
■ The principal investigator (PI)-IN-A-BOX knowl-
edge-based system helps astronauts perform sci-
ence experiments in space. These experiments are
typically costly to devise and build and often are
difficult to perform. Further, the space laboratory
environment is unique; ever changing; hectic;
and, therefore, stressful. The environment
requires quick, correct reactions to events over a
wide range of experiments and disciplines,
including ones distant from an astronaut’s main
science specialty. This environment suggests the
use of advanced techniques for data collection,
analysis, and decision making to maximize the
value of the research performed. PI-IN-A-BOX aids
astronauts with quick-look data collection, reduc-
tion, and analysis as well as equipment diagnosis
and troubleshooting, procedural reminders, and
suggestions for high-value departures from the
preplanned experiment protocol. The astronauts
have direct access to the system, which is hosted
on a portable computer in the Space Lab module.
The system is in use on the ground for mission
training and was used in flight during the Octo-
ber 1993 space life sciences 2 (SLS-2) shuttle mis-
sion.

The critical resource in astronaut-tended
flight experiments is time. The lack of
time affects both preflight training for,

and in-flight operation of, the experiment.
This difficulty with time is currently true with
the Space Shuttle Program and will persist
with the advent of Space Station Freedom
operations. Another key factor in space exper-
imentation is the use of fixed experiment pro-
tocols. This major constraint severely limits
the ability of an earth-bound scientist to
change the course of an experiment even
when the data and current situation clearly
indicate that it would be scientifically more
valuable to do so.

The principal investigator (PI)-IN-A-BOX

knowledge-based system helps scientist-astro-
nauts do better science in space given fairly
severe time constraints and the need for them
to work in areas outside their specialty. The
goal is to help the astronaut become a scien-
tific collaborator with the ground-based prin-
cipal investigator who designed the experi-
ment. The system facilitates increasing both
(1) the level of astronaut-investigator collabo-
ration and (2) the quality of the science per-
formed in space by sharing observations with
the astronaut about the quality and the
importance of the data as they are being col-
lected in flight. This system has the potential
to fundamentally change the way crew mem-
bers interact with ground-based investigators
in the space station era.

In this article, we present a logical overview
of the system; continue with a description of
our first area of application; explain the tech-
nical details of the current implementation;
and, finally, share some development philoso-
phy used to manage this multiyear project.
This system continues previous work
described in Young et al. (1989), Haymann-
Haber et al. (1989), and Frainier et al. (1990).

Functional Overview
The PI-IN-A-BOX system has several modules
(figure 1). Together, they allow diagnosis of
data-collection problems, hypothesis moni-
toring and formulation (limited to an analysis
of interestingness in the initial system), deter-
mination and scheduling of the experiment’s
steps, and general-purpose help for the astro-
naut-user.

The data-acquisition module (DAM) and the
data-quality monitor (DQM) acquire data from
the experiment (displayed in real time),
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time, possibly need to cut steps; (2) there is a
predicted excess of time, possibly need or
have opportunity to add steps; and (3) the
experiment is giving interesting data, possibly
need to substitute steps that will collect more
information about the interesting data.

SM displays the current state of the experi-
ment, including progress against the protocol
and elapsed times as well as the history of
other sessions occurring earlier in the mis-
sion. SM also displays procedural step-by-step
checklists of experiment steps to be per-
formed within the experiment by the user. SM

updates the current protocol and elapsed
times automatically and in response to user
editing. SM also offers a scratch pad to allow
users to record their observations. Users can
perform the following actions using SM: (1)
display the status of the current session,
including a list of completed steps, the cur-
rent step, and all pending steps as well as
temporal information about the session and
the current step; (2) display alternative proto-
cols; (3) display the history of other sessions
occurring earlier in the mission (this history
is a list of all completed steps, including the
experimental conditions used for each step);
(4) display experiment checklists for a given
experiment step; (5) edit the current protocol
and all temporal information known and
used by the system; (6) replace the current
protocol with any of the other available pro-
tocols; (7) order a new set of protocols for
consideration (by calling PS); and (8) initiate
an equipment troubleshooting session.

Finally, an executive module controls mod-
ule activation and focus of attention. It is also
used to augment the operating system envi-
ronment, if necessary, for a particular host
central processing unit (CPU).

One other module is planned for future
versions of the system: an experiment suggester
(ES). ES will work in conjunction with IDF. Giv-
en a new hypothesis from IDF, ES will generate
a set of tests that can be used to investigate
the new hypothesis.

The First Domain: 
Vestibular Physiology

The system was first used in conjunction with
a life sciences experiment in vestibular physi-
ology known as the rotating-dome experiment.
It was devised by Laurence Young, who is the
director of the Man-Vehicle Laboratory at the
Massachusetts Institute of Technology. The
experiment is conducted by one crew mem-
ber while another crew member acts as sub-
ject. The purpose of the experiment is to

extract parameters from the data, and inter-
pret them. DQM also analyzes the data to
determine quality with respect to the experi-
mental apparatus and provides results to the
diagnosis and troubleshooting module (DTM).

DTM helps the user isolate and recover from
experiment data-collection problems. It sug-
gests tests to isolate equipment faults. It also
presents recommendations based on a com-
putation of problem severity and possible
recovery strategies with respect to remaining
experiment session time (that is, the system
can actually recommend that troubleshooting
not be performed).

The interesting data filter (IDF) module moni-
tors data from the experiment passed to it by
DAM. IDF analyzes the data to determine their
fit with preflight hypotheses. The fit can be
either statistical or heuristic. Deviations are
reported as interesting. These deviations are
defined as needing confirmation, even if not
part of the original fixed protocol. Once con-
firmed, they cease to be interesting.

The protocol manager (PM) module generates
the best-possible experimental protocol for
use at any given time in the experiment. It
also displays information to, and accepts
information from, the user. Corresponding to
these two major functions, PM has two logical
components: the scheduling component,
called the protocol suggester (PS), and the
human-computer interface (HCI) component,
called the session manager (SM).

PS creates a new experimental protocol on
request. A request from the user is likely
when (1) there is a predicted shortage of
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understand the human oculovestibular sys-
tem and its relationship to the phenomenon
of space motion sickness. During the experi-
ment, the subject’s visual field is filled by a
dome. The dome, which contains a constella-
tion of dots, is rotated at various speeds and
directions. Gazing into the field of rotating
dots induces vection, or the sensation that the
subject, not the dots, is rotating. Voluntary
and involuntary reactions to the vection are
measured. There are typically two or three in-
flight sessions, each involving two to four
crew members. An experiment session con-
sists of equipment setup, equipment electric
checkout, several experiment runs on the first
subject, introduction of follow-on subjects,
and equipment shutdown and stowage. The
experiment has been flown in space three
times in the past,1 and it will fly again this
year (1993). [The computer system flew with
experiment on shuttle mission STS-58 in
October 1993. – Ed.]

When performed in space, this experiment
generates five analog data channels. Although
the astronauts could monitor two of the five
channels in real time on a small oscilloscope,
they are not as expert as the ground-based
investigator at validating or reacting to the
data. Investigators can monitor all the chan-
nels, but the experiment data are subject to
delays and outages as they are passed from the
shuttle to relay satellites to and through the
ground-based telecommunications system.
Further, the investigators are limited in their
ability to change the course of the experiment
during an hour-long session. In fact, they are
limited in their ability to change the course of
the experiment during any remaining in-
flight experiment sessions.

PI-IN-A-BOX has direct access to all five data
channels and performs quick-look validation
and analysis in real time. The analysis is driv-
en by heuristics compiled from the investiga-
tors, and the results are communicated to the
astronaut performing the experiment. Thus,
the system provides the astronaut with advice
on how to best use the precious time allocat-
ed to the experiment. This advice is based on
the preflight plan, modified by all the events
that have occurred in flight, including a
record of the experiment apparatus’ perfor-
mance, the list of crew members who have
already performed the experiment, and indi-
cations made by the analyzed data about
each of these subjects. Specific advice
includes (1) recommendations on accepting a
degradation of the experiment’s data collec-
tion or spending time to repair a problem (if
repair is elected, a step-by-step diagnosis-

repair plan is offered to the user), (2) advice
on the order in which to test subjects and the
order of individual test steps for a given sub-
ject, and (3) alerts about analyzed data that
appear to be of particularly high value (inter-
esting data).

Other features allow the review of previ-
ously completed portions of the experiment
and facilitate planning or replanning future
experiment sessions. Finally, there are fea-
tures that provide reminders on setting up
and using the experiment apparatus.

Some Typical Scenarios
Let us assume that it is now two days after
lift-off. The first session involves two astro-
nauts who will alternate as subject and opera-
tor. The system has been set up for the first
session, but there is a problem. An electric
connection at the junction of two cables is
damaged. The problem affects one of the two
electromyography data channels. The experi-
ment setup is on time, but the problem must
be addressed. Further, there will be a voice
and data outage (loss of signal [LOS]) com-
mencing in 5 minutes that will last 20 min-
utes. Without PI-IN-A-BOX, the crew would typ-
ically attempt to repair the apparatus and
then ask the ground crew for advice if the
effort were unsuccessful. If LOS was in effect,
the advice would not arrive until after the 20-
minute blackout. With PI-IN-A-BOX, the crew
could ask for a recommendation at any time.
In this situation, even if the system had a
repair procedure available, it would recom-
mend not spending time repairing the low-
priority channel but, instead, using this time
to get data from the scheduled subjects.

Let us now assume that the astronauts
declined the recommendation and spent 20
minutes at the repair. They are now part way
through the experiment protocol and 15
minutes behind schedule. The astronauts
realize that they are going to have to cut the
experiment short. Without PI-IN-A-BOX, the
crew would typically work as long as they
could and then cut the last steps of the proto-
col. In this case, the entire second subject
would be eliminated. With PI-IN-A-BOX, the
crew could again ask for a recommendation.
Here, the system would recommend cutting
the last experiment condition for the first
subject and the first experiment condition for
the second subject and then continuing with
the rest of the experiment. This recommenda-
tion accounts for the various setup times and
the scientific importance of the experiment
steps, realizing that a lengthy setup was
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LABVIEW, available from National Instru-
ments, controls data collection, reduction,
validation, and archival. It is a graphic data
flow language (software from pictures) with a
mouse-oriented developer’s interface and
excellent browsers. These features facilitated
rapid development and code reuse. Another
key feature was its support for data acquisi-
tion and analysis in a single package. Other
key factors leading to its use included excel-
lent support, continuous upgrades, availabili-
ty of run-time version, a strong user group,
and widespread use.

HYPERCARD (available from Apple Computer)
is used for HCI, overall data management
within the system, and module activation. Its
procedural scripting language and part-whole
object hierarchy facilitated the rapid-proto-
typing style of HCI construction essential to
our system’s development. Other key factors
leading to its use included low cost,
widespread use, and good technical support
from Apple.

The three tools communicate with each
other using APPLE EVENTS and HYPERCLIPS. HYPER-
CLIPS, a set of two simple one-way drivers, was
developed by our team for HYPERCARD-CLIPS

interapplication communication. APPLE EVENTS

is an interapplication communication feature
of the system 7 version of the MACINTOSH

operating system. CLIPS and LABVIEW do not
communicate directly with each other. The
system currently uses all 8 MB of RAM. Virtu-
al memory was tested and rejected because of
the associated performance penalty. HYPER-
CARD and LABVIEW are each allocated 2500
kilobytes (KB) of RAM, CLIPS is allocated 1800
KB, and the remainder is used by the comput-
er’s operating system. The system files cur-
rently occupy about 11 MB of hard-disk stor-
age.4

The mapping between hardware-software
and each logical module of the system, as
implemented for the rotating-dome experi-
ment, is seen in figure 2. An obvious charac-
teristic of our architecture is the need to make
complicated technical trade-offs when build-
ing systems that integrate different tools and
solve real problems.

HCI, called SM in our system, was built as
two HYPERCARD stacks. One stack contains 26
cards. Fourteen of these cards serve as a per-
sistent database (and are not viewed directly),
and 12 are used for display. The second stack
contains 16 cards that display pictures, line
drawings, and real-time data traces.

The database is divided between HYPERCARD

and CLIPS. The HYPERCARD-resident portion
consists of 14 cards. Most of these cards are

required for two low-priority steps. Eliminat-
ing both the setup and the steps saved 13
minutes and increased the coverage of the
first session.2

Current Implementation
As fielded, the system runs on a single MACIN-
TOSH POWERBOOK 170, which hosts all six mod-
ules. There is one other piece of hardware, an
external (GW Instruments) analog-to-digital
converter connected to the POWERBOOK’s small
computer system interface port. The POWER-
BOOK is fitted with 8 megabytes (MB) of ran-
dom-access memory (RAM) (the maximum
available on this model) and a 40-MB internal
hard drive.3 Three main software tools were
used: CLIPS (C language intelligent production
system), LABVIEW, and HYPERCARD.

CLIPS, available from COSMIC, the National
Aeronautics and Space Administration’s Soft-
ware Technology Transfer Center, serves as
the inference engine for the application. This
OPS-style expert system shell is used by the
system for schedule repair (PS), diagnosis
(DTM), and symbolic analysis (IDF). Key factors
leading to its use included low cost, availabil-
ity of source code (facilitating tool extension
and customization), excellent support, con-
tinuous upgrades, a strong user group, and
widespread use.
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used to store data from the experiment: One
card is used for each step of the experiment
that generates data. One card is used to dis-
play summary results of previous experiment
sessions. Two cards are used to store data used
globally by several of the modules. The CLIPS-
resident portion consists of about 120 base
facts. This number increases as the mission
progresses, and experiment history is generat-
ed. During the typical operation of PS, about
200 facts are in the database at any one time
(out of 120 base facts and 400 generated
facts).

An Illustration of the 
System in Use

Assume that the operator has just set up the
laptop computer and analog-to-digital con-
verter in anticipation of an experiment ses-
sion. The system automatically loads after the
MACINTOSH powers up. Two minutes and 20
seconds later, startup is complete. The system
has selected the next scheduled session and
presents overview information, such as the
scheduled start time, the end time, and sub-
jects (figure 3). In this example, there are two
subjects: mission specialist 1 (MS1) and pay-
load specialist 1 (PS1). If the begin time or
end time has recently changed, the user com-
municates the currently scheduled time to
the system by clicking on the item to be
updated. There is also the ability to similarly
change or edit the subject list as well as other
options. When the current settings are com-
pletely correct, the user proceeds by clicking
on Begin Session.

The system prepares for the next action—a
functional checkout of the experiment’s elec-
trical output. Notice that because the EMG
(electromyogram) functional check should be
performed, an illustration is displayed to help
assure correct electrode placement (figure 4).

The LABVIEW-based DQM is used for this
checkout and autocalibration of the experi-
ment apparatus (these checks typically occur
after equipment setup and before each new
subject enters the experiment, although they
can be performed optionally at any time dur-
ing a session). The system displays a list of
the signals to be checked, with an arrow
pointing to the currently checked signal. As
each 10-second check occurs, a real-time trace
of the signal is displayed (figure 5). Five sig-
nal traces are displayed from top to bottom
on the left side of the screen: Joystick, Bite-
board, Right-EMG, Left-EMG, and Tachome-
ter. The tachometer is a heartbeat trace that is
only two pixels high. Note that in figure 5,
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Figure 3. Session Startup.

Figure 4. Functional Check Preparation.

Figure 5. Functional Check Operation.



tions. Specific parameters are then calculated
for each segment. The analysis of these three
segments is combined with known opera-
tional and faulty states of the hardware to
finally determine the health of a given signal
channel. When a signal is identified as opera-
tionally OK, the check also serves as a calibra-
tion of the channel and is used by DAM during
its run-data analysis. Then there is a problem;
DQM does not always indicate a unique fault.
Resolution must then occur later in a trou-
bleshooting session.

Upon completion of all requested checks, a
summary of the results is displayed (figure 6).
In this example, the experiment apparatus is
functioning correctly. If a problem had been
seen, then an automatic troubleshooting ses-
sion (DTM) would have been initiated and a
recommendation prepared for the user. If
troubleshooting is pursued, a series of interac-
tions would guide the repair effort.

Shown next is the main display screen (fig-
ure 7) with a summary of the current experi-
ment protocol: (step) types, step (dur)ation in
minutes, (subj)ect, experiment (cond)ition,
and so on. An arrow indicates the step cur-
rently being performed; check marks indicate
completed steps; and, finally, pending steps
are listed below the current step. In this case,
MS1 is entering the dome to be tested in the
free-float condition. This information is
echoed in the Next Run display area just
below the current protocol listing and can be
changed or edited by darkening the item in
need of update.

If the user wants to check the procedures
associated with the current, completed, or
upcoming step, he/she merely clicks on the
step in the Current Protocol window. A copy
of the checklists and procedures is then dis-
played for review. These checklists exist as
paper documents. They can easily be convert-
ed to PICT files, which can then be displayed
by HYPERCARD. Procedures controlling the use
of the experiment apparatus are managed
with a configuration-control system. Changes
to procedures are made by an engineering
change order (ECO). These changes must be
incorporated into the system. The ease of
conversion to PICT files greatly facilitates
maintenance of the procedures within the PI-
IN-A-BOX system.

Real-Time Data Collection 
and Analysis

PI-IN-A-BOX is a real-time knowledge-based sys-
tem. It must receive, analyze, and then act on
the data that are generated by the experiment

the Right-EMG and Left-EMG signals are dis-
played simultaneously as part of the single
EMG check; so, there are two arrows indicat-
ing the current signal.

DQM performs one of the more interesting
and challenging tasks in our system. It was
not obvious at first how to interpret and react
to a 10-second slice of analog data. It was
quickly realized during integration testing
that the experiment hardware electric specifi-
cations were not by themselves sufficient to
determine if a signal channel was functioning
correctly. We settled on partitioning the 10-
second test into 3 segments: a rest-condition
segment, a full–positive-deflection segment,
and a full–negative-deflection segment. These
segments are identified by applying mathe-
matical filtering and differentiation opera-
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Figure 7. Main Session Display.



quickly enough to be of use to the user. Each
data-producing step in the vestibular physiol-
ogy experiment consists of six 30-second
data-producing trials (figure 8).

Each trial has 20 seconds of data gathering
and real-time display followed by 10 seconds
of rest (figure 9). The 20-second data-collec-
tion and data-display period is controlled by
a LABVIEW-compatible driver supplied by GW
Instruments. All 5 data channels are sampled
at a rate of 225 hertz. During this time, the
driver used for data acquisition monopolizes
the POWERBOOK (even the mouse is not
tracked). The following 10 seconds are shared
by LABVIEW and HYPERCARD. DAM performs data
analysis, reduction, parameter extraction, and
archival. It also communicates results to
HYPERCARD for use in alerts and for postrun
analysis (if DAM determines that a critical sig-
nal has malfunctioned during a trial, then the
run might be halted for troubleshooting).

The system performs several actions after a
run of six trials. It first checks that at least
five of the six trials in a run have been com-
pleted successfully. If so, the run is labeled
“nominal.” It then checks the data for agree-
ment with the current hypotheses (IDF). The
IDF module currently consists of about three
dozen CLIPS rules. Heuristics currently used to
determine interestingness focus on the pres-
ence, onset latency, and intensity of vection.
These domain-specific heuristics include the
following: (1) the onset of vection is interest-
ing if it is consistently less than two seconds;
(2) early in the flight, maximum vection is
interesting if it is consistently greater than 90
percent; (3) the number of dropouts experi-
enced by a subject is interesting if it is consis-
tently low (0) under tactile conditions; and
(4) an experiment run is interesting if maxi-
mum vection under tactile conditions is con-
sistently greater than maximum vection
under nontactile conditions.

After the IDF module runs, the system pre-
pares for the next run. Summary information
is displayed for the user to review. A possible
postrun display is seen in figure 10. In this
case, the run was normal, and the data were
interesting. An explanation of the interesting-
ness is available for review if desired. In this
example, the run was interesting for two rea-
sons: The sensation of vection began quickly,
but it had a low maximum compared to that
predicted by the results of the same subject’s
earlier runs (see figure 11).

Between-Run Options
The user can invoke a variety of options

(available from the Options pull-down menu)
at this time. One option is to exploit the
observed interestingness by asking the system
for a better plan for session completion
(experiment protocol). These protocols take
into account the time remaining in the cur-
rent session as well as which subjects were
tested in previous in-flight sessions and what
their results were. One of the two resulting
suggestions is the proposed protocol. This pro-
tocol observes session time constraints. The
other suggestion is the optimal protocol. This
protocol relaxes the time constraint slightly
to offer a focused plan with minimal negative
impact on the mission time line. The time
needed to suggest these new protocols is usu-
ally less than 30 seconds. The PS module con-
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Do not schedule bungee runs if the
joystick signal is bad.

Schedule runs with similar experiment
conditions together.

If the bungee is set up, schedule
bungee runs first; if the bungee is not set
up, schedule runs that do not need the
bungee first.

After some data have been obtained, if
there are interesting data to be con-
firmed on a subject, then give preference
to this subject.

If a subject is currently set up in the
test apparatus, schedule the remaining
steps for this subject first.

If no subject is set up, give first prefer-
ence to a subject with unfinished tests
from an earlier session, and give next
preference to a subject who was giving
interesting data.

If there were interesting data on a sub-
ject and an experiment condition from
the current session, and the subject and
the condition have not been repeated,
then rerun the subject and the condi-
tion.

If there were interesting data on a sub-
ject and an experiment condition from
the current session, and this condition
was again run today but was again not
found to be interesting, then run the
subject in this condition one more time.

If there were interesting data on a sub-
ject and an experiment condition from
the current session, and this subject and
condition were again run today, but the
condition was not run on another sub-
ject, then run the condition on another
subject.

If there were interesting data to be
confirmed on a subject and an experi-
ment condition from a previous session,
and this condition was not run today,
then run the subject in this condition.

If there were interesting data to be
confirmed on a subject and an experi-
ment condition from a previous session,
and this condition was run today but
was again not found to be interesting,
then run the subject in this condition
one more time.

If more time is needed than is current-
ly allowed, cut the least desirable (from a

trolling the content of the two suggested pro-
tocols consists of about 200 rules.

The experiment protocol is conceptualized
as follows: There are a number of experiment
sessions in a mission. Each session is conduct-
ed in accordance with its protocol. The proto-
col consists of a number of blocks. There is
one block for each subject, a block for experi-
ment setup, and a block for experiment
stowage. Each block has a number of steps.
The setup and store blocks are straightfor-
ward, but the optimum subject block order
(and run ordering within a given subject
block) depends on a complex interpretation
of previous mission history. The first task is to
determine which experiment steps should be
performed and assign a (science) priority to
each. The block ordering is determined next,
after which, step ordering within a block is
determined. Following the step ordering,
minor setup tasks are inserted. Finally, the
result is checked against current time con-
straints.

Heuristics currently used to determine new
protocols include the following: 

Get at least some data on every sub-
ject.

Complete the data collection using a
full set of experiment conditions on at
least one subject.

Each subject has a set of run condi-
tions to be performed. Some of these
conditions might be performed multiple
times. Always give a subject’s as-yet-
untested run conditions priority over
duplicate run conditions that have been
tested at least once.
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science standpoint) step.

As this list suggests, it is difficult for an
astronaut (or even an investigator) under
time pressure to keep these heuristics, togeth-
er with their relative priority, in short-term
memory and apply them correctly when
rescheduling a session protocol.

Troubleshooting
Another option is to invoke a manual trou-
bleshooting session (DTM). The user has a
chance to indicate a variety of observed prob-
lems, as seen in figure 12. In this case, the
user has indicated that the ECDS (experi-
ment-control data system) display associated
with another on-board data-gathering com-
puter is garbled. The system responds by rec-
ommending reinitializing ECDS (figure 13)
and displays the relevant portion of the con-
trol panel to aid recall (figure 14). A further
example is seen in figures 15 and 16. Here, a
bad EMG functional check leads to an inves-
tigation of the EMG connectors and, later, to
a replacement of the EMG amplifier batteries.
Additional functional checks are occasionally
part of the troubleshooting process.

The DTM module consists of about 200 CLIPS

rules. The CLIPS rules work with procedural
code in HYPERCARD to guide the user through
troubleshooting and repair. The overall flow
involves the formulation of a repair recom-
mendation based on the current experimen-
tal situation (the recommendation could
entail forgoing a lengthy repair, for example).
If troubleshooting continues, the system tra-
verses a graph step by step until either the
problem is repaired, the user terminates the
session, or the system has no further advice
to offer. Steps include displaying pictures (fig-
ure 14), line drawings (figure 15), and repair
instructions (figure 16); conducting function-
al checks; and making observations for the
system (figure 15).

Several other between-run options can be
invoked from the Options pull-down menu.
These options include the use of a notepad,
the review of the history of previously com-
pleted sessions, and the use of a manual edit-
ing facility for the current protocol. Finally,
as mentioned earlier, the procedures associat-
ed with any step can be brought up for
review.

System Construction Philosophy
The system makes maximum use of commer-
cial off-the-shelf software to leverage pro-
gramming effort and avoid reinventing the
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Figure 14. DTM Instructions.

Figure 13. DTM Recommendations.

Figure 12. Selecting Manual Troubleshooting.



can deliver up-to-date hardware and software.
Perhaps just as important, this approach has
allowed better maintainability and a cheap
upgrade path by leveraging the efforts of the
technical staff members at Apple, Claris,
National Instruments, and the Johnson Space
Center Software Technology Branch. For
example, if we had to incorporate a complete
interapplication communications facility
between CLIPS, HYPERCARD, and LABVIEW, it
would have been more expensive and less
robust, and it would probably have locked us
out of routine software upgrades. Instead, we
experimented with incremental enhance-
ments that we could discard or retain as more
capable software became available or as the
system’s operational requirements changed.
Another maintenance win occurs when team
members occasionally and inevitably leave:
The learning process is quicker for the new
member who is already familiar with widely
used products such as CLIPS, LABVIEW, and
HYPERCARD.

A modified version of the spiral model of
software development was followed for most
of the major modules. This style of software
development is a requirement-discovery style,
where a rough specification is used to guide
knowledge engineering and rapidly construct
a prototype. The prototype is then demon-
strated internally (development team and
end users) and externally (colleagues and
upper management). Comments are then fed
back into the specification. This process leads
to a follow-on version of the module after
another iteration of knowledge engineering
and rapid prototyping. We believe this
approach to be superior to the waterfall mod-
el of software development for knowledge-
based systems for two major reasons. First,
there is no reasonable way to determine a
specification that is detailed enough to guide
a multiyear effort. It was only after coding,
demonstrating, and using prototypes that dif-
ferences between how the task was described
and how the task was performed were
resolved.6 Second, the knowledge in the
knowledge-based system is not static. As a
result of the SLS-1 shuttle mission in June
1991, significant changes were made not only
in the experiment and its approach but also
in our conception of what the PI-IN-A-BOX sys-
tem could best do. Our approach is not per-
fect. One potential problem is determining
when to stop the development cycle. In our
case, firm milestones were associated with the
flight schedule that provided the necessary
constraints. Another potential problem is
maintenance of requirements and test docu-

wheel. Some custom coding was done when
necessary. There are clear advantages to this
arrangement: Development started against a
target machine that was not yet available,
continued on a first-generation offering, and
was delivered on a second-generation
machine. Thus, users have the high perfor-
mance of (and excitement of using) current
hardware, and developers are able to take
advantage of the increased hardware and soft-
ware capabilities of the host machine. This
approach to system development is impor-
tant because application software and the
programming paradigms it is based on
change more slowly than operating systems,
which, in turn, change more slowly than
CPUs;5 so, by developing from the applica-
tion software tool downward toward CPU, we
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Figure 15. DTM Requests for Information.

Figure 16. DTM Repair Instruction.



ments. Because each development cycle mod-
ifies the system’s requirements, these changes
must be captured and reflected in the test
plan and other documents. We found these
issues to be minor frustrations compared to
the benefits of our software development
scheme.

An interesting approach to validating a
module is cross-prototyping, which was used
on one of the modules. One team member
built a prototype of the module based on the
official production system (OPS) style of repre-
sentation. When this team member left the
project, maintenance and extension of the
module was given to a new member. The new
member was initially much more familiar
with object-frame representations than with
the OPS paradigm. After understanding the
purpose and current requirements of the
module, a new prototype was quickly built in
IntelliCorp’s KEE and then translated to the
PARMENIDES frame tool and FRULEKIT OPS-style
rule system (both from Carnegie Mellon Uni-
versity) running over MACINTOSH Allegro Com-
mon Lisp. This approach provided perfor-
mance comparisons between the two
implementations and led to the discovery
and elimination of several subtle bugs in the
module.

Benefits of the 
Knowledge-Based System

The main benefit of this system is the maxi-
mization (or, certainly, an increase in) the sci-
entific quality of data from experiments per-
formed by humans in space. This benefit, in
turn, increases the value of the research per-
formed. The increased value comes from
increased crew productivity. This increased
productivity has two dimensions: First, time
is not spent on unproductive tasks after
equipment failures. Second, reactions to the
scientific consequences of already-gathered
data are improved. Although caution should
be exercised in generating dollar figures, we
estimate savings of $6,000 for each astronaut
science–hour (based on a 20-percent crew
productivity increase from operational use
and a conservative figure of $30,000 an hour
of crew time on the space station).

Future Directions
Use of the system in support of space shuttle
mission SLS-2 will continue through 1993.
The team is also working to identify follow-
on experiments for future missions. After one
or two experiments, we hope to know

enough to create a general-purpose tool to aid
science experiments in space or, indeed, in
any situation where quick-look analysis can
be used to guide the focus of attention for the
remainder of a limited scientific observation
period. Examples under consideration
include other life science experiments, mate-
rials science experiments, atmospheric stud-
ies, and plasma physics. Although the system
yields maximum benefit when applied to a
particular experiment, there is value in
adding just the DAM, DQM, and DTM modules
to major equipment or facilities on the space
station (for example, a centrifuge and gas-
grain simulation facility). The addition of
these three modules without reference to a
particular set of experiments would still allow
for the use of a general-purpose monitoring,
diagnosis, and repair system over the life (20+
years) of the orbiting equipment. In this case,
a repair recommendation is weakened to the
extent that experiment-specific data-collec-
tion heuristics and history are not available.

Alternative Approaches
There are alternatives to the in situ knowl-
edge-based approach described in this article.
A more traditional approach would be to add
more ground support people at one of the
existing sites with voice and data channel
links. They would do the analysis and present
results and recommendations to the scientist.
The traditional AI approach would be to add
LispM (in place of people) in the back room
of shuttle operations with a data link to the
scientist. Both approaches are critically hin-
dered by the key problem of any ground-
based solution: delays and outages in receiv-
ing experiment data and transmitting
solutions to the crew. We feel that space
experimentation requires careful considera-
tion of the trade-offs between these
approaches and on-board intelligence.

Conceptually related work is associated
with a space shuttle–based cryogenic experi-
ment—SHOOT (superfluid helium on-orbit
transfer). Two systems, AFDEX and CMS, facili-
tate the conduct of SHOOT (Raymond 1989;
Shapiro and Robinson 1989). The AFDEX rule-
based system is designed to provide intelli-
gent process control, diagnosis, and error
recovery. This system is hosted on a 80386-
based GRID laptop and will be located on the
space shuttle’s aft flight deck. The AFDEX sys-
tem software is a combination of CLIPS and C

code. AFDEX is capable of autonomous (closed-
loop) control of the experiment but is
planned for use under astronaut control. The
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POWERBOOK for our target mission.
4. The system files include documentation text
files, rule files, permanent data files, other applica-
tion files, and tool image files.
5. Consider that CLIPS has been around since 1986
(or earlier), HYPERCARD and LABVIEW were first
released in 1988, MACINTOSH system 7 was released
in 1991, and POWERBOOKs became available in quan-
tity in 1992. The pace of improvement of hard-
ware-based computing power over the last 20 years
has been astonishing. Looking ahead to operations
on a space station with a projected life of 40 years
or more, it is critical not to start with hardware sys-
tems that will be obsolete before they are launched.
6. These differences included both the ground-
based scientists and the astronauts. In both cases,
actual task-performance style was more conserva-
tive than the idealized version articulated for the
system developers. We feel that the key to a really
useful and valuable system lies in aiding actual task
performance.
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command and monitoring system (CMS) is
designed to provide near–real-time monitor-
ing and control of the SHOOT experiment from
earth by the investigator. CMS is hosted on a
MACINTOSH II computer. The system software is
written in Apple’s MPW(C). It is anticipated
that most (roughly 80 percent) of the time,
the SHOOT experiment will be under ground
control and the remainder under astronaut
control.

Conclusion
PI-IN-A-BOX is a unique knowledge-based sys-
tem for aiding scientific experimentation in
space. We used AI (symbolic reasoning), for-
merly AI (advanced object-oriented HCI), and
non-AI (data acquisition and analysis) tech-
niques to build a useful system. Our frame-
work will be expanded and generalized into a
tool to aid the investigations that will occur
on Space Station Freedom in the latter part of
this decade.
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Notes
1. The rotating-dome experiment flew on space
shuttle–hosted Space Lab missions SL-1 (1983), D-1
(1985), and SLS-1 (1991).

2. The coverage heuristic states that it is better to
have at least some data on each subject than to
have a full set of runs on one subject with no data
on another. 

3. All materials and equipment used on and in the
space shuttle require a qualification (analysis and
test for safety, reliability, and so on). These tests
need to be performed in advance of the mission’s
critical design review. It was not possible to qualify
more recent (and more capable) versions of the
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in human-computer interaction.
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