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Deterministic

Autonomous Systems

Arie A. Covrigaru and Robert K. Lindsay

The term intelli-
gence in the phrase
artificial intelligence
suggests that intelli-
gence is the key
characteristic to be
analyzed and syn-
thesized by the
research discipline.
However, for many
researchers the
objective of this dis-
cipline is the scien-
tific understanding
of all aspects of com-
plex behavior. For
some, this objective
might be limited to

This article argues that autonomy, not problem-
solving prowess, is the key property that defines
the intuitive notion of “intelligent creature.” To
build an intelligent artificial entity that will act
autonomously, we must first understand the
attributes of a system that lead us to call it
autonomous. The presence of these attributes
gives autonomous systems the appearance of
nondeterminism, but they can all be present in
deterministic artifacts and living systems. We
argue that autonomy means having the right
kinds of goals and the ability to select goals
from an existing set, not necessarily creating
new goals. We analyze the concept of goals in
problem-solving systems in general and establish
criteria for the types of goals that characterize
autonomy.

Intelligence
and
Autonomy

Following Turing
(1950), most Al
researchers accept a
purely behavioral
criterion for intelli-
gence. That is, an
artificial device that
is able to do things
that are assumed to
require intelligence
when done by a
human merits the
description intelli-
gent even though it

the traditional goals of scientific psychology:
understanding humans. For others, it might
include other species and artificial systems. In
either case, the enterprise is driven by psy-
chological questions because humans are the
extreme of the known range of possibility
that drives our curiosity. Therefore, we feel
that A1 is—or ought to be—seeking to under-
stand and build fully humanlike systems, not
simply problem-solving machines. This arti-
cle presumes that the reader is willing to
adopt this position for the moment.

is merely a mechanism. Thus, a computer
program capable of playing excellent chess
would be considered intelligent, even though
it succeeds through straightforward, compu-
tationally intensive means. The average
person is less comfortable with this view.
Many would say that a dog or even a worm is
intelligent, whereas the chess computer is
not, even though a dog, much less a worm, is
not capable of anything approaching chess
playing. Similarly, the lay person is far more
apt to ascribe intelligence and other human
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... AL is- or ought to be- seeking to understand and build fully

humanlike systems, not simply problem-solving machines.

qualities to a robot than to a computer, even
if the robot is capable of only simple actions.
What is it that is apparently missing from a
chess computer but is apparently present in a
robot; a dog; and, perhaps, a worm?

We feel that most would agree that the
missing ingredient is autonomy. An entity
must be autonomous to be truly intelligent;
truly living; and, thus, truly humanoid. Rocks
are not autonomous; dogs and, perhaps, worms
are. A chess computer, which is intelligent
according to Turing’s criterion and in the eyes
of most computer scientists, is not truly intel-
ligent or alive in the eyes of the lay person
because it is not autonomous, in spite of
prodigious computational abilities that best
all but a handful of people at an intellectual
task. However, robots made only approxi-
mately in human image and with relatively
simple capabilities are readily identified with,
empathized with, and anthropomorphized.
We suggest this situation is because they seem
to have “minds of their own.”

Here, the lay person might well claim that
the important distinction is between the
determinate, predictable behavior of rocks
and chess robots and the nondeterminate,
unpredictable behavior of living organisms, at
least those of sufficient complexity such as
the vertebrates. For the scientist, however,
this answer is unsatisfactory.

The standard scientific view is that all bio-
logical entities, including people, are physical
systems that are constrained to obey the laws
of physics, and thus, their behavior is mecha-
nistic and deterministic in principle, as is the
case for all natural entities and artifacts. There
are two qualifications to the deterministic
assumption. First, the most successful and
fundamental laws of physics, the quantum
laws, state that physical processes are inher-
ently nondeterministic; however, quantum
indeterminacy is generally assumed to be
irrelevant to the macroscopic behavior of ani-
mals and computers. Second, the view is also
tempered by the recently elucidated phenom-
ena of deterministic, nonrandom but unpre-
dictable behavior known as chaos. These
results demonstrate the futility of assuming
that the behavior of even simple mechanisms
is predictable by closed-form scientific laws,

even if it is the case that the underlying
system obeys purely deterministic laws; how-
ever, lack of predictability does not conflict
with the deterministic assumption but,
indeed, makes it more plausible. With these
qualifications, we expect that the all-behav-
ior-is-deterministic-in-principle axiom merits
the title of standard scientific view, even
though doubtless, many scientists, as well as
the majority of nonscientists, reject it.

However, if we adopt the standard scientific
view, we must account for the apparent auton-
omy of dogs and the apparent nonautonomy
of chess computers not by ascribing indeter-
minacy to dog behavior or predictability to
machine behavior but by some other analysis.
Indeterminacy and unpredictability will not
suffice as criteria of autonomy.

Why, then, do we ascribe autonomy to some
entities and not to others of greater complexi-
ty? Clearly, a certain amount of complexity is
necessary to merit the description of autono-
my, but as the chess computer illustrates,
complexity is not the litmus test. Is there
one? We argue that an entity is autonomous
if it is perceived to have goals, including cer-
tain kinds of goals, and is able to select
among a variety of goals that it is attempting
to achieve. Several other characteristics con-
tribute to the perception of purposiveness.
We discuss these in Criteria of Autonomy.

Autonomy and Goals

The major requirement for autonomy is that
the entity must be trying to accomplish
something; that is, it must be goal directed.
Rocks are not considered to be goal directed
because it is natural to assume that rocks are
merely moving in response to forces and do
not care where they end up. There is nothing
a rock wants. If our borderline case, the worm,
falls short of autonomy in our eyes, it is prob-
ably because it is not goal directed. We might
be apt to assume that there are things that a
worm wants—food, perhaps the proper tem-
perature, perhaps the absence of light, per-
haps other worms—but we are not so sure
that they are doing more than moving about
until they recognize one of these things and
then reflexively react to it. We do not need to
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assume there is more to a worm, although
there might be. Maybe, they are searching,
but we cannot tell, so we are not sure if they
are autonomous. However, entities that are
clearly autonomous force us to adopt the
intentional stance, that is, to think of them as
goal-directed agents.

We know of no way to avoid this subjective
criterion; autonomy is in the eye of the behold-
er. However, we might ask what characteristics
of a system description lead us to ascribe auton-
omy to the system. We attempt to answer this
question in the following discussion.

The reader can observe that our straw man,
the chess computer, is naturally thought of as
goal directed: It is trying to win the game. We
propose that what is missing from the chess
computer is the right kind of goal.

Indeed, any intelligent system, in particular
any problem-solving system, is readily described
as having goals that the system is trying to
achieve in the course of its operation. Those
goals are varied, for example, winning a game
of checkers in a checker game program,
making the next move in a chess game pro-
gram, finding the shortest path to a solution,
finding the most cost-effective path, learning
how to perform better, or learning some new
facts. Subgoals are goals that are created,
achieved, and abandoned by an intelligent
system in the course of achieving higher
goals. Some of these goals are preprogrammed
in the system by its creators. Some of them
are implicit, and others are claimed to be
goals independently created by the intelligent
component of the system. The question we
try to answer here is, What types of goals
must a system have to be considered
autonomous?

In Types of Goals in a Problem-Solving
System, we characterize two classes of goals:
The first is the class of goals that are non-
essential to the definition of autonomy, and
the second is the class of goals that are neces-
sary to the concept of autonomy. We believe
that the contrast is important to the under-
standing of autonomy. In each group, we
define pairs of types that contrast with each
other. When the pair is relevant to autonomy,
we show which member of the pair is the one
that is required for a system to be considered
autonomous. First, however, we explore some
other criteria of autonomy.

Criteria of Autonomy

Certain properties of a system tend to elicit in
us an intentional stance toward the system.
These properties are not individually necessary
nor collectively sufficient for autonomy; they

act as evidence. The more of them that are
present and the greater their degree (in those
cases where they are a matter of degree), the
greater our tendency to attribute autonomy
to the system.

Prerequisites for Intentionality

Robots, men, dogs, and worms—but not chess
machines—are capable of movement, and
perhaps, this is one prerequisite of autonomy.
Of course, simply being movable is not suffi-
cient. After all, almost everything, including
the planets, moves. Movements result from
the impingement of energy. However, even
rocks fall down when pushed off a cliff, but
no one considers them autonomous. The
system at least must be able to store energy
and use it to initiate movement under appro-
priate environmental situations, even when
the environmental stimulus lacks sufficient
energy to directly cause movement. Further-
more, the connection between cause and
effect must be adaptive and interactive for
the cause to be seen as a stimulus and the
effect as a response, that is, as an informa-
tion-processing event rather than merely a
physical event. We try to more clearly spell
out the meaning of “adaptive” in this sense.

The strength of evidence is increased if
there is some substantial flexibility, variability,
and complexity to the repertoire of move-
ments. However, even fairly complex behav-
ioral repertoires, such as possessed by model
airplanes, are not sufficient alone. Imagine
our chess computer, now augmented with
hands, arms, and eyes, that could actually,
with internal energy sources such as batteries,
move the pieces on the chess board and do so
for a wide variety of piece styles and sizes.
Such a device would now meet our descrip-
tion of adaptive movement as surely as, say, a
fish. We suspect that it would indeed seem
much more humanlike than its immobile
predecessor, but we also suspect that for most
of us, it would fall short of a fish in appearing
autonomous.

Fluidity and adaptability of movement
would help. Our chess robot, were it capable
of deftly grasping a piece between fingers,
then rotating its hand to grasp a second piece
to place where the removed piece had been,
could give our skeptics pause, whereas the
same result effected with a jerky pulley-and-
gear movement would not pass muster. How-
ever, this quality in itself is not an essential
quality for autonomy either.

Does the requirement of a varied behav-
ioral repertoire mean that a device or organ-
ism that is totally paralyzed by birth or
accident could not be considered to be



autonomous and, hence, by the lay person’s
standard not intelligent? Not necessarily. Sup-
pose there were some way to communicate
with it, telepathically say. If these communi-
cations had sufficient flexibility of the sort we
are discussing, then they could suffice as a
surrogate for movement. The key issue seems
to be one of flexible, adaptive interaction
with the environment. Movement, including
perhaps vocalization and gestures, is the usual
mode of interaction between living organisms
and their environment, but it, too, is not
essential. However, if our hypothetical para-
lyzed organism could in no way interact with
the environment, not by movement, eye
blink, measurable brain activity, or telepathy,
we would probably conclude that it was not
autonomous (any more) and was brain dead,
even though it maintained metabolism, tem-
perature, and respiration.

An important quality of the interaction is
robustness, that is, the ability to survive in a
variety of situations, a variety so great that not
all details could possibly have been anticipated
exactly and appropriate responses preplanned.
Robustness is required for self-sufficiency, the
ability to respond in such a way as to avoid
danger and remain viable and intact in a
varying environment without the interven-
tion of other entities. However, self-sufficien-
cy is a matter of degree itself: Human infants
are generally regarded as autonomous (espe-
cially by their parents), even though they
require frequent intervention to keep them
viable in their normal environments.

Perhaps the crucial intuitive core concept
of autonomy is independence. That is, an
entity is autonomous only if its actions are
not controlled or unduly influenced by its
environment and other entities. It can go off
by itself and function without the assistance
or even the awareness of others. What system
properties suggest independence?

Independence proves illusive in a determin-
istic world. If we adopt the standard scientific
view, we have a puzzle because deterministic
systems, according to the accepted laws of
science, are never disentangled from the envi-
ronment and, indeed, are influenced to some
degree by every event, however remote. In
fact, independence seems to conflict with the
requirement of environmental sensitivity that
was discussed earlier. Our answer is that inde-
pendence must entail selective attention,
including the ability to select where and
when the input of information and energy
are to be effective and when they are not.
Again, this condition is not sufficient because
most mundane computer programs fit this
description. Sometimes pounding your key-

board gets your computer’s attention, some-
times it does not.

Another facet of independence is freedom
from programming. That is, once the entity
exists, further changes to its structure come
either entirely from within or by external
intervention of a limited kind. The limitation
is that the environment can only indirectly
impinge on the structure of the entity—by
stimulating its fixed set of sense organs. No
other entity can get inside and directly make
changes. Thus, autonomous entities can learn
and can be taught, but they need not be pro-
grammed.

To summarize, autonomous systems include
a measure of complexity; interaction; move-
ment (preferable fluid); a variety of behaviors;
robustness and differential responsiveness to
a variety of environmental conditions; selec-
tive attention; and independent existence
without detailed, knowledgeable interven-
tion. If we add all these criteria together, we
are partway home. We claim that a system
with all these properties would usually be per-
ceived to be autonomous, provided that in
addition it was also seen to be goal directed.

Goals

The term goal is usually self-explanatory, but
here, there must be a concise basis for what
goals are in terms specific to computer pro-
grams. Newell (1981) defines a goal to be a
body of knowledge of a state of affairs in the
environment. He claims that goals are struc-
turally distinguished from other knowledge
for them to enter into the behavior of the
entity as something that the entity strives to
realize. The definition is based on the concept
of a problem state space, which is a set of
states plus a set of operations that permit
attaining one state from another. System
activity consists of searching the problem
state space by applying the operators.

A goal is a pair

G={s, S¢ ,
where

§ is the set of possible states,

sc []'S is the current state,

S; U S is a set of final states, and

sc L] S is not one of the final states.

A goal is a description consisting of the
system’s current state in the state space and
a set of states that are called final states.
Implicit in the architecture is the intention to
get from the current state to one of the states
in the set of final states. When the system is
in one of these final states, the event marks
the termination of this goal. The only con-
straint on the current state of the system is
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that it is not a member of the set of final
states as defined for this goal. We consider
two goals to be equivalent if their sets of final
states are identical.

We see later that this definition of goal
excludes an important class of goals, namely,
those in which the system is in one of the final
states and can move among the set of final
states, but whose goal is to stay within this set.

Types of Goals in a
Problem-Solving System

The goals of a system are often reflected by
the name of the system. A program called
Chess Player has the goal of playing chess to
win (if it doesn'’t, the sanity of its programmer
is in question). At a lower level, the working
memory in sOAR (Laird et al.1990; Laird,
Newell, and Rosenbloom 1987), an architecture
for a system that is intended to be capable of
general intelligence, contains objects of type
“goal” that explicitly define goals that the
system is working on. Other goals are implic-
it. For example, the process of learning in an
intelligent system has the goal of improving
the performance in the future, but this goal
might not appear in its list of goals. In the
case of problem-solving systems that learn
from experience, such as prODIGY (Minton
1988), soAr (Laird, Rosenbloom, and Newell
1986), or Lex (Mitchell, Utgoff, and Banerji
1983), even the process of learning is itself a
side effect of the performance system. This
discussion concentrates on explicit goals, those
that can be manipulated by a system and are
well defined in terms of states in a state space.

The Source of Goals

The first question we ask about our system'’s
goals is where do the goals come from. Are
new goals necessary to the characterization of
an autonomous system? What is the meaning
of saying that a system sets up its own goals?
We argue that a system is autonomous if it can
choose which goal to pursue at any given time
from a set of goals, however established. The
concept of own goals should not be confused
with new goals. Newness is not necessary; if a
system has the ability to make a choice, say,
between watching TV at home or going to
the movies, we could still consider that to be
an autonomous decision even if the two goals
preexisted in the system.

Every goal-oriented system includes a set of
built-in goals that define the functions and
behavior of this system. These goals might be
embedded in the architecture, for example, as

part of the program in a computer system, or
described in the language of an architecture
by a set of production rules, as in the ops
system series production language (Forgy 1981).
In both cases, these goals exist when the
system is created and in most cases do not
change with time. These goals must be there
if one wants an intelligent system to do any-
thing at all with the knowledge it has or has
access to. If a system has no built-in goals,
only knowledge, any goal-directed activity
will be a reaction to goals set up by some
external agent and, thus, are considered goals
of the agent and not of the system. A program
can also add new goals to its agenda; such
goals, established after the system has been
created, will be called acquired goals because
they come to exist after the system is activated.

Thus, we make the following distinction:
Built-in goals exist in an intelligent system
when the system is “born” and starts its activ-
ities. They are part of the definition or pro-
gram of this particular system and initially
direct most of the system’s actions. Acquired
goals are created in a system after the system
starts its activities. They are not necessarily
subgoals of existing goals within the system
in a problem-solving process, yet they are
non-existent when the system starts its “life.”

There is another dimension of distinction
in the source of goals: the way these goals
were created. Endogenous goals are created by
and within the system. These goals might be
created as a reaction to some stimulus from
the environment or as subgoals in the process
of problem solving. Exogenous goals are creat-
ed outside the system and become its goals
either at the time the system was designed or
through its sensors, but in either case, these
are already formulated as goals.

The distinction between endogenous and
acquired goals is that endogenous goals are
created exclusively through the intelligent
mechanisms of the system; that is, the goals
are created through learning, problem solv-
ing, or interaction with an external environ-
ment but not through direct programming.
Exogenous goals include the set of built-in
goals and also goals that are set by an exter-
nal agent to the system, for example, by a
direct command.

What is the relevance of these types of
goals to autonomous systems? It is common
to say that autonomous entities create their
own goals. However, any multiprocessing
operating system such as unix, which most
would agree is not autonomous, can acquire
goals when a new process is started by a user.
These goals would fall into the category of



Goals can be distinguished in intelligent systems... and Al
systems... according to the period of time the goal is meant

to survive.

exogenous, acquired goals: Any Al system, as
previously described, has a set of built-in
goals to start with. A random generation of
goals in a preset domain is also possible. Such
goals are unrelated to the other goals of the
system, but the system does not have to dis-
tinguish between them and others that are
considered meaningful goals. Can this mech-
anism be considered autonomous based only
on having endogenous goals? We think not.
Can any system have truly new goals? Cer-
tainly, goals can be added to the agenda of an
intelligent system by the mechanisms in the
system while the system is operating. For new
goals to appear in a system, the system needs
to either adopt goals created by an agent
external to the system in question or create
them as subgoals while performing its tasks.
Thus, all goals that a system ever has are in
one way or another determined by its initial
structure. They might be endogenous goals,
but they are not new. Therefore, we need to
look further to see what is meant when we
consider that a system chooses its own goals.

The Hierarchy of Goals

The hierarchy of goals in an intelligent system
is important in making this distinction. As
noted in the previous subsection, an
autonomous entity must have a number of
goals to choose from throughout its existence,
but the types of goals that are chosen from
are also important.

Any nontrivial, goal-directed system has
subgoals that derive from the top-level goals.
We make this distinction as follows:

Subgoals are created during the process of
achieving other goals and depend on the exis-
tence of the goals within which they were
created.Top-level goals are not subgoals. They
define the existence of the artificial entity
and are independent from other goals in the
system. This is not to say that all top-level
goals are unrelated, but only that they could
be pursued independently and do not stand
in a goal-subgoal relation.

The option and capability to make choices
among subgoals is part of any problem-solv-

ing process. At each step in the process, the
set of subgoals to choose from is determined
by the previous step; thus, the subgoals
depend on the goal (which is perhaps itself a
subgoal) at the previous level in the goal hier-
archy. soar’s architecture, for example, has
fully automated the process of generating
subgoals. In soAR’s theory, this ability is the
essence of the problem-solving process.
Still, this ability does not make an entity
autonomous. An autonomous entity also
needs independent goals that it can choose
from. These goals must be independent not
only at their own level in the goal hierarchy
but also in the set of all existing goals in
the system. Thus, the only goals that have
relevance to the characterization of an
autonomous system are the top-level goals.
These goals can be independent of other
existing top-level goals and still reside in the
same system. Brooks (1987) argues that an
autonomous intelligent entity can be decom-
posed into many decentralized peripheral
subsystems, each interacting with the exter-
nal world. In this context, the interpretation
of his argument is that these subsystems are
disjoint, top-level goals. Perhaps, the most
striking limitation of a chess program is that
it has a one-track mind. It cannot make up its
mind about what to do because it can only do
one thing, namely, play chess. A system can
make a choice only if it is presented with
more than one option. Thus, an autonomous
system would have to have more than one
top-level goal.

The Achievement of Goals

Goals can be distinguished in intelligent sys-
tems in general and A1 systems in particular
according to the period of time the goal is
meant to survive. To illustrate, consider a
common household task (dish washing) that is
interpreted in two different ways, each defin-
ing a distinct type of goal for this same task.
In the first scenario, the sink is full of dishes.
Mother asks her child “Mark, would you please
do the dishes?” This goal is relatively easy to
achieve. It is set up by the request and achieved
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when all the dishes from the sink are clean.

In the second scenario, a butler who just
hired a new maid is listing her duties. Among
other general instructions, he says, “Make sure
there are always clean dishes in the kitchen
cabinets.” This goal is another type that arises
in response to a change in the status quo of
the statement “there are clean dishes in the
kitchen cabinets.” Unlike the previous goal,
this one has an unbounded time span, and it
is achieved again and again whenever some
environment variable goes out of bounds. In
essence, the environment is keeping the goal
alive, and the task of washing the dishes is
one that is terminated over and over.

These two types of goals are called achiev-
able goals and homeostatic goals. Achievable
goals have a well-defined set of start and final
states in the state space; arriving at any one
of the final states marks the achievement and
termination of such a goal. These goals are
the most common type in Al systems. Homeo-
static goals are achieved continuously. They do
not terminate when the system is in one of
the final states; when changes occur, mean-
ing the state has changed and is not a final
state, activity to reachieve the final state is
reinitiated.

For some homeostatic goals, the process of
getting back to the final states defines an
achievable goal. We can say that each time
the system moves outside the set of final
states, it creates an instance of its appropriate
achievable goal. However, some homeostatic
goals might require that the system always
remain in one of the final states (the only
viable ones), and thus, some monitoring
action must continuously be taken rather
than wait for movement out of the set of
final states. Such goals do not strictly fit
Newell’s definition, as given earlier. In some
cases, one could modify the definition of
goals to include a subset of states called bor-
derline states: Only when in a borderline state
is action initiated to return to a final state.
This solution is only a patch, however; the
essential problem is that biological and other
physical systems are continuous in time,
action, and energy, and Newell’s definition
attempts to squeeze them into a discrete
space. The solution to this problem is not
relevant to this article, however; we merely
need to note that homeostatic goals, even
limited to those that we earlier loosely char-
acterized, are commonly found in systems
that are perceived to be autonomous.

Generally, a system that is perceived to be
autonomous will have both achievable and
homeostatic goals. To exist over time, an
autonomous system must have a set of home-

ostatic goals. These goals define the internal
environment of the system in which it can
make choices about achieving its achievable
goals. We see the set of homeostatic goals
serving as an administrative mechanism or a
metalevel to the set of achievable goals that
are the real job the system is doing.

The Lifetime of the System

Living systems that are generally regarded as
autonomous, such as mammals, seem to be
continually engaged in goal-directed activities,
at least when they are awake. Achieving one
goal is followed by turning to another goal.
These goals include but are not limited to
homeostatic goals. Of course, to give the
appearance of continual goal-driven activities,
a system must exist over a period of some
time that is long relative to the time it takes
to achieve a single nonhomeostatic goal.

Types of Goals Necessary in an
Autonomous System

Table 1 summarizes the foregoing distinctions
and their relevance to the issue of autonomy.
The left column lists pairs of contrasting
classes of goals, and the right column points out
the class that characterizes autonomy for those
classes that were found to be relevant to
autonomy. As shown in the table, autonomous
systems are characterized by multiple top-level
goals, some of which are homeostatic goals.
They can have other types of goals, but this
capability is irrelevant to their being seen as
autonomous.

To summarize, in any deterministic system,
autonomous or not, new goals can only be
established by input from the external envi-
ronment or by the construction of subgoals.
Autonomy in setting goals is the option to
choose the next goal to achieve from a given
set of top-level goals. Continually pursuing
goals, including homeostatic goals, contributes
to the perception of autonomy.

Conclusion

This article tried to clarify the concept of
autonomous systems. Autonomy is a subjec-
tive property; that is, it is a property of a
description of a system, not an objective
property of the system that exists indepen-
dently of observers. Autonomy is a relative, as
well as a subjective, property; that is, a system
can be more or less autonomous. The charac-



Pairs of contrasting sets of goals Relevant Autonomous
Built-in - Acquired No

Endogenous - Exogenous No

Single - Multiple Yes Multiple
Subgoals - Top Level Goals Yes Top-level
Achievable - Homeostatic Yes Homeostatic

Table 1. This Table Shows the Dimensions Along Which the Types of
Goals Are Defined and Their Relevance to the Definition of Autonomy.

teristics listed here are also a matter of degree.
Their presence in greater degree enhances the
perception of autonomy:

A goal-directed system will be perceived to
be autonomous to the degree that (1) it selects
tasks (top-level goals) it is to address at any
given time; (2) it exists over a period of time
that is long relative to the time required to
achieve a goal; (3) it is robust, being able to
remain viable in a varying environment; (4)
some of its goals are homeostatic; (5) there
are always goals that are active (instantiated
but not achieved); (6) it interacts with its
environment in an information-processing
mode; (7) it exhibits a variety of complex
responses, including fluid, adaptive move-
ments; (8) its attention to stimuli is selective;
(9) none of its functions, actions, or decisions
need to be fully controlled by an external
agent; and (10) once the system starts
functioning, it does not need any further
programming.

As we characterized it, autonomy does not
necessarily entail an extreme level of com-
plexity or intelligence. Simple living organ-
isms are autonomous even though their
intelligence (as measured by the complexity
of their computational repertoire) is limited.
A chess machine, however, can exhibit prob-
lem solving but is not autonomous by our
criteria. We would also say that it is not intel-
ligent according to conventional wisdom
because intelligence, as generally conceived,
requires autonomy.
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