specialist) is a topic
that obviously deserves detailed exami-
nation in another  paper.]

Unfortunately, work on setting the switch
(if, indeed, that’s what is involved in general
intelligence) has been delayed somewhat. The
same authors, however, did go on to give
some recommendations, which seem to me
to be still quite valid (Feigenbaum, Bucha-
nan, and Lederberg 1971, p. 189):

The appropriate place for an attack on
the problem of generality may be at the
meta-levels of learning, knowledge trans-
formation, and representation, not at
the level of performance programs. Per-
haps for the designer of intelligent sys-
tems what is most significant about
human general problem-solving behav-
ior is the ability to learn specialties as
needed—to learn expertness in problem
areas by learning problem-specific
heuristics, by acquiring problem-specific
information, and by transforming gener-
al knowledge and general processes into
specialized forms.

Some Reasons for the Diversions
There are several reasons why AI has concen-
trated on tool building. First, the problem of
building general, intelligent systems is very
hard. Some have argued that we haven’t
made much progress on this problem in the
last 40 years. Perhaps we have another 40
years ahead of us before significant results
will be achieved. It is natural for researchers
to want to achieve specific results during
their research lifetimes and to become frus-
trated when progress is slow and uneven. Sec-
ond, sponsors of AI research have encouraged
(and have often insisted on) specialized sys-
tems. After years of supporting general AI,
they understandably want a return on their
investment. The problem is that the people
who have the dollars usually have specific
problems they want solved. The dollars exist
in niches, and these niches call forth pro-
grams to fill them.

Third, many of the systems and tools that
AI has been working on have their own
intrinsic, captivating interest. A community
of researchers develops, and momentum car-
ries the pursuit of techniques into areas per-
haps not relevant to a general intelligent
agent. Exciting whirlpools always divert some
people from the mainstream. Some of the
work in theoretical AI (for example, some
nonmonotonic reasoning research) might be
of this character. Fourth, some AI leaders have
argued quite persuasively that the best route
toward AI’s main goal lies through the devel-
opment of performance systems. Edward
Feigenbaum, for example, has often said that
he learns the most when he throws AI tech-
niques against the wall of hard problems to
see where they break. It is true that many of
the early AI methods did not scale up well
and that confronting hard problems in sci-
ence, engineering, and medicine made our
methods more robust. I believe that, but I
think the hard-problem approach has now
reached the point of diminishing returns.
Throwing our techniques against yet more
(special) hard walls is now not as likely to
improve these techniques further or lead to
new and generally useful ones. (It will, of
course, result in solving additional specific
problems.) Fifth, university computer science
departments have increasingly shifted from
understanding-driven to need-driven research.
This shift has been encouraged by a number
of factors, not the least of which is the alleged
new compact between society and science in
which science is supposed to be directed more
toward national needs. Also, most university
computer science departments are in engi-
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Habile Systems
Perhaps a good adjective to describe the gen-
eral, intelligent systems I have in mind is
habile, which means having general skill. What
are some of the properties of a habile system?
Here is my list:

Commonsense knowledge and common-
sense reasoning abilities: Wide-ranging
knowledge and inference capabilities are nec-
essary for a system to be generally intelligent.
Unlike expert systems, we would expect
habile systems (using appropriate tools) to
perform reasonably, if not expertly, in a vari-
ety of situations. Of course, what we gain in
breadth, we will probably have to give up in
depth. This trade-off (applied to program-
ming languages) was nicely expressed by
Stroustrup (1994, p. 201]:2

For every single specific question, you
can construct a language or system that
is a better answer than C++. C++’s
strength comes from being a good
answer to many questions rather than
being the best answer to one specific
question.… Thus, the most a general-
purpose language can hope for is to be
“everybody’s second choice.”

The fact that a habile system will be a jack of
all trades and a master of none does not
diminish the value of such a system. It does
make it more difficult to find funding sources
for research on habile systems, however.

Access abilities: These abilities include
whatever is needed for an agent to get infor-
mation about the environment in which it
operates and to affect the environment in
appropriate ways. For robots, the access abili-
ties might include perceptual processing of
visual images and a suite of effectors. For soft-
ware agents, the access abilities might include
the ability to read e-mail messages and access
databases and computer networks.

The access abilities of habile systems that
must deal with other agents will include facil-
ities for receiving, understanding, and gener-
ating communications. Interaction with
humans will require natural language–under-
standing and natural language–generation
programs.

Autonomy and continuous existence:
Habile systems will be agents that have built-
in high-level goals (much like the drives) of
animals. They will have an architecture that
mediates between reasoning (using their
commonsense knowledge) and reflexive reac-
tions to urgent situations.

Ability to learn: Agents having a continu-
ous existence can learn from experience. New

neering colleges, which often have a very
practical outlook. Computer science itself
now seems to be more concerned with faster
algorithms, better graphics, bigger databases,
wider networks, and speedier chips than it is
with the basic problems of AI (or even with
the basic problems of computer science). AI
faculty, competing in these departments for
recognition and tenure, want to be perceived
as working on real problems—not chasing ill-
defined and far-off will-o’-the-wisps. The
importance that is attached to being able to
evaluate research results leads inevitably to
working on projects with clear evaluation cri-
teria, and typically, it’s easier to evaluate sys-
tems that do specific things than it is to evalu-
ate systems whose tasks are more general.

Finally, the arguments of those who say it
can’t be done might have had some effect.
People who know insufficient computer sci-
ence but consider themselves qualified to pro-
nounce on what is possible and what is not
have been free with their opinions (Penrose
1994, 1989; Dreyfus and Dreyfus 1985; Searle
1980). From these pronouncements has come
the distinction between strong AI and weak
AI. In the words of Searle (1980, p. 417):

According to weak AI, the principal val-
ue of the computer in the study of the
mind is that it gives us a very powerful
tool. For example, it enables us to formu-
late and test hypotheses in a more rigor-
ous and precise fashion. But according to
strong AI, the computer is not merely a
tool in the study of the mind; rather, the
appropriately programmed computer
really is a mind.

These critics acknowledge the successes of
expert systems and other AI applications,
claiming them to be examples of weak AI.
Strong AI is declared to be impossible (with
the overtone that we shouldn’t want to
achieve it anyway), and weak AI is embraced
as appropriate, doable, and socially accept-
able. Many AI researchers are willing to settle
for the goals of weak AI. The weak AI agenda
is also consistent with much of the rest of
present-day computer science, which increas-
ingly sees its mission as providing computa-
tional tools. Paradoxically, because strong AI
implies the ability to function effectively in a
variety of environments, it will most proba-
bly depend on AI’s so-called weak methods,
namely, ones that are generally useful and
unspecialized. The strong and specialized
methods, however, are used by the niche sys-
tems associated with weak AI.

Computer 
science itself

now seems to
be more 

concerned
with faster
algorithms,

better 
graphics, 

bigger
databases,
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the basic 

problems of
AI.
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demands will create new applications, and
agents must be able to learn how to solve
new problems. All the learning methods of AI
will be needed here. Habile agents must be
“informable” (Genesereth 1989). Humans
will want to give advice to them that varies in
precision from detailed instructions to vague
hints. Because so much human knowledge
exists in written form, we will want our
agents to be able to get appropriate informa-
tion from documents. These abilities also pre-
suppose natural language skills.

There is reason now to think that AI will
soon be placing much more emphasis on the
development of habile systems. I explain why
in the next section.

Some Forces Pushing Us 
toward Habile Systems

Not all the forces affecting AI are in the direc-
tion of niche systems. There have always
been good reasons to build habile systems,
but now I think there are some new
needs—just now becoming more pressing.
These new forces arise from the rapid devel-
opment of the information superhighway;
multimedia for entertainment, education,
and simulation; and the growing demand for
more flexible robots. I’ll make a few com-
ments about each of these influences.

The Information Superhighway
The exploding access to databases, programs,
media, and other information provided by
computer networks will create a huge
demand for programs that can aid the con-
sumers and producers of this information. In
the words of a Wall Street Journal article about
electronic agents (Hill 1994), “The bigger the
network and the more services on it, the
greater the potential power of agents.” All
kinds of special softbot agents (sometimes
called spiders when they inhabit the World
Wide Web) have been proposed—personal
assistants, database browsers, e-mail handlers,
purchasing agents, and so forth. Several peo-
ple are working on prototypes that aim
toward such agents (Etzioni and Weld 1994;
Maes 1994; Ball and Ling 1993). Even though
a variety of very specialized niche agents will
be built to service these demands, the casual
user will want a general-purpose personal
assistant to act as an intermediary between
him or her and all the specialized agents and
the rest of the World Wide Web. Such a per-
sonal assistant should have many of the fea-
tures of habile agents: general commonsense
knowledge, wide-ranging natural language

ability, and continuous existence. As a step in
this direction, the architecture being explored
for CommerceNet uses an agent called a facil-
itator that has quite general capabilities
(Genesereth 1994). Demand for habile per-
sonal assistants will be unceasing and grow-
ing as services available on the Internet con-
tinue to expand.

Entertainment, Education, 
and Simulation
Interactive, multimedia video art and enter-
tainment require characters that are believ-
able in their emotions and actions (Bates
1994). The human participants in these inter-
actions want characters that act and think
much like humans do. As long as such char-
acters are perceived to be simply mechanical
and easily predictable, there will be competi-
tive pressure to do better. Similar needs exist
as we develop more sophisticated educational
computer systems. On-the-job training in an
environment with customers, co-workers,
and even adversaries is an important style of
education for many occupations. To provide
real environments and their inhabitants for
purposes of training is expensive and perhaps
dangerous, and therefore, simulations and
simulated inhabitants are being used increas-
ingly. This need for realistic simulated agents
exerts continuing pressure to develop ones
with wide-ranging, humanlike capabilities.

The Requirement for More 
Flexible Robots
A recent article in The New York Times
(Holusha 1994) said that “sales are booming
for robots, which are cheaper, stronger, faster,
and smarter than their predecessors.” One
reason for the sales increase is that robots are
gradually becoming more flexible—in action
and in perception. I expect that there will be
increasing demand for flexible mobile robots
in manufacturing and construction and in
service industries. Some possible applications
include delivery vehicles, carpenters’ assis-
tants, in-orbit space station constructors,
robots that work in hazardous environments,
household robots, sentry robots, and under-
water robots. Although there will be many
niche systems (just as there are in the biologi-
cal world), cost considerations will favor
habile robot architectures that can be applied
to a variety of different tasks. I think the
main challenge in developing flexible robots
(in addition to providing those features of
habile systems already mentioned) is to inte-
grate perception, reasoning, and action in an
architecture designed especially with such
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of general physical and electromechanical
laws that would be useful to a wide variety of
different expert systems.

The Scientific Interest to Understand
How the Brain Works
One of the motivations for AI research all
along has been to gain insight into mental
processes. Neuroscientists, psychologists,
ethologists, cognitive scientists, and AI
researchers are all contributing their own
results and points of view to the integrated,
multilevel picture appropriate for this most
difficult scientific quest. Just as knowledge of
transistor physics alone is not adequate for an
understanding of the computer, so also neu-
roscience must be combined with higher-lev-
el concepts, such as those being investigated
by AI researchers, to fill out our picture of
mental functioning. The steadily accumulat-
ing body of knowledge about neural process-
es will add to the urgency of understanding
how the higher-level processes combine with
the others to form a mind.

Even within AI, several approaches are
being followed by people whose main inter-
est is the scientific study of mental function-
ing. There is what might be called the animat
approach (Wilson 1991), which holds that AI
should concern itself first with building sim-
ple, insectlike artifacts and gradually work its
way up the evolutionary scale (Brooks 1991).
Whatever one might believe about the long-
range potential for this work, it is contribut-
ing significantly to our understanding of
building autonomous systems that must
function in a variety of complex, real envi-
ronments and, thus, reinforces the trend
toward habile systems. Such work also pro-
vides a base that arguably might be necessary
to support higher cognitive functions.

At a distinctly higher level is the work on
SOAR (Laird et al. 1987), an architecture for
general intelligence that is aimed at modeling
various cognitive and learning abilities of
humans. It is interesting to note that even
with these general goals, the SOAR architecture
can be specialized to function as an expert
system for the configuration of computer sys-
tems as well as for a number of other special-
ized tasks (Pearson et al. 1993; Rosenbloom et
al. 1985). At a similarly high level is an at-
tempt to duplicate in computer agents some
of the stages of Piagetian learning (Drescher
1991).

All these efforts are directed at understand-
ing the common mechanisms in naturally
occurring, biological individuals. The scientif-
ic quest to understand them will never cease

integration in mind. Several such general-
purpose robot architectures are being
explored, including one I am currently work-
ing on (Benson and Nilsson 1995).

These factors will combine with those that
have existed for quite some time. To name
just a few of these longer-standing factors,
there is still a need for more versatile natural
language–processing systems, more robust
expert systems, and computational models of
human and animal intelligence.

Natural Language Processing
Several important applications require more
general and competent natural language abil-
ities. These applications include systems for
dictation; automated voice services using the
telephone system; translation between differ-
ent natural languages, interfaces to certain
application programs for casual users; agents
for filtering voice mail, electronic mail, and
other messages; automatic abstracting; optical
character recognition; and information-
retrieval programs. Both natural language
understanding and generation are required.
The demand for these abilities will exert an
unceasing and growing pressure to create the
knowledge bases and programs required for
general, wide-domain (we might say habile)
natural language systems. The desire for bet-
ter natural language–processing systems will
not disappear, even though the technical
problems involved are difficult and progress
on solving them is slow.

The Brittleness of Expert Systems
AI application specialists acknowledge that
the main defect of most expert systems is that
they are very brittle. Within their specialized
areas, these systems contain much more
expertise than is needed by a general, intelli-
gent system, but once off the high mesa of
their specialized knowledge, they fall to the
flat plain of complete ignorance. Worse, they
don’t even know when they are off their
mesa. These expert systems need what John
McCarthy (1990) calls commonsense—with-
out it they are idiot savants. There is growing
insistence that these programs be less brittle.
Making their knowledge cliff less steep means
extending their competence at least to semi-
hability in the areas surrounding their field of
expertise. The goal of several projects is mak-
ing expert systems more flexible. One that is
attempting to do so by giving such systems
more general knowledge surrounding their
specialized area is the How Things Work Pro-
ject at Stanford University (Iwasaki and Low
1993), which is producing a knowledge base
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and, thus, will always exert a pull on the
development of habile systems.

In summary, I think all these factors, old
and new, suggest the strong possibility that
AI will once again direct a substantial portion
of its research energies toward the develop-
ment of general intelligent systems.

Some Important 
Research Projects

In addition to the research efforts already
mentioned, several others are quite relevant
to habile systems. I’ll remark on just three of
the ones I know the most about.

One is the CYC Project led by Douglas Lenat
(Guha and Lenat 1990). It has as its goal the
building of a commonsense knowledge base
containing millions of facts and their interre-
lationships. It is striving to encompass the
knowledge that is seldom written down—
knowledge, for example, that the reader of an
encyclopedia is assumed to possess before
reading the encyclopedia and that, indeed, is
required to understand what he/she reads. It
seems clear to many of us that this kind of
knowledge, in some form, will be required by
habile systems, in particular by any systems
that are expected to use more or less uncon-
strained natural language. I think projects of
this sort are very important to AI’s long-range
goals, and I agree with Marvin Minsky who
said, “I find it heartbreaking [that] there still
are not a dozen other such projects [like CYC]
in the world” (Riecken and Minsky 1994).

Another project of general importance is
the attempt to build an interlingua for
knowledge representation such as the knowl-
edge interchange format (KIF) (Genesereth
and Fikes et al. 1992). For efficiency, niche
applications will want their specialized
knowledge in customized formats, but some
of this knowledge, at least, will be the same
as the knowledge needed by other niche sys-
tems. To permit knowledge sharing among
different systems, knowledge must be trans-
latable from one system’s format into anoth-
er’s, and a common interlingua, such as KIF,
greatly facilitates the translation process.
Although, as some argue, it might be too ear-
ly to codify standards for such an interlingua,
it is not too early to begin to consider the
research issues involved.

Agents that are part of communities of
agents will need knowledge of each other’s
cognitive structure and the way to affect the
beliefs and goals in such structures through
communication. Yoav Shoham’s (1993)
agent-oriented programming formalism is

one attempt to facilitate the construction of
communicating agents.

Summary and Conclusions
AI’s founding fathers, Marvin Minsky, John
McCarthy, and Allen Newell, always kept
their eyes on the prize—even though they
pursued different paths toward it. McCarthy’s
(1986, 1958) work on commonsense reason-
ing has been aimed directly at general, intelli-
gent systems. The same can be said for Min-
sky’s (1975) work on structuring knowledge
in frames and on his society of mind (Minsky
1986). Newell’s (1990) work on production
systems and SOAR focused on the same prize.
Now it appears that there are strong and
insistent reasons for many others also to
resume work on AI’s original goal of building
systems with humanlike capabilities. Even
though this prize might still be distant, the
ultimate benefits of practical, retargetable,
tool-using systems will more than repay the
long-term investments.

I think there is no reason to be discouraged
by the current pressures to concentrate on
mission-specific research. There are now peo-
ple whose very missions require the develop-
ment of habile systems, and much basic
research needs to be done before their needs
can be satisfied. Several different architectures
need to be explored. There are still many
unresolved questions: Is general intelligence
dependent on just a few weak methods (some
still to be discovered) plus lots and lots of
commonsense knowledge? Does it depend on
perhaps hundreds or thousands of specialized
minicompetences in a heterarchical society of
mind? No one knows the answers to ques-
tions such as these, and only experiments and
trials will provide these answers. We need, as
Minsky recommends, 10 more CYC projects.
We also need support for young investigators
and postdoctorates, graduate fellowships,
individual investigator-initiated grant pro-
grams, and research equipment and facilities.

With the right sort of research support, AI
will now proceed along two parallel paths: (1)
specialized systems and (2) habile systems.
Niche systems will continue to be developed
because there are so many niches where com-
putation is cost effective. Newell (1992, p. 47)
foresaw this path when he charmingly pre-
dicted that there would someday be

brakes that know how to stop on wet
pavement, instruments that can converse
with their users, bridges that watch out
for the safety of those who cross them,
streetlights that care about those who

… there is 
no reason 
to be 
discouraged
by the 
current 
pressures 
to concentrate
on 
mission-
specific
research.
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stand under them who know the way, so
no one need get lost, [and] little boxes
that make out your income tax for you.

He might also have mentioned vacuum clean-
ers that know how to vacuum rooms, garden
hoses that know how to unroll themselves
when needed and roll themselves back up for
storage, automobiles that know where you
want to go and drive you there, and thousands
of other fanciful and economically important
agents. Society’s real world and its invented
virtual worlds together will have even more
niches for computational systems than the
physical world does for biological ones. AI and
computer science have already set about try-
ing to fill some of these niches, a worthy, if
never-ending, pursuit. But the biggest prize, I
think, is for the creation of an artificial intelli-
gence as flexible as the biological ones that
will win it. Ignore the naysayers; go for it!
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