Al Magazine Volume 13 Number 3 (1992) (© AAAI)
Articles

Software Engineering
in the Twenty-First
Century

Michael R. Lowry

There is substantial evidence that Al technology can meet the require-
ments of the large potential market that will exist for knowledge-based
software engineering at the turn of the century. In this article, which
forms the conclusion to the AAAI Press book Automating Software
Design, edited by Michael Lowry and Robert McCartney, Michael Lowry
discusses the future of software engineering, and how knowledge-based
software engineering (KBSE) progress will lead to system development
environments. Specifically, Lowry examines how KBSE techniques pro-
mote additive programming methods and how they can be developed

and introduced in an evolutionary way.

By the year 2000, there will be a large poten-
tial market and a fertile environment for
knowledge-based software engineering (KBSE).
In the coming decade, hardware improve-
ments will stimulate demand for large and
sophisticated application software, and stan-
dardization of software interfaces and operat-
ing systems will intensify competition
among software developers. In this environ-
ment, developers who can rapidly create
robust and error-free software will flourish.
Developers who deliver buggy software years
behind schedule, as is typical today, will
perish. To meet this challenge, software
developers will seek tools and methods to
automate software design.

Computer-aided software engineering
(casE) is undergoing tremendous commercial
growth. However, the current generation of
CASE tools is limited by shallow representa-
tions and shallow reasoning methods. CASE
tools will either evolve into, or be replaced
by, tools with deeper representations and
more sophisticated reasoning methods. The
enabling technology will come from A,
formal methods, programming language
theory, and other areas of computer science.
This technology will enable much of the
knowledge now lost in the software develop-
ment process to be captured in machine-

0738-4602/92/$4.00 ©1992 AAAIL

encoded form and automated. kBSE will revo-
lutionize software design, just as computer-
aided design has revolutionized hardware
design, and desktop publishing has revolu-
tionized publication design.

This article draws on the chapters in
Automating Software Design and other sources
to present one vision of the future evolution
of kBSE. After an executive summary and a
brief history of software engineering, the role
of Al technology is examined in mainstream
software engineering today. Currently, Al
programming environments facilitate rapid
prototyping but do not produce efficient,
production-quality code. xBSE technology
combines the advantages of rapid prototyp-
ing and efficient code in a new programming
paradigm: transformational programming,
described in the subsequent part of the con-
clusion. In transformational programming,
prototyping, validation, and modifications
are done at the specification level; automatic
program synthesis then translates specifica-
tions into efficient code. The following part
compares the trade-offs in various approach-
es to program synthesis. Then, several near-
term commercial applications of KBSE
technology are predicted for the next decade.
To scale up from these near-term applications
to revolutionizing the entire software life

FALL 1992 71

Articles

72 Al MAGAZINE

cycle in the next cen-
tury, the computa-
tional requirements of
KBSE technology need
to be addressed. An
examination of cur-
rent benchmarks
reveals that hardware
performance by the
year 2000 is not
likely to be a limiting
factor but that fun-
damental issues such
as search control
require further
research. Finally, the
future of kBst in the
next century is pre-
sented from the
viewpoint of differ-
ent people in the
software life cycle—
from end users to the
knowledge engineers
who encode domain
knowledge and design
knowledge in soft-
ware architectures.

Executive
Summary

Currently, KBSE is at
the same stage of
development as early
compilers or expert
systems. Commer-
cially, a few dozen

This article draws on the chapters in
Automating Software Design and other sources
to present one vision of the future evolution
of xBsE. After an executive summary and a
brief history of software engineering, the role
of Al technology is examined in mainstream
software engineering today. Currently, Al
programming environments facilitate rapid
prototyping but do not produce efficient,
production-quality code. kBstE technology
combines the advantages of rapid prototyp-
ing and efficient code in a new programming
paradigm: transformational programming,
described in the subsequent part of the con-
clusion. In transformational programming,
prototyping, validation, and modifications
are done at the specification level; automatic
program synthesis then translates specifica-
tions into efficient code. The following part
compares the trade-offs in various approach-
es to program synthesis. Then, several near-
term commercial applications of KBSE
technology are predicted for the next
decade. To scale up from these near-term
applications to revolutionizing the entire
software life cycle in the next century, the
computational requirements of kst technol-
ogy need to be addressed. An examination of
current benchmarks reveals that hardware
performance by the year 2000 is not likely to
be a limiting factor but that fundamental
issues such as search control require further
research. Finally, the future of xBsE in the
next century is presented from the viewpoint
of different people in the software life
cycle—from end users to the knowledge
engineers who encode domain knowledge
and design knowledge in software architec-
tures.

lutionary and com-
patible with current
software develop-
ment methods. Some
research systems
for intelligent
assistance in
requirement and
specification engi-
neering, such as
ARIES and ROSE-2
incorporate many
of the current CASE
representations.
Thus, as they
mature, they could
be integrated into
the next generation
of cast tools. On the
research front, I
expect continued
progress in repre-
senting and reason-
ing with domain
and design knowl-
edge. This research
will pay off in more
sophisticated tools
for requirement and
specification engi-
neering as well as
better program syn-
thesis systems.
Within the decade,
the break-even
point will be
reached in general-
purpose program

handcrafted systems are in real use as indus-
trial pilot projects. The first and third sec-
tions of this book describe pilot systems for
software maintenance and special-purpose
program synthesis. In research laboratories,
many prototype KBSE systems have been
developed that have advanced the science of
formalizing and automating software design
knowledge. Program synthesis research has
matured over the last two decades to the
point that sophisticated algorithms can be
synthesized with only limited human guid-
ance. Research in intelligent assistance for
requirement and specification engineering is
less mature but already shows considerable
promise.

The Next Decade

Within the next decade, significant commer-
cial use of kBSE technology could occur in
software maintenance and special-purpose
program synthesis. The influence will be evo-

synthesis systems,
where given a domain theory, it will be faster
to interactively develop a program with one
of these systems than by hand. A key to this
breakthrough will be continued improve-
ments in search control. Substantial research
programs are now under way to scale KBSE
technology up from programming in the
small to programming in the large.

The Next Century

Software engineering will evolve into a radi-
cally changed discipline. Software will
become adaptive and self-configuring,
enabling end users to specify, modify, and
maintain their own software within restricted
contexts. Software engineers will deliver
knowledge-based application generators
rather than unmodifiable application pro-
grams. These generators will enable an end
user to interactively specify requirements in
domain-oriented terms, as is now done by

r

...the current generation of CASE tools is limited by shallow

representations and...reasoning methods.

telephone engineers with warsoN, and then
automatically generate efficient code that
implements these requirements. In essence,
software engineers will deliver the knowledge
for generating software rather than the soft-
ware itself.

Although end users will communicate with
these software generators in domain-oriented
terms, the foundation for the technology will
be formal representations. Formal representa-
tions can be viewed as the extension of cur-
rent CASE representations, which only capture
structural and syntactic information about a
software design, into complete semantic rep-
resentations that capture the full spectrum of
software design knowledge. Formal languages
will become the lingua franca, enabling
knowledge-based components to be com-
posed into larger systems. Formal
specifications will be the interface between
interactive problem-acquisition components
and automatic program synthesis compo-
nents.

Software development will evolve from an
art into a true engineering discipline. Soft-
ware systems will no longer be developed by
handcrafting large bodies of code. Rather, as
in other engineering disciplines, components
will be combined and specialized through a
chain of value-added enhancements. The
final specializations will be done by the end
user. KBSt will not replace the human software
engineer; rather, it will provide the means for
leveraging human expertise and knowledge
through automated reuse. New subdisciplines,
such as domain analysis and design analysis,
will emerge to formalize knowledge for use in
KBSE components.

Capsule History of Software
Engineering

Since the introduction of the electronic digi-
tal computer at the end of World War II,
hardware performance has increased by an
order of magnitude every decade. This rate of
improvement has accelerated with the recent
introduction of reduced instruction set com-
puter (risc) architectures, which simplify
hardware by pushing complex instructions
into software to optimize performance and

shorten design times. As hardware has
become less expensive, more resources have
been devoted to making computers easier to
use and program. User interfaces have
evolved from punched cards for batch pro-
cessing to teletypes and cathode ray tubes for
time sharing to graphic user interfaces for
networked workstations. In the nineties, new
modes of interaction such as handwriting and
voice will become common.

Likewise, computers are becoming easier to
program. In the fifties and sixties, the first
“automatic programming” tools were intro-
duced—assemblers and compilers. Research in
programming languages and compiler tech-
nology has been a major success for computer
science, raising the level of programming
from the machine level toward the
specification level. In the seventies, interac-
tive programming environments such as
Interlisp were created that enabled programs
to be developed in small increments and
made semantic information about a software
system readily available to the programmer
(Barstow, Shrobe, and Sandewall 1984). In the
eighties, languages designed to facilitate the
reuse of software components were intro-
duced, such as Ada and object-oriented exten-
sions of c. Object-oriented programming
methodologies encourage a top-down
approach in which general object classes are
incrementally specialized.

As hardware performance increased, the
scope of software projects soon exceeded the
capabilities of small teams of programmers.
Coordination and communication became
dominant management concerns, both hori-
zontally across different teams of program-
mers and vertically across different phases of
software development. Structured methods
were introduced to manage and guide soft-
ware development. In the late sixties and
early seventies, structured programming was
introduced for incrementally developing cor-
rect code from specifications (Dahl, Dijkstra,
and Hoare 1972). In structured programming, a
specification is first developed that states the
intended function of a program, and then an
implementation is developed through itera-
tive refinement. Structured programming also
prescribes methods for making maintenance

Articles

FALL 1992 73

Articles

74 Al MAGAZINE

easier, such as block-structuring programs to
simplify control flow.

Although structured programming helped
to correct the coding errors of the sixties, it
did not address requirement analysis errors
and system design errors. These errors are
more difficult to detect during testing than
coding errors and can be much more expen-
sive to fix. To address this problem, in the
late seventies, structured methods were
extended to structured analysis and struc-
tured design (Bergland and Gordon 1981;
Freeman and Wasserman 1983). These meth-
ods prescribe step-by-step processes for ana-
lyzing requirements and designing a software
system. The manual overhead in creating dia-
grams and documentation was one limitation
of structured methods. A more fundamental
limitation is that they provide only limited
means for validating analysis and designs
and, thus, work best for developing familiar
types of software, as is common in commer-
cial data processing. For new types of soft-
ware, exploratory programming techniques
developed in the Al community provide
better means for incrementally developing
and validating analysis and designs.

CASE was introduced in the mid-eighties to
provide computer support for structured
methods of software development (Chikofsky
1989; Gane 1990). caAsE tools include interac-
tive graphic editors for creating annotated
structure chart, data flow, and control-flow
diagrams. Like cap, the development of
graphically oriented personal computers and
workstations has made case economically fea-
sible. The information in these diagrams is
stored in a database called a repository, which
helps to coordinate a software project over
the whole development life cycle. In integrat-
ed cAsE environments, project management
tools use the repository to help managers
decompose a software project into subtasks,
allocate a budget, and monitor the progress
of software development.

cast technology includes limited forms of
automatic code generation. Module and data
declarations are generated directly from infor-
mation in a repository. In addition, special-
purpose interpreters or compilers called
application generators have been developed for
stereotyped software such as payroll programs
and screen generators for video display termi-
nals. Application generators are essentially a
user-friendly front end with a back-end inter-
preter or sets of macros for code generation.
In contrast to knowledge-based program syn-
thesis systems, current application generators
have narrow coverage, are difficult to modify,
are not composable, and provide limited

semantic processing. Nonetheless, they have
been successful; it is estimated that over half
of current cosoL code is developed by appli-
cation generators.

The cast market for just commercial data
processing tools totaled several billion dollars
in 1988 and is doubling every three to four
years (Schindler 1990). The major advantages
of using current cAst technology are that it
enforces a disciplined, top-down methodolo-
gy for software design and provides a central
repository for information such as module
interfaces and data declarations. However,
current CAst technology can only represent a
small portion of the design decisions neces-
sary to build, maintain, and modify a soft-
ware system. CASE design tools mainly
represent the structural organization of a soft-
ware design, not the function of the compo-
nents of a software system. Current CAst tools
only provide limited forms of analysis, such
as checking the integrity of control and data
flow and the consistency of data declarations
across modules. cAse technology does not cur-
rently provide a means for validating the
functional behavior of a software design to
ensure that the design satisfies the needs of
the customer.

Al and Software
Engineering Today

Al has already made a significant impact on
software engineering. First, mainstream soft-
ware engineering has adopted Al program-
ming techniques and environments,
including expert system shells, as prototyping
tools. A software prototype is a system con-
structed for evaluation purposes that has only
limited function and performance. Second, Al
components are being integrated into larger
systems, particularly where flexibility and
ease of modification are needed for rapidly
changing requirements. Third, Al inference
technology is providing the foundation for
more powerful and user-friendly information
systems (Barr 1990). Fourth, Al programming
paradigms are being adopted in more con-
ventional environments, including graphic
user interfaces, object-oriented programming,
constraint-based programming, and rule-
based programming. In all these applications,
the major factor has been the ease of develop-
ing, modifying, and maintaining programs
written in Al programming environments.

Al technology provides particularly effec-
tive exploratory programming tools for
poorly understood domains and require-
ments (Shiel 1986). Exploratory program-
ming converges on well-defined requirements

and system specifications by developing a
prototype system, testing the prototype with
the end user to decide whether it satisfies the
customer’s needs, and then iteratively modi-
fying the prototype until the end user is
satisfied. Exploratory programming identifies
errors in requirements and specifications early
in the design process, when they are cheap to
fix, rather than after the system has been
delivered to the customer, when they can cost
a hundred to a thousand times as much to
fix. This advantage of early feedback with a
prototype system is leading to the replace-
ment of linear methods of software develop-
ment with methods that incorporate one or
more passes of prototype development. Al
technology is suitable for exploratory pro-
gramming because its programming con-
structs, such as objects, rules, and constraints,
are much closer to the conceptual level than
conventional programming constructs. This
approach enables prototype systems to be
rapidly constructed and modified.

Prototype systems written in very high-
level languages and environments can direct-
ly be evolved into working systems when
efficient performance is not necessary. For
example, many small businesses build their
own information and accounting systems on
top of standard database and spreadsheet pro-
grams. Historically, spreadsheet programs
descended from VISICALC, a simple constraint-
based reasoning system within a standard
accounting paradigm. For scientific applica-
tions, Wolfram’s MATHEMATICA environment
enables scientists and engineers to rapidly
develop mathematical models, execute the
models, and then graph the results. MATHEMAT-
ICA uses a programmable rule-based method
for manipulating symbolic mathematics that
can also be used for transformational program
derivations.

However, when efficient performance is
necessary, the current generation of high-
level development environments does not
provide adequate capabilities because the
environments interpret or provide default
translations of high-level programs. Although
in the future, faster hardware can compensate
for constant factor overheads, the most
difficult inefficiencies to eliminate are expo-
nential factors that result from applying
generic interpretation algorithms to declara-
tive specifications. For example, in the mid-
eighties, the New Jersey motor vehicle
department developed a new information
system using a fourth-generation language,
which is essentially an environment for pro-
ducing database applications. Although the
fourth-generation language enabled the

system to be developed comparatively fast,
the inefficiency of the resulting code caused
the system to grind to a halt when it came
online and created havoc for several years for
the Garden State. As another example,
although mathematical models of three-
dimensional physical systems can be specified
with MATHEMATICA, the execution of large or
complex models can be unworkably slow.

When efficient performance is necessary, a
prototype system currently can only be used
as a specification for a production system; the
production system has to be coded manually
for efficiency. For example, after a three-
dimensional physical system is specified in
MATHEMATICA, it still needs to be coded into
efficient Fortran code to run simulations.
Although both MATHEMATICA and MACSYMA can
produce default Fortran code from mathemat-
ical specifications, the code is not efficient
enough for simulating large three-dimension-
al systems.

The necessity of recoding a prototype for
efficiency incurs additional costs during
development but has even more pernicious
effects during the maintenance phase of the
software life cycle. As the production system
is enhanced and modified, the original proto-
type and documentation are seldom main-
tained and, therefore, become outdated. Also,
because modifications are done at the code
level, the system loses its coherency and
becomes brittle. Eventually, the system
becomes unmaintainable, as described in
chapter 1 of Automating Software Design.

Transformational Programming

KBSE seeks to combine the development
advantages of high-level environments sup-
porting rapid prototyping with the efficiency
advantages of manually coded software. The
objective is to create a new paradigm for soft-
ware development—transformational pro-
gramming—in which software is developed,
modified, and maintained at the specification
level and then automatically transformed
into production-quality software (Green et al.
1986). For example, the SINAPSE system auto-
mates the production of efficient Fortran code
from high-level specifications of three-dimen-
sional mathematical models. As another
example, the ELF system automates the pro-
duction of efficient, viLsI wire routing software
from specifications. Where this automatic
translation is achieved, software develop-
ment, maintenance, and modification can be
carried out at the specification level with the
aid of knowledge-based tools. Eventually, soft-
ware engineering will evolve to a higher level

Articles

FALL 1992 75

Articles

76 Al MAGAZINE

4

CASE was introduced. . .to provide computer support for structured
methods of software development...

and become the discipline of capturing and
automating currently undocumented domain
and design knowledge.

To understand the impact of automating
the translation between the specification
level and the implementation level, consider
the impact of desktop publishing during the
past decade. Before the introduction of com-
puter-based word processing, manually
typing or typesetting a report consumed a
small fraction of the time and money needed
to generate the report. Similarly, manually
coding a software system from a detailed
specification consumes a small fraction of the
resources in the software life cycle. However,
in both cases, this manual process is an error-
prone bottleneck that prevents modification
and reuse. Once a report is typed, seemingly
minor modifications, such as inserting a para-
graph, can cause a ripple effect requiring a
cascade of cutting and repasting. Modifying a
software system by patching the code is simi-
lar to modifying a report by erasing and
typing in changes. After a few rounds of
modification, the software system resembles
an inner tube that is patched so often that
another patch causes it to blow up. When a
typewritten report gets to this stage, it is
simply retyped. However, when a software
system gets to this stage, the original design
information is usually lost. Typically, the
original programming team has long since
departed, and the documentation has not
been maintained, making it inadequate and
outdated. The only recourse is an expensive
reengineering effort that includes recovering
the design of the existing system.

Because maintenance and modification are
currently done at the code level, they con-
sume over half the resources in the software
life cycle, even though the original coding
consumes a small fraction of the life-cycle
resources. Most maintenance effort is devoted
to understanding the design of the current
system and understanding the impact of pro-
posed modifications. Furthermore, because
modification is difficult, so is reuse. It is easy
to reuse portions of previous reports when
they can easily be modified to fit in a new
context. Similarly, it is easy to reuse portions
of previous software systems when abstract
components can easily be adapted to the con-

text of a new software system. For these rea-
sons, word processing and desktop publishing
have had an impact disproportionate to the
resources consumed by the manual process
they automate. For similar reasons, automat-
ing the development of production-quality
software from high-level specifications and
prototypes will have a revolutionary impact
on the software life cycle.

By automating printing, desktop pub-
lishing has created a market for computer-
based tools to help authors create
publications from the initial conceptual
stages through the final layout stage. Out-
lining programs help authors organize and
reorganize their ideas. Spelling checkers
and grammar checkers help ensure consis-
tency with standards. Page layout pro-
grams optimize the visual presentation of
the final publication and often integrate
several source files into a final product.
These tools would be useful even in the
absence of automated printing. However,
they reach their full potential in environ-
ments supporting the complete spectrum
of activities for the incremental and itera-
tive development of publications.

Current caAst tools are similar to outliners,
grammar checkers, and tools that integrate
several source files. CASE tools have not yet
reached their full potential because coding is
still mostly a labor-intensive manual process.
As coding is increasingly automated, more
sophisticated tools that support the initial
stages of software design will become more
useful. Rapidly prototyped systems developed
with these tools will be converted with mini-
mal human guidance into production-quality
code by program synthesis systems, just as
word processing output today is converted
almost automatically into publication-quality
presentations through page layout programs.
CASE representations will move from partial
representations of the structure and organiza-
tion of a software design toward formal
specifications. Tools such as waTsoN that
interactively elicit requirements from end
users and convert them into formal
specifications will be one source of formal
specifications. Tools such as Aries will enable
software developers to incrementally develop
and modify formal specifications. Tools such

as ROSE-2 will match specifications to existing
designs for reuse.

Comparison of Program
Synthesis Techniques

The ultimate objective of transformational
programming is to enable end users to
describe, modify, and maintain a software
system in terms natural to their application
domain and, at the same time, obtain the
efficiency of carefully coded machine-level
programs. Great progress has been made
toward this objective in the progression from
assemblers to compilers to application genera-
tors and fourth-generation languages. Howev-
er, much remains to be done.

Given current technological capabilities,
there are trade-offs between several dimen-
sions of automatic translation. The first
dimension is the distance spanned between
the specification or programming level and
the implementation level. The second dimen-
sion is the breadth of the domain covered at
the specification level. The third dimension is
the efficiency of the implemented code. The
fourth dimension is the efficiency and degree
of automation of the translation process. The
fifth dimension is the correctness of the
implemented code. The Automating Software
Design chapters in the sections on domain-
specific program synthesis, knowledge compi-
lation, and formal derivation systems show
how current kBst research is expanding our
capabilities along each of these dimensions.
The following paragraphs compare different
approaches to automatic translation.

Compilers for conventional programming
languages such as Fortran and cosoL have a
wide breadth of coverage and efficient trans-
lation and produce fairly efficient code. These
accomplishments are achieved with a com-
paratively short distance between the pro-
gramming level and the implementation
level. Optimizing compilers sometimes have
user-supplied pragmas for directing the
translation process, thereby getting greater
efficiency in the implemented code at the
expense of greater user guidance in the trans-
lation process. Verifying that a compiler pro-
duces correct code is still a major research
issue.

Very high-level languages such as logic pro-
gramming and knowledge interpretation lan-
guages also achieve a wide breadth of
coverage through a short distance between
the programming level and the implementa-
tion level. However, the programming level is
much closer to the specification level than
with conventional programming languages.

Programs written in these languages are either
interpreted or compiled to remove interpre-
tive overhead such as pattern matching.
These languages can be used to write declara-
tive specifications that are generally imple-
mented as generate-and-test algorithms, with
correspondingly poor performance. It is also
possible to develop efficient logic programs
by tuning them to the operation of the inter-
preter, in effect, declaratively embedding con-
trol structure. The code implemented for
these programs approaches, within a constant
factor, the efficiency of code written for con-
ventional languages, except for the lack of
efficient data structures. Efficient logic pro-
grams can either be developed manually or
can be the target code of a program synthesis
system such as PAL or XPRTS

Knowledge interpreters such as expert system
shells are seldom based on formal semantics,
and thus, formally verifying that they pro-
duce correct code is impossible. However,
some research-oriented languages such as
pure Prolog are based on formal semantics.
Formal proofs in which abstract compilers for
these languages produce correct code for
abstract virtual machines have appeared in
the research literature (Warren 1977; Despey-
roux 1986). These proofs are based on the
close relationship between logic program-
ming and theorem proving, for which the
soundness and completeness of inference pro-
cedures have mathematically been worked
out. Proving that real compilers produce cor-
rect code for real machines is a much more
difficult and detailed undertaking. Success has
recently been reported in Hunt (1989), Moore
(1989), and Young (1989).

Application generators span a significant dis-
tance between the specification level and the
implementation level by choosing a narrow
domain of coverage. Application generators
typically use simple techniques to interpret or
produce code in conventional languages,
such as filling in parameters of code tem-
plates. Thus, the performance of implement-
ed code usually is only fair. The translation
process is efficient and automatic. Because
application generators are mainly used in
commercial data processing, mathematically
verifying that an application generator pro-
duces correct code has not been a major issue.

Domain-specific program synthesis systems
will likely become the next generation of
application generators. They also span a
significant distance between the specification
level and the implementation level by choos-
ing a narrow domain of coverage. They are
easier to incrementally develop and modify
than conventional application generators

Articles

FALL 1992 77

Articles

The objective
is to create a
new paradigm
for software
development
—transforma-
tional
program-
ming...

78 Al MAGAZINE

because they are based on transformation
rules. It is also easier to incorporate more
sophisticated problem-solving capabilities.
Therefore, compared to conventional applica-
tion generators, they tend to produce much
better code and provide higher-level
specifications. In theory, the transformation
rules could be derived by composing basic
transformation rules that were rigorously
based on logic and, therefore, could verifiably
be correct. However, in practice, the transfor-
mation rules are derived through knowledge
engineering. Compared with other program
synthesis approaches, the narrow domain
enables domain knowledge and search
knowledge to be hard wired into the transfor-
mation rules; therefore, the translation pro-
cess is comparatively efficient.

Knowledge compilation research seeks to com-
bine the high-level specification advantages
of knowledge interpreters with the efficiency
advantages of conventional programs. The
goals are broad coverage, a large distance
between the specification level and the
implementation level, and efficient code. To
achieve these goals, the major research issue
is search control during program synthesis.
Like approaches to domain-specific synthesis,
the transformation rules are derived through
knowledge engineering and, hence, are not
verifiably correct. However, the domain
knowledge is usually encoded separately and
explicitly; therefore, knowledge compilers
can work in different domains given different
domain knowledge.

Formal derivation research seeks the same
goals as knowledge compilation research but
within a framework that is rigorously based
on logic and, therefore, is verifiably correct.
The formal basis for the extraction of pro-
grams from constructive proofs and for basic
transformation rules was worked out 20 years
ago. As in knowledge compilation, the major
research issue is search control during pro-
gram synthesis. The major approach to search
control is to develop metalevel programs
called tactics and strategies that encapsulate
search control and design knowledge.

The Next Decade

KBSE will revolutionize the software life cycle,
but the path will be evolutionary because its
development, as well as its incorporation into
software-engineering practice, will be incre-
mental. KBSt will adapt itself to current prac-
tices before it changes these practices.

In the coming decade, there are several
leverage points where KBSt technology could
commercially be applied. In each of these

potential uses, technology already developed
in the research laboratory could be combined
with conventional software-engineering tools
to provide much better tools. For some of
these applications, industrial pilot projects
are already under way. First, I review several
potential near-term uses, then examine
applications in software maintenance and
special-purpose program synthesis. The com-
putational requirements of kBsE technology
are also discussed.

First, kBsE tools for software understanding
will likely be adopted for software mainte-
nance (as described earlier). Current Al tech-
nology can significantly enhance standard
software understanding tools such as data
flow and control-flow analyzers. KBSE aims at
eventually elevating maintenance from the
program level to the specification level. How-
ever, because of the enormous investment in
the existing stock of software, program main-
tenance will be the dominant cost in software
engineering for decades to come.

Second, Al technology could be used to
produce the next generation of application
generators (see The Next Century). Transfor-
mational programming provides a flexible
and modular basis for a deeper level of
semantic processing than is feasible with cur-
rent application generators. Its use leads to
better user interaction and higher-level
specifications as input and more optimal
code as output.

Third, Al environments for rapid prototyp-
ing and exploratory programming could be
enhanced and integrated with cAse design
tools. Rapid prototyping has recently become
a major topic in software engineering. CAsE
design tools support decomposing a system
into a hierarchy of modules. The result is usu-
ally a hierarchical graph representation anno-
tated with text commenting on the intended
function of the modules. Al programming
environments can be used to rapidly proto-
type the function of these modules and, thus,
create an executable prototype of the whole
system.

Fourth, the currently small but growing use
of formal methods (Wing 1990) for software
development could considerably be enhanced
through software-engineering technology. A
method is formal if it has a sound mathemat-
ical basis and, therefore, provides a systemat-
ic rather than ad hoc framework for
developing software. In Europe, formal lan-
guages such as vbM (Jones 1986) and z (Spivey
1989) have been used in pilot projects to
manually develop formal specifications of
real software systems. Tools that incorporate
automated reasoning could provide substan-

tial assistance in developing formal
specifications, as shown earlier. Furthermore,
within this decade, formal derivation systems
will become sufficiently advanced to provide
interactive environments for refining formal
specifications to code (see Transformational
Programming).

Finally, a major problem with programming
in the large is ensuring that a large software
system is consistent: The implementation
must be consistent with the system design
that, in turn, must be consistent with the
requirements; the components of the soft-
ware system developed by separate teams
must be consistent with each other. Current
CASE tools use shallow representations and,
thus, provide only limited consistency check-
ing. For example, cast design tools can check
that a hierarchy of modules has no dead ends
in the flow of control. More complete consis-
tency checking will require deeper representa-
tions and more inference capabilities. The
research on ROSE-2 shows that there is an evo-
lutionary path from current CASE consistency
checking to consistency checking with deeper
representations.

Software Maintenance: The Next Decade

Industry and government have invested hun-
dreds of billions of dollars in existing software
systems. The process of testing, maintaining,
modifying, and renovating these systems con-
sumes over half of the software-engineering
resources and will continue to do so for
decades to come. Often, older systems are no
longer maintainable because no one under-
stands how they work, preventing these sys-
tems from being upgraded or moved to
higher-performance hardware platforms. This
problem is acute for software written in
archaic languages that programmers are no
longer trained in.

Intelligent software maintenance assistants
are based on AI techniques for software
understanding and ramification reasoning.
Software understanding is a prerequisite to
other maintenance tasks and currently
accounts for over half the time spent by
maintenance programmers. In the long term,
software systems will include built-in self-
explanation facilities such as those in LASSIE
and the explainable expert system (Neches,
Swartout, and Moore 1985). Today, software
understanding is done by reverse engineering,
analyzing existing code and documentation
to derive an abstract description of a software
system and recover design information.

Reverse engineering is the first step in
reengineering, renovating existing systems,
including porting them to newer languages

and hardware platforms. Because mainte-
nance is increasingly difficult, reengineering
is especially important for code written long
ago in older languages and for older hardware
platforms. Many businesses are legally
required to be able to access records in
databases dating back decades. These databas-
es were written as flat files, making it impossi-
ble to integrate them with newer relational
databases and requiring the business to keep
backward compatibility with old hardware
platforms. Reengineering is also needed to
port engineering and scientific code written
in the sixties and seventies to newer hardware
platforms with parallel architectures. Reengi-
neering these older systems occupies many
programmers; Al technology can provide
significant assistance to this task.

Standard Al techniques such as pattern
matching and transformation rules enhance
conventional tools for software understand-
ing by enabling higher-level analysis and
abstraction (Biggerstaff, Hoskins, and Webster
1989; Hartman 1989; Letovsky 1988; Wills
1989). With these techniques, much of the
information needed by current cAse design
tools can be recovered semiautomatically,
even from archaic assembly language code.
One approach is cliche recognition (Rich and
Waters 1990), matching stereotyped program-
ming patterns to a program’s data and control
flow, thereby abstracting the program into a
hierarchy of these cliches.

Al techniques for software understanding
can also be applied to the testing and integra-
tion phases of software development. For
example, a major aerospace company used a
KBSE system to test two million lines of For-
tran code produced by subcontractors for
compliance with its coding standards.
Hundreds of violations were found, including
unstructured do loops, dead code, identifier
inconsistency, and incorrectly formatted
code. This technique has already saved four
person-years of hand checking, yet the system
took less than half a person-year to develop.
The system was built in REFINE, which is a very
high-level programming environment that
integrates parsing technology, an object-ori-
ented knowledge base, and Al rule-based tech-
nology (Burson, Kotik, and Markosian 1990).
Most of the development time was devoted to
writing grammar definitions for the three
dialects of Fortran used by subcontractors;
REFINE automatically generates parsers from
the grammar definitions. The core of the
system was written as a set of rules and took
only a few weeks of development time.
Because it was written as a set of rules, it is
easily modifiable as coding standards change.

Articles

KBSE will
revolutionize
the software
life cycle...

FALL 1992 79

Articles

80 AI MAGAZINE

Understanding the existing code is the first
step in software modification. The next step
is ramification reasoning to determine the
impact of proposed modifications to a soft-
ware system. The objective is to ensure that a
modification achieves its goal without caus-
ing undesired changes in other software
behavior. This is essentially a task for con-
straint-based reasoning. Ramification reason-
ing can be done at many levels of abstraction.
At the lowest level, it involves tracing
through data flow and control-flow graphs to
decide which programs and subroutines
could be affected by a proposed modification.
Automated ramification reasoning is even
more effective when given higher-level
design information. For example, it can deter-
mine whether proposed modifications violate
data-integrity constraints and other invari-
ants. As CASE representations evolve into more
complete and formal representations, Al tech-
niques for ramification reasoning will be
incorporated into CASsE tools.

Special-Purpose Program Synthesis:
The Next Decade

Today, application generators are one of the
most effective tools for raising programmer
productivity. Because they are based on code
templates, they provide a more flexible and
higher level of software reuse than the reuse
of code. Transformational technology pro-
vides the means for higher-performance
application generators, which are also poten-
tially easier to develop and modify.

Application generators generally produce
code in three phases. The first syntactic anal-
ysis phase converts a specification written in
an application-oriented language or obtained
interactively through menus and forms into a
syntactic parse tree. A semantic analysis
phase then computes semantic attributes to
obtain an augmented semantic tree. The final
generation phase traverses the semantic tree
and instantiates code templates. The genera-
tion phase is similar to macroexpansion in
conventional programming languages.

Application generator generators (Cleave-
land and Kintala 1988) are tools for building
application generators. Parser generators such
as YACC take the definition of an application-
oriented language as input and produce a
parser for the syntactic analysis phase as
output. Tools for building the semantic analy-
sis phase are usually based on attribute-gram-
mar manipulation routines. Tools for
building the generation phase are similar to
macro definition languages.

Al provides technology for much richer
semantic processing. In addition, the genera-

tion phase can be augmented with program
transformations to produce better code. Pro-
gram transformations enable code templates
to be more abstract and, therefore, have
wider coverage. For example, code templates
can be written with abstract data types, such
as sets, that program transformations, then
refine into concrete data structures.

Transformation rules provide a flexible and
modular basis for developing and modifying
program transformations and semantic analy-
sis routines. Eventually, end users will be able
to interactively develop their own transfor-
mation rules in restricted contexts. In the
near term, transformational technology will
enable software engineers to build higher-
performance application generators. KBSE
environments that include parser-printer
generators and support for program-transfor-
mation rules, such as REfINE, provide tools for
developing knowledge-based application
generators.

Intelligent application generators are cost-
effective options not only in standard
application areas such as business informa-
tion systems but also in the enhancement of
existing software. Automatic code enhance-
ment makes software development and main-
tenance more efficient and results in fewer
bugs. Examples of enhancements include
better error handling and better user inter-
faces.

Making software fault tolerant is particular-
ly important in real-time systems and in
transaction systems where the integrity of a
database could be affected. Consequently, a
significant amount of code in these systems is
devoted to error detection and recovery. An
informal sampling of large telecommunica-
tions programs found that 40 percent to 80
percent of branch points were devoted to
error detection.

User interface code often accounts for 30
percent of an interactive system. Screen gen-
erators have long existed for business transac-
tion systems, and graphic user interface
generators for workstations have recently
been marketed. However, current tools only
make it faster to develop precanned displays.
Intelligent interfaces are much more flexible.
They can adapt to both the semantics of the
data they present and the preferences of the
user. For example, instead of precanned text,
intelligent interfaces use natural language
generation techniques that are sensitive to a
model of the user’s knowledge. Graphics can
be optimized to emphasize information
important to the user.

However, intelligent interfaces are more
difficult to design and program than standard

user interfaces, making it costly to incorpo-
rate them in each new application. Roth,
Mattis, and Mesnard (1990) describe SAGE, a
prototype system for application-independent
intelligent data presentation. SAGE incorporates
design expertise for selecting and synthesiz-
ing graphic components in coordination with
the generation of natural language descrip-
tions. SAGE combines a declarative representa-
tion of data with knowledge representations
of users’ informational goals to generate
graphics and text. An application developer
can generate an intelligent presentation
system for his(her) application using SAGE.

Program transformation technology can
directly be applied to the synthesis of visual
presentations. Westfold and Green (1991)
describe a transformation system for deriving
visual presentations of data relationships. The
underlying idea is that designing a visual pre-
sentation of data relationships can be viewed
as designing a data structure. Starting with a
relational description of data, transformations
are applied to reformulate the description
into equivalent descriptions that have differ-
ent implementations, that is, different repre-
sentations on the screen. Many different
representations of the same data can be gen-
erated, each emphasizing different aspects of
the information. For example, an n-ary rela-
tion can be reformulated so that all the tuples
with the same first argument are grouped.
Successive applications of this rule gradually
transform the n-ary relation into a tree. Other
rules transform data relationships into dis-
play-oriented relationships, which are then
rendered graphically.

Computational Requirements

KBSE can be expensive computationally, both
in terms of memory and processor cycles. The
research systems described in this book often
push the performance envelope of current
workstations. Hardware capabilities have pre-
viously been a limiting factor in the commer-
cial adoption of caAD, casg, and Al technology.
The most limiting factor was the computa-
tional requirements of providing a graphic
user interface with the hardware available in
the late seventies and early eighties. Hardware
performance in the nineties will probably not
be a major limiting factor in scaling up KBsSE
technology to industrial applications.
Benchmarks from several industrial pilot
projects show that current computer worksta-
tions provide sufficient computational power
to support KBSE on real problems when appro-
priate trade-offs are made. A benchmark from
domain-specific program synthesis is the

SINAPSE system, which synthesizes a 5,000-line
Fortran three-dimensional modeling program
from a 60-line specification in 10 minutes on
a SUN-4 (a SUN-4 is a UNIX workstation running
about 12 mirs with memory from 16 to 64
megabytes). This type of program would take
weeks to generate by hand. SINAPSE is special-
ized to synthesize only finite-difference algo-
rithms, so it can make large-grained decisions
without sacrificing automation or the
efficiency of the resulting code. SINAPSE also
uses knowledge-based techniques to constrain
the search space. Another benchmark comes
from the testing of Fortran code for adher-
ence to coding standards, which was
described earlier. On a sun-4, 20,000 lines of
code were checked each hour.

The computational demands of kst tech-
nology result from the scope of the knowl-
edge representation, the granularity of
automated decision making, and the size and
complexity of the software systems produced.
Greater breadth or depth of representation
requires increased memory, and increased
granularity of automated decision making
requires increased processor cycles. The criti-
cal issue is how computational requirements
scale as a function of these variables.

The computational requirements of soft-
ware-engineering technology can be factored
into two groups: those that increase either
linearly or within a small polynomial in
terms of these variables and those that
increase exponentially. The former group
includes factors such as the amount of
memory needed to represent the history of a
derivation, including all the goals and sub-
goals. As discussed in chapter 23 of Automat-
ing Softwre Design, this amount is probably
proportional to N * log N, where N is the size
of the derivation. The exponential factors
include combinatorially explosive search
spaces for program derivations. These expo-
nential factors cannot be addressed by any
foreseeable increase in hardware performance.
Instead, better kBstE technology is required,
such as tactics for search control.

Although software engineers will always
want more hardware power, increases in hard-
ware performance within the next decade will
likely address the computational require-
ments of kBt that do not grow exponentially.
The benchmarks from industrial pilot projects
show that some kBst technology can already
be applied to industrial-scale software systems
within the performance limitations of current
computer workstations.

Hardware performance within the fiercely
competitive workstation market will continue
to grow rapidly. Based on technology already

Articles

KBSE can be
expensive...
in terms of
memory and
processor
cycles.

FALL 1992 81

Articles

In the future,
software
systems will
include built-
in, knowledge-
based
software
information
systems...

82 AI MAGAZINE

in advanced development, an order of magni-
tude increase is expected by the middle of the
decade in both processor speed and memory
size. Simpler architectures such as risc have
decreased development time and will facili-
tate the introduction of faster device tech-
nologies such as gallium arsenide and
Josephson junctions.

Lucrative, computationally intensive appli-
cations, such as real-time digital video pro-
cessing, will drive hardware performance
even higher in the latter part of the decade,
with yet another order-of-magnitude
increase. Compared with the computational
requirements of these applications, scaling up
KBSE technology to industrial applications will
not be hardware limited if exponential factors
can be avoided. The next part of this article
describes how combinatorially explosive
search might be avoided through the reuse of
domain and design knowledge.

The Next Century

Within the kBSE community, there is a broad
consensus that knowledge-based methods
will lead to fundamentally new roles in the
software-engineering life cycle and a revised
view of software as human knowledge that is
encapsulated and represented in machine
manipulable form. At the beginning of the
computer age, this knowledge was represent-
ed as the strings of 1’s and 0’s of machine lan-
guage. By applying software engineering to
itself by developing compilers, the represen-
tation level has been raised to data structures
and control structures that are closer to the
conceptual level. Although this improvement
is considerable, most of the domain and
design knowledge that is used in developing a
modern software system is lost or, at best, is
encoded as text in documentation.

The goal of kst research is to capture this lost
knowledge by developing knowledge representa-
tions and automated reasoning tools. As this
task is accomplished, software engineering will
be elevated to a higher plane that emphasizes
formalizing and encoding domain and design
knowledge and then automatically replaying
and compiling this knowledge to develop work-
ing software systems. Below, I envision how
future xBsE environments might support differ-
ent classes of people in the software life cycle,
from end users to the knowledge engineers who
encode domain knowledge and design knowl-
edge in software architectures.

Maintenance Programmers

In the future, software systems will include
built-in, knowledge-based software informa-

tion systems such as LAssIE. Maintenance pro-
grammers will no longer study reams of
source code and outdated documentation to
understand a software system. Instead, they
will query the system itself. Eventually, the
information will automatically be updated, so
that as a system is modified, the information
is kept current. The information in these sys-
tems will expand to include the full range of
design decisions made in developing the soft-
ware system. Eventually, these software
information systems will be produced as a by-
product of software development with KBSE
tools.

These software information systems will
evolve to become active assistants in software
maintenance. They will be able to trace the
ramifications of proposed changes at the
code, system design, and requirement levels.
They will help to ensure that as a software
system evolves to meet changing require-
ments, it remains consistent and bug free.
Eventually, maintenance will no longer be
done by modifying source code. Instead,
desired changes will be specified directly by
the end user at the requirement level, and the
system will carry them out automatically.
Software systems will become self-document-
ing and self-modifying. The typically junior
programmers who are now burdened with
maintaining code designed by other program-
mers will spend their time in more interest-
ing pursuits.

End Users

In the future, end users will interactively cus-
tomize generic software systems to create
applications tailored to their own particular
needs. Progress in this direction has already
been made. For example, several word pro-
cessing and spreadsheet programs allow users
to customize menus, change keyboard bind-
ings, and create macros. Sometimes, macros
are compiled for greater efficiency. kBst tech-
nology will provide much more flexibility in
customization, more optimized code, and
intelligent assistance in helping an end user
develop requirements.

A scenario for future intelligent assistance
for end users in scientific computing is pre-
sented by Abelson et al. (1989). Below, I
examine a simpler domain by considering
how a businessperson will develop a custom
payroll system in the future. Current payroll
program generators automate code genera-
tion but do not provide substantial help in
eliciting and analyzing requirements. An
intelligent payroll application generator will
include a knowledge base about the payroll

domain that defines concepts such as hourly
versus salaried employees, various types of
bonuses and deductions, tax codes, and different
kinds of pay periods. Using this knowledge, a
requirement acquisition component will interac-
tively elicit the relevant structure of the busi-
nessperson’s company and the types of output
and information desired. During this interac-
tion, the requirement acquisition component
will check the consistency of evolving require-
ments with constraints, such as tax codes. It will
also guide the businessperson in resolving ambi-
guities and incompleteness. The result of this
requirement elicitation process will be a formal
specification of the desired payroll system in the
form of declarations and constraints formulated
in terms of the concepts and operations of the
payroll domain.

To validate the specification, the payroll appli-
cation generator will then transform these
declarations and constraints into a prototype
spreadsheet program and try out a few test
examples with the businessperson. This step will
lead to further refinements of the requirements
until the businessperson is satisfied. The payroll
program generator will then compile the
specification into machine code and generate
the proper interfaces for other accounting
systems.

The businessperson does not have to be an
expert in accounting, tax codes, or business
programming or even be able to develop
spreadsheets. The domain knowledge of pay-
rolls would enable the requirement acquisi-
tion component to elicit the appropriate
information in terms the businessperson can
understand.

Many of the capabilities described in this
sketch are within the range of current KkBSE
research systems. For example, eliciting pay-
roll requirements involves temporal reason-
ing that is much less complex than that
performed by wAaTsON in eliciting requirements
for new telephone features. Other recent work
on knowledge-based requirement acquisition
includes Rubenstein and Waters (1989) and
Anderson and Fickas (1989). Similarly, com-
piling the arithmetic constraints of a payroll
specification into efficient code is far less
difficult than compiling partial differential
equations into efficient finite-difference pro-
grams, as done by sINAPSE. What is missing are
good tools for acquiring the knowledge of the
payroll domain, so that this knowledge can
be used by both requirement elicitation com-
ponents and program synthesis components.

System Developers

The needs of system developers differ from
those of end users. End users prefer to interact

at the requirement level and be shielded from
the complexity of specifications and system
design. In contrast, system developers prefer
help managing the complexity of specifications
and system designs but want to be shielded
from the implementation details. Two inter-
related ideas currently being developed could
meet some of the needs of future system
developers: megaprogramming and software
architectures.

Megaprogramming is programming at
the component level (e.g., user interfaces,
databases, device controllers) rather than the
code level. To program at the component
level, it is necessary to either reuse compo-
nents or generate components from
specifications. Components can more readily
be reused or generated if they are defined in
the context of a software architecture that
identifies major types of components and
provides the glue for composing them
together. A software architecture is a high-level
description of a generic type of software
system, such as the class of transaction-pro-
cessing systems.

Software architectures will subsume cur-
rent cast design representations. To support
software developers, software architectures
will include the functional roles of major
software components and their interrelation-
ships stated in an application-oriented lan-
guage; a domain theory that provides precise
semantics for the application-oriented lan-
guage for use in automated reasoning;
libraries of prototype components with exe-
cutable specifications; program synthesis
capability to produce optimized code for
components after a prototype system has
been validated; a constraint system for rea-
soning about the consistency of a developing
software system; and design records that link
requirements to design decisions, as in the
ROSE-2 system .

In the future, routine system development
will be done by small teams of system ana-
lysts and domain experts working with KBsE
environments that support software architec-
tures. In contrast to the guidance provided
for an end user, the kBSE environment will
play an assistant role in requirement analysis.
The team will start with a set of informal
requirements and elaborate them into precise
statements in the application-oriented lan-
guage. As the requirements are made precise,
the software-engineering environment will
propagate these decisions through the design
records to check the feasibility of meeting
these requirements. This propagation will
also set up default design decisions and
record design alternatives to be investigated

Articles

FALL 1992 83

Articles

Domain
knowledge is

a prerequisite
to requirement
engineering.

84 AI MAGAZINE

by the team.

After a subset of the requirements has been
made into precise specifications, the KBSE
environment will generate executable proto-
types to help validate and refine the require-
ments. Analytic assessments of an evolving
design will be provided by having the con-
straint system determine the ramifications of
design decisions. The constraint system will
ensure that design decisions are internally
consistent and consistent with the software
architecture. The team will iteratively refine
its requirements, the precise specifications,
and the system design using an opportunistic
methodology similar to current rapid proto-
typing methodologies. After the system
design is complete, the implementation of
the production system will mostly be auto-
matic. The kBSE environment will ask for
parameters relevant to performance, such as
the size of expected input, and will occasion-
ally ask for guidance on implementation
decisions.

System development by a close-knit team
with automated support will diminish many
communication, coordination, and project
management difficulties inherent in manag-
ing large numbers of programmers. The feasi-
bility of small teams developing prototype
systems has already been shown using an Al
programming environment suitable for rapid
prototyping, reusable prototype components,
and a software architecture (Brown et al.
1988). However, implementing the final pro-
duction system required a large number of
programmers to code efficient versions of the
components. In the future, this final produc-
tion phase will largely be automated.

There is an inherent tension between
reusability and performance in component
implementations, which is why megapro-
gramming is currently easier to apply to
system prototyping than production system
implementation. To be maximally reusable,
components should make as few assumptions
about other components as possible. Reusable
components should use abstract data types
and late-binding mechanisms common in Al
environments. To be maximally efficient,
components should take advantage of as
much of the context of use as possible,
including the implementations of data types
in other components and early binding
mechanisms. Transformational programming
will make it possible to use megaprogram-
ming during system prototyping and then
automatically generate efficient production-
quality code.

Extensible software and additive program-
ming are the foundation for enabling small

teams to build large software systems, end
users to customize their own applications,
and application software to be self-maintain-
ing. A software architecture represents a par-
tial set of decisions about requirements and
system design that are generic to a class of
software systems. To be reusable, this partial
information must be represented so it is
extensible. System developers and end users
will incrementally add to these decisions to
generate a software system. Systems will be
modified for changing requirements by
retracting decisions and adding new decisions.

Software Architects, Domain Analysts,
and Design Analysts

Software architectures will be created through
domain analysis and design analysis. Domain
analysis (Arango 1988) is a form of knowledge
acquisition in which the concepts and goals
of an application domain are analyzed and
then formalized in an application-oriented
language suitable for expressing software
specifications. Design analysis is the formaliza-
tion of transformational implementations for
a class of software artifacts. A domain designer
is a design analyst who derives implementa-
tions for the objects and operations in an
application-oriented language developed
through domain analysis.

System developers will reuse domain analy-
sis by stating requirements, specifications,
and system designs in the application-orient-
ed language. System developers will also reuse
design analysis when they develop an appli-
cation system through a software architec-
ture. Thus, the cost of domain analysis and
design analysis will be spread over many dif-
ferent systems.

Domain knowledge is necessary for intelli-
gent requirement analysis, specification
acquisition, and program synthesis. Domain
knowledge can implicitly be embedded in
special-purpose rules or can be formal and
explicit. Formalizing domain knowledge is a
difficult task, currently requiring extended
collaboration between domain experts and
knowledge engineers (Curtis, Krasner, and
Iscoe 1988). One advantage of formalizing
domain knowledge is that it can then be used
in all phases of software development, with
the assurance of correctness between imple-
mentations and specifications. In other
words, if a user validates a specification with
a specification assistant, and a program syn-
thesis system derives an implementation for
this specification, the program correctly
implements the user’s intentions. Formalized
domain knowledge can also be used with
generic automated reasoning tools, thus

enabling the reuse of kBSE components.

Domain knowledge is a prerequisite to
requirement engineering. Requirements are
necessarily described in terms of the applica-
tion domain in which a software system will
be used. Current requirement languages are
restricted to expressing system-oriented con-
cepts. Knowledge representation languages
will provide the basis for expressing domain
knowledge within which domain-oriented
requirements can formally be expressed
(Borgida, Greenspan, and Mylopoulos 1986).
This approach will enable automatic theorem
provers to verify whether a set of require-
ments is consistent with domain knowledge
and to fill incompleteness in a partial set of
requirements, as is done by warsoN for the
telephone domain. Program synthesis systems
use domain knowledge to decompose and
implement domain objects and operations.
For example, distributive laws in a domain
theory are used to decompose and optimize
domain operations.

A future design analyst will first
interactively develop transformational deriva-
tions for a set of generic programs in an appli-
cation domain using a general-purpose
program synthesis system. These transforma-
tional derivations will be recorded as deriva-
tion histories Derivation histories can be
viewed as the execution trace of an implicit
metalevel program that controls the transfor-
mational derivation. The objective of design
analysis is to make at least part of the infor-
mation in this metalevel program explicit so
that it can be stored in a software architecture
and reused by a system developer. A deriva-
tion history needs to be generalized so that it
can be applied to similar but not necessarily
identical specifications. Because of the
difficulty of automatically generalizing execu-
tion traces to programs, I anticipate that gen-
eralizing derivation histories will be a manual
process, with some computer assistance, for
the foreseeable future. In the long-term
future, this generalization process might be
automated through explanation-based gener-
alization, given a general theory of the teleo-
logical structure of transformational
derivations. Applications of explanation-
based generalization to program synthesis are
described in chapters 14 and 22 of Automating
Software Design and also in Shavlik (1990).
Fickas (1985) describes GLITTER, a research
system that uses teleological structure to par-
tially automate transformational derivations.

The first level of generalizing a derivation
history will be done by annotating the deriva-
tion history with the dependencies between
the individual transformation steps and the

overall goal structure of the derivation. Some
dependency information will automatically
be generated. The annotations will provide
information to intelligent replay systems to
modify a derivation history for use in similar
specifications (Mostow 1989). The second
level of generalization will be done by creat-
ing metalevel tactics. A third level of general-
ization will be strategies that encapsulate
heuristic knowledge for choosing tactics.
These strategies will include methods for
decomposing specifications into components
to be synthesized by specialized tactics and
methods for using performance requirements
to guide the transformational derivation.

A software architect will integrate the
results of domain analysis and design analysis
with a constraint system for reasoning about
the consistency of a developing software
system. The results of domain analysis will be
an application-oriented language for a soft-
ware architecture and a domain theory that
defines the semantics of this language. The
results of design analysis, that is, annotated
derivation histories, tactics, and strategies,
will essentially form a set of special-purpose
program synthesizers for the components of a
software architecture. The software architect
will also provide an initial set of design
records linking requirements to design deci-
sions for choosing one component over
another. These design records will be elaborat-
ed by teams of system developers.

In essence, software engineering will
become knowledge acquisition followed by
redesign. Although creating a software archi-
tecture will require more effort than design-
ing any particular software system, it will be
paid back over the creation of many software
systems. Software architectures will provide
the right tools for what is now partially done
through copy and edit. Instead of designing a
system from scratch, software system develop-
ers will extend and redesign the defaults in a
software architecture. Redesign is the method
used for iteratively modifying a rapidly proto-
typed system. In the future, redesign will be
supported with a spectrum of tools, including
specification evolution transformations, con-
sistency maintenance systems, and intelligent
replay of derivation histories.

KBSE environments that support domain
analysis, design analysis, and software archi-
tectures are being explored in research labora-
tories. Domain analysis and design analysis
are knowledge-acquisition tasks. A prototype
domain analysis environment is bracoO, which
includes generators for application-oriented
languages. DRACO also provides support for
transformation rules within a domain and

Articles

FALL 1992 85

Articles

86 AI MAGAZINE

between domains. KIDS and WATSON provide
some support for creating and maintaining
formal domain theories. In the future, knowl-
edge-acquisition tools will provide sophisti-
cated environments for domain analysis
(Marcus 1989).

Design analysis is the acquisition of control
knowledge. Representing and acquiring this
knowledge is critically dependent on having
a good understanding of the structure of
transformational derivations. As shown by
the chapters in Automating Software Design,
great progress has been made since the early
days of program synthesis. For the most part,
the program derivations presented here are at
a higher level of abstraction than the details
of the logical calculi that underlay the indi-
vidual transformations. Several of the interac-
tive program transformation systems,
especially kips, provide a natural high-level
interface for those schooled in transforma-
tional derivations. However, we are just
beginning to understand how to encode the
rationale for choosing particular paths
through the design space. This semantic
information is what we need for generalizing
derivation histories and developing tactics
and strategies. I expect significant progress
over the coming decade. For a comparative
study of different derivations in the program
synthesis literature, see Steier and Anderson
(1989), especially the concluding chapter on
design space.

Summary

To date, the main use of Al in software engi-
neering has been for rapid prototyping. Rapid
prototyping enables requirements and system
designs to be iteratively refined with cus-
tomers before production-quality software is
manually coded. However, just as manual
typing makes it difficult to modify and reuse
publications, manual coding of production-
quality software makes it difficult to modify,
maintain, and reuse software.

In the next century, transformational pro-
gramming will create a paradigm shift in soft-
ware development like that created by desktop
publishing. Software development and main-
tenance will be elevated to the specification
level by automating the derivation of efficient
code from specifications. Knowledge-based
tools for requirement elicitation, specification
evolution, and program synthesis will enable
end users to specify and modify their own
software. Software architectures will enable
small teams of system developers to create
large software systems. Advances in knowl-
edge representation, knowledge acquisition,

and automated reasoning will enable domain
experts and design experts to encode their
knowledge in software architectures so that it
can be reused by system developers and end
users. Software engineering will be elevated
to the engineering discipline of capturing and
automating currently undocumented domain
and design knowledge.

The path to this new paradigm will be
incremental. In the coming decade, kBSE will
begin to supplant case with more powerful
knowledge-based tools. This book documents
industrial pilot projects in software mainte-
nance and special-purpose program synthesis.
Current Al technology can greatly enhance
conventional maintenance tools to help
maintenance programmers understand a soft-
ware system and determine the ramifications
of changes. Current Al technology can also
help reengineer existing systems. Special-pur-
pose program synthesis systems will likely
become the next generation of application
generators. Compared to the technology used
in existing application generators, transfor-
mational technology can produce more opti-
mal code and provide a higher-level user
interface. In short, kBsE will revolutionize the
practice of software engineering by adapting
to and improving current practice.

Acknowledgments

The author thanks the following people for
helpful reviews: Lee Blaine, Allen Goldberg,
Cordell Green, Laura Jones, Richard Jullig,
David Lowry, Larry Markosian, and Stephen
Westfold. The ideas in this conclusion were
stimulated by the chapters in Automating Soft-
ware Design as well as sources in the literature,
numerous conversations with other members
of the kBSE community, and various research
initiatives sponsored by the U.S. government.
The views expressed in this conclusion are
the sole responsibility of the author.

References

Abelson, H.; Eisenberg, M.; Halfant, M.; Katzenel-
son, J.; Sacks, E.; Sussman, G. J.; Wisdom, J.; and
Yip, K. 1989. Intelligence in Scientific Computing.
Communications of the ACM 32(5): 546-562.
Anderson, J. S., and Fickas, S. 1989. A Proposed Per-
spective Shift: Viewing Specification Design as a
Planning Problem. Presented at the Fifth Interna-
tional Workshop on Software Specification and
Design, May, Pittsburgh.

Arango, G. 1988. Domain Engineering for Software
Reuse. Ph.D. thesis, Dept. of Information and Com-
puter Science, Univ. of California at Irvine.

Barr, A. 1990. The Evolution of Expert Systems.
Heuristics 3(2): 54-59.

Barstow, D. R.; Shrobe, H. E.; and Sandewall, E.,

eds. 1984. Interactive Programming Environments.
New York: McGraw-Hill.

Bergland, G. D., and Gordon, R. D., eds. 1981. Tuto-
rial: Software Design Strategies. Washington, D.C.:
IEEE Computer Society.

Biggerstaff, T. J.; Hoskins, J.; and Webster, D. 1989.
Design Recovery for Reuse and Maintenance, Tech-
nical Report STP-378-88, MCC Corp., Austin, Texas.
Bordiga, A.; Greenspan, S.; and Mylopoulos, J.
1986. Knowledge Representation as the Basis for
Requirements Specifications. In Readings in Artificial
Intelligence and Software Engineering, eds. C. Rich and
R. C. Waters, 561-569. San Mateo, Calif.: Morgan
Kaufmann.

Brown, D. W,; Carson, C. D.; Montgomery, W. A,;
and Zislis, P. M. 1988. Software Specification and
Prototyping Technologies. AT&T Technical Journal
67(4): 46-58.

Burson, S.; Kotik, G. B.; and Markosian, L. Z. 1990.
A Program Transformation Approach to Automat-
ing Software Reengineering. In Proceedings of the
Fourteenth International Computer Software and
Applications Conference, 314-322. Washington,
D.C.: IEEE Computer Society.

Cleaveland, J. C., and Kintala, C. M. R. 1988. Tools
for Building Application Generators. AT&T Techni-
cal Journal 67(4): 46-58.

Chikofsky, E. J. 1989. Computer-Aided Software Engi-
neering (CASE). Washington, D.C.: IEEE Computer
Society.

Curtis, B.; Krasner, H.; and Iscoe, N. 1988. A Field
Study of the Software Design Process for Large Sys-
tems. Communications of the ACM 31:1268-1287.
Dahl, O. J.; Dijkstra, E. W.; and Hoare, C. A. R.
1972. Structured Programming. In A.P.1.C. Studies in
Data Processing, no. 8, eds. F. Duncan and M. J. R.
Shave. London: Academic.

Despeyroux, J. 1986. Proof of Translation of Natural
Semantics. In Proceedings of the Symposium on
Logic in Computer Science. Washington, D.C.: IEEE
Computer Society.

Fickas, S. 1985. Automating the Transformational
Development of Software. IEEE Transactions on Soft-
ware Engineering SE-11(11): 1268-1277.

Freeman, P., and Wasserman, A.L., eds. 1983. Tutori-
al on Software Design Techniques, 4th ed. Washing-
ton, D.C.: IEEE Computer Society.

Gane, C. 1990. Computer-Aided Software Engineering:
The Methodologies, the Products, and the Future.
Englewood Cliffs, N.J.: Prentice Hall.

Green, C.; Luckham, D.; Balzer, R.; Cheatham, T.; and
Rich, C. 1986. Report on a Knowledge-Based Software
Assistant. In Readings in Artificial Intelligence and
Software Engineering, eds. C. Rich and R. C. Waters,
377-428. San Mateo, Calif.: Morgan Kaufmann.
Hartman, J. 1989. Automatic Control Understand-
ing for Natural Programs. Ph.D. thesis, Dept. of
Computer Sciences, Univ. of Texas at Austin.

Hunt, W. A. 1989. Microprocessor Design
Verification. Journal of Automated Reasoning 5(4):
429-460.

Jones, C. B. 1986. Systematic Software Development

Using VDM. Englewood Cliffs, N.J.: Prentice Hall.

Letovsky, S. 1988. Plan Analysis of Programs. Ph.D.
thesis, Computer Science Dept., Yale Univ.

Marcus, S., ed. 1989. Machine Learning (Special Issue
on Knowledge Acquisition) 4(3-4).

Moore, J. S. 1989. A Mechanically Verified Lan-
guage Implementation. Journal of Automated Rea-
soning 5(4): 461-492.

Mostow, J. 1989. Design by Derivational Analogy:
Issues in the Automated Replay of Design Plans.
Artificial Intelligence 40(1-3): 119-184.

Neches, R.; Swartout, W. R.; and Moore, J. D. 1985.
Enhanced Maintenance and Explanation of Expert
Systems through Explicit Models of Their Develop-
ment. IEEE Transactions on Software Engineering SE-
11(11): 1337-1351.

Rich, C., and Waters, R. 1990. The Programmer’s
Apprentice. New York: Association of Computing
Machinery.

Roth, S. F.; Mattis, J. A.; and Mesnard, X. A. 1990.
Graphics and Natural Language as Components of
Automatic Explanation. In Architectures for Intelli-
gent Interfaces: Elements and Prototypes, eds. J. Sulli-
van and S. Tyler. Reading, Mass.: Addison-Wesley.
Reubenstein, H. B., and Waters, R. C. 1989. The
Requirements Apprentice: An Initial Scenario. Pre-
sented at the Fifth International Workshop on Soft-
ware Specification and Design, May, Pittsburgh.
Schindler, M. 1990. Computer-Aided Software Design.
New York: Wiley.

Shavlik, J. 1990. Acquiring Recursive and Iterative
Concepts with Explanation-Based Learning.
Machine Learning 5(1): 39-70.

Shiel, B. 1986. Power Tools for Programmers. In
Readings in Artificial Intelligence and Software Engi-
neering, eds. C. Rich and R. C. Waters, 573-580. San
Mateo, Calif.: Morgan Kaufmann.

Spivey, J. M. 1989. The Z Notation: A Reference
Manual. New York: Prentice Hall.

Steier, D. M., and Anderson, A. P. 1989. Algorithm
Synthesis: A Comparative Study. New York: Springer-
Verlag.

Warren, D. H. D. 1977. Implementing Prolog—
Compiling Predicate Logic Programs, volumes 1
and 2, D.A.IL. Research Reports, 39 and 40, Universi-
ty of Edinburgh.

Westfold, S., and Green, C. 1991. A Theory of Auto-
mated Design of Visual Information Presentations.
Technical Report KES.U.91.1, Kestrel Institute, Palo
Alto, California.

Wills, L. M. 1989. Determining the Limits of Auto-
mated Program Recognition, Working Paper, 321,
Al Lab., Massachusetts Institute of Technology.
Wing, J. M. 1990. A Specifier’s Introduction to
Formal Methods. IEEE Computer 23(9): 8-26.

Young, W. D. 1989. A Mechanically Verified Code
Generator. Journal of Automated Reasoning 5(4):
493-518.

Michael Lowry is affiliated with the Al Research
Branch, NASA Ames Research Center in Moffett
Field, California.

Articles

FALL 1992 87

