
■ The 1992 Workshop on Design Ratio-
nale Capture and Use took place on 15
July in San Jose, California. The goal
of the workshop was to bring together
people interested in design rationale
management and promote interaction
among them. Participants were select-
ed from different parts of academia
(computer science, human-computer
interaction, management, civil engi-
neering, mechanical engineering) as
well as from industry. This article sum-
marizes the issues that were raised and
discussed during the workshop, cate-
gorized under these headings: the
nature of design rationale, services:
what good are design rationales, repre-
sentation: what information is worth
capturing and reusing, production of
rationales, semiformal approaches,
and future collaboration.

The 1992 Workshop on Design
Rationale Capture and Use was
held on 15 July in San Jose,

California, in conjunction with the
National Conference on AI. The
workshop was sponsored by the
American Association for Artificial
Intelligence. Over 40 people from
academia, as well as industry, attend-
ed the workshop.

In the past few years, we have seen
growing interest in design rationale
management, that is, in representing
the deliberations underlying a design
process and using these captured
rationales to support better design.
The foremost goal of the workshop
was to bring together the people
from various disciplines who are
working in this area and to promote
interaction among them. The fields
represented included AI, software
engineering, mechanical engineering,
civil engineering, computer-support-
ed work, and human-computer inter-
action. Workshop organizers hoped
that through the workshop, people
would become aware of the issues to
heed in design rationale management

capture, learn what other people
have done to resolve these issues, and
be able to transfer techniques across
disciplines (for example, between
software and very large-scale integrat-
ed [VLSI] designs).

The workshop began with an intro-
duction and an overview of the gen-
eral issues. The rest of the workshop
was divided into six sessions: (1)
Rationale Management in Hardware
Design, (2) Rationale Management in
Software Design, (3) Constructing
Rationales, (4) Rationales in Support-
ing Coordination/ Integration, (5)
Semiformal Approaches to Rationale
Management, and (6) Linking Semi-
formal Approaches to Formal
Approaches. The workshop conclud-
ed with a wrap-up session, where par-
ticipants discussed possible future
collaborations.

Although some of the discussions
in the sessions were specific to the
chosen topics, many issues raised
were of a general nature and relevant
to most of the sessions. Hence, this
report is not a chronological account
of the workshop but is instead orga-
nized by the issues that were raised
and answered during the workshop.
These issues are grouped into the fol-
lowing categories: the nature of
design rationale, services, representa-
tion, production of rationales, evalu-
ations, and future collaboration.

Nature of Design Rationale
An answer to the question, What is
design rationale? was given by T.
Gruber: “an explanation that answers
a question about why an artifact is
designed as it is.” This definition is
appealing because it can be used to
generate further questions: Who is
the audience? When and who gener-
ates this explanation? What kind of
questions does it answer?

The question of whether the nature
of rationale is different in other
design domains was raised explicitly
by T. Moran but also implicitly in the
sessions on software design rationale
and hardware design rationale. The
goal was to see whether the research
in one area is transferable to the other
and how much of the research is
domain specific. It turned out that
most of the issues raised and the dis-
cussions held in these two sessions
were relevant to both hardware and
software designs. For example, it was
pointed out by G. Arango that the
transformational approaches, most
visible in software design, would be
suitable equally for other domains,
where you can formally specify the
requirements, their decomposition,
and a set of legal transformations (for
example, VLSI design). Therefore, you
might say that the form of the ratio-
nales can be different in different
domains if a domain is defined in
terms of the nature of the reasoning
involved but not if it is defined in
terms of the objects involved.

Services: What Good Are
Design Rationales?

It was asked what services become
possible with the use of rationales.
The proposed answers can be catego-
rized as follows: documentation and
retrieval support (A. Garcia), mainte-
nance support (I. Baxter, B. Durney),
dependency management (W. Mark),
generation of explanations (Gruber, E.
Kant, W. Swartout), organizational
design (I. Hulthage, L. Gasser), simula-
tion and diagnostics (B. Chan-
drasekaran), requirement engineering
(J. Lee, B. Ramesh, V. Dahr), and
design methodology support (D.
Bahler, K. Singley, A. Wong).

Some people also pointed out the
use of rationales for coordination
among designers or integration of dif-
ferent aspects of design. For example,
explicitly represented rationales can
serve as a basis for communication
among designers or for project man-
agement, such as tracking unresolved
issues and their dependencies or as a
way to update newcomers. Rationales
can also be used for producing con-
sensus, for example, on type

24 AI MAGAZINE

Workshops

The 1992 Workshop on
Design Rationale Capture

and Use
Jintae Lee

Copyright © 1993, AAAI. All rights reserved. 0738-4602-1993 / $2.00

AI Magazine Volume 14 Number 2 (1993) (© AAAI)

SUMMER 1993 25

Workshops

(for example, electronic notebooks
that record rationales in natural lan-
guage) through semistructured (for
example, templates of different types
such as requirements, specifications,
goals, alternatives, arguments) to com-
pletely formal (for example, states,
causal connections, annotations).

The differences among these repre-
sentations reflect the different ser-
vices that they are designed to sup-
port. For example, if the primary goal
of managing rationales is to help
people archive, retrieve, and examine
the reasons for their decisions, the
representation can be semistructured;
that is, only parts of the representa-
tions need to be understood by the
computer, and the rest can only be
interpretable by humans. However,
the more intelligent services we want
the computer to provide, such as
managing dependencies and suggest-
ing new alternatives, the more for-
mally the domain knowledge has to
be represented.

An interesting observation is that
despite this diversity, there was some
convergence, suggesting that there
might be some generic structure of
design rationales. For example, in
many representations, decision con-
structs such as alternatives, criteria,
and evaluations play important roles.
They are often complemented by
constructs for representing require-
ments (for example, requirements,
goals, specifications, excludes
[requirement, requirement]), repre-
senting arguments for evaluations
(for example, claim, supports [claim,
claim], denies [claim, claim], qualifies
[claim, claim]), or representing differ-
ent parts of what is being designed
(for example, artifact, attribute, mod-
ule, interface, has-attribute).

Production of Rationales
An important question for a design
rationale management system is how
to produce the rationales needed for
the services previously discussed.

At least three major ways were sug-
gested for producing rationales:
record and replay, post hoc recon-
struction, and generation from
domain knowledge. In record and
replay, the rationales are captured as

definitions (P. Johnson) or ontology
(J. Bradshaw). A model of rationales
was also proposed that supports dis-
tributed subgoaling as a result of deci-
sion making and propagation of the
effects of decision revision through a
distributed dependency network (C.
Petrie). Other issues addressed in this
context include how to develop a
shared vocabulary for representing
rationales for coordination (Brad-
shaw), use multimedia electronic mail
to support effective rationale sharing
(J. Glicksman), and integrate the deci-
sion making and the artifact aspects
of the design process (M. Klein).

It was also asked what questions we
want to answer with design ratio-
nales, for example, Why was one
structure chosen over another? What
is the intended function of the arti-
fact? What design decisions are affect-
ed by a change in functional require-
ments, design objectives, or available
alternatives? How is the function
achieved by behavior? Why does this
piece of code exist? Why was it
designed the way it was? How did it
evolve into its current form?

Thinking about whom we want to
support with design rationales makes
clear what kind of services we should
aim toward. Thus, someone asked a
question about who the intended
audience is for this research. The cap-
tured rationales, for example, might
be used to support designers at design
time, designers at redesign time,
maintainers, troubleshooters, or
trainees. If we want to support design-
ers at design time, the ability to man-
age dependencies becomes important.
If it is the designers at redesign time
that we want to support, it becomes
important to define a similarity metric
(for example, requirement overlap)
that can help retrieve and reuse rele-
vant parts of the design rationales. Of
course, these different requirements
create different cost economics, for
example, how much and how formal-
ly information needs to be captured.

Representation: What
Information Is Worth

Capturing and Reusing?
The representations proposed at the
workshop range from unstructured

they unfold, that is, as the designers
deliberate over possible alternatives
and criteria, answer questions, and so
on. For example, people can use a
shared database to raise issues, pro-
pose new alternatives and criteria, or
enter evaluations. The rationales can
be captured in unstructured form, in
structured representations, or as
annotations (B. Reeves, F. Shipman).
They can also be captured syn-
chronously (for example, in a capture
room, where people use a shared pub-
lic screen to respond to each other) or
asynchronously (for example, elec-
tronic mail). This capture methodolo-
gy usually implies that the represen-
tation cannot be too rich or too for-
mal because such a representation
would create excessive overhead and
disrupt the flow for the designers.

The second way of producing ratio-
nales is to reconstruct rationales after
the fact. The deliberations are cap-
tured in the most unobtrusive form,
for example, a video camera. Then,
the rationales are recast into the con-
structs of a particular representation.
This methodology has the advantage
that reconstruction forces reflections,
and the representation can be more
formal and more systematic. Howev-
er, reconstruction can be a luxury
that many people cannot afford.

The third way of producing ratio-
nales is to generate rationales from
formally represented domain knowl-
edge. Some of the suggested methods
for constructing rationales were sim-
ulation (Gruber), context monitoring
(R. Cohen), reverse engineering (G.
Kim), product modeling (Arango),
interactive verification (Garcia), rule-
based construction of composition
hierarchy (B. Britt), and a domain-
independent decision-revision theory
encapsulating domain-specific infor-
mal objects (Petrie). This strategy has
the high initial cost of compiling the
knowledge needed to construct the
rationales but has the appeal of creat-
ing rationales at no cost to the user
later and being able to maintain con-
sistent and up-to-date rationales.

The following technologies were
suggested as appropriate for capturing
and accessing rationales (Moran):
scribbling tools, audio-video, group-
ware, argument representation, hyper-

text, expert systems, document man-
agement, and design tools. The fol-
lowing elements were also suggested
as possible candidates for construct-
ing rationales (Gruber): designers at
design time, designers at documenta-
tion time, designers’ support tools,
and programs at reengineering time.

Semiformal Approaches
The first thing that would probably
strike anybody looking at the litera-
ture is the division between formal
and informal approaches to design
rationale. This division cuts across all
the aspects that have been discussed
so far: service, representation, and
production of rationales. It has been
pointed out that formal representa-
tions have the advantage of being
interpretable by computers and hav-
ing well-established inference proce-
dures, but they are hard to create and
comprehend. Also, the domain
knowledge needed to create formal
representations is often missing.
However, informal representations
are easy to create and natural, but
they are not interpretable by comput-
ers and rely on unarticulated back-
ground knowledge (G. Fischer).

Semiformal approaches take the
middle ground by having some parts
of the representation interpretable by
the computer but others only by
human users. For example, task-
specific objects (for example, decision,
goal, claim) can be formal objects
with their own attributes and can for-
mally be related, but the system
might allow these attribute values to
be filled in by designers in the form of
informal descriptions or other formal
objects that the designers might
choose to create. The system then
processes the descriptions to the
extent that they are formalized but
leaves others for human processing.
The appeal of this approach is that
there is relatively less overhead in
capture (in fact, semiformal represen-
tation can be easier to deal with than
informal representations by suggest-
ing expected information and de-
faults), yet computational operations
exploiting the formalized part of the
representation can be defined. The
degree of formalization can also be

controlled by different representa-
tions.

The following techniques were
also proposed as ways of linking
more formal representations with
semiformal representations so that
we can define more automated
design support as we understand
more of the domain: the creation of
rules from the keywords assigned to
different parts of the rationales (K.
Nakakoji), a database of require-
ments and issues that motivate and
help people to incrementally formal-
ize domain knowledge (Lee), a pro-
grammable design environment
combining knowledge-rich coopera-
tive problem-solving systems and
programmable applications (M.
Eisenberg), a representation combin-
ing hypertext and knowledge repre-
sentation (D. Barman, F. Lakin), the
evolving artifact approach (J. Ost-
wald), or the extension of semifor-
mal representation with domain-
specific formal representation (L.
Ruecker). Some of the questions
asked for all these approaches were
(Fischer), What are the roles of the
human and the computer in these
systems? How are the two linked?
How do they communicate? How
does the distribution between
human and system change over
time? Is there a shared knowledge
between human and system? If so,
what kind? How does it get created?
How does it change over time?

Future Collaboration
In the wrap-up session, the partici-
pants discussed ways to continue to
work together on design rationale.
One idea suggested was the use of a
set of canonical examples. Detailed
records of a few design processes (in
video or in transcripts) would pro-
vide the researchers with the data.
Also, they would provide common
examples and vocabulary that
should facilitate comparison and
communication among the different
models underlying the design ratio-
nale research. We agreed to evaluate
the examples that have been used for
similar purposes in other areas (for
example, design of a lift system) as
well as other examples that data

have already been collected for (for
example, automated teller machine
or heating, ventilating, and air condi-
tioning system design). Another
related idea for facilitating future col-
laboration was to set up a clearing-
house, not only for the canonical
examples but for other resources as
well. For example, we can also share
task-specific ontologies, domain
knowledge, and even inferencing
modules. We decided that this idea
would be pursued in the context of
the ongoing attempts to share
knowledge.

Many issues were raised and dis-
cussed at the workshop other than
those listed here. For example, it was
pointed out and agreed that the suc-
cess of a rationale management sys-
tem critically depends on the success-
ful resolution of nontechnical issues,
such as integrating such a tool with
standard operating systems and tying
proper incentives and resource allo-
cation to the use and refinement of
parts, for example, software modules
(Dahr). The limited space, however,
prevents us from expanding on these
discussions here.1

Acknowledgments
Thank you to all the people who par-
ticipated in the workshop and made it
exciting. The program committee
members, each of whom put in a lot
of effort reviewing the papers and
moderating the sessions, deserve spe-
cial thanks. Thank you to Tom Gruber,
Bob Halperin, Charles Petrie, and Tom
Moran for their comments on this
report. I also appreciate the support
from AAAI as well as the Center for
Coordination Science and the Artificial
Intelligence Laboratory at the Mas-
sachusetts Institute of Technology.

Note
1. The papers presented at the workshop
were compiled in the form of notes.
Requests for further information or com-
ments can be addressed to the chair of the
workshop.

Jintae Lee is an assistant professor in the
Information and Computer Sciences
Department at the University of Hawaii at
Manoa. His interests include rationale
managment and its use and reuse for
organizational design and simulation.

26 AI MAGAZINE

Workshops

