
■ On 15–16 November 1989, I attended the
Massachusetts Institute of Technology
(MIT) Industrial Liaison Program entitled
“Networks and Learning.” The topic was
neural networks, their power, potential,
and promise. A dozen distinguished profes-
sors and researchers presented informative
and entertaining talks to an audience of
technically minded business executives
and industrial researchers who subscribe to
MIT’s popular series of symposia offered
through their Industrial Liaison Program.
This informal report encapsulates the two-
day event with a brief summary of each
talk.

The Massachusetts Institute of Tech-
nology (MIT) Industrial Liaison Pro-
gram, “Networks and Learning,” was
held 15–16 November 1989 at MIT. A
dozen distinguished professors and
researchers presented informative
and entertaining talks to an audience
of technically minded business exec-
utives and industrial researchers who
subscribe to MIT’s popular series of
symposia offered through its Indus-
trial Liaison Program. This workshop
report contains a brief summary of
each talk. 

Thomaso Poggio of the MIT
Department of Brain and Cognitive
Sciences opened the symposium by
reviewing the history of advances in
the field. About every 20 years, there
is an epidemic of activity lasting
about 12 years, followed by about 8
years of inactivity. Sixty years ago,
the Gestalt school began in Europe.
Forty years ago, cybernetics emerged
in the United States. Twenty years
ago, perceptrons generated a flurry of
research. Today, neural networks
(highly interconnected structures of
relatively simple units with algebraic
connection weights) represent the
latest breakthrough in this series. 

Leon Cooper, co-director of the
Center for Neural Science at Brown
University, spoke on neural networks
in real-world applications. Neural
nets learn from examples. Give them
lots of examples of input-output
pairs, and they build a smooth map-

ping from the input space to the
output space. Neural nets work best
when the rules are vague or
unknown. The classical three-stage
neural net makes a good classifier. It
can divide the input space into arbi-
trarily shaped regions. At first, the
network just divides the space into
halves and quarters, using straight-
line boundaries (hyperplanes for the
mathematically minded). Eventually
(and with considerable training), the
network can form arbitrarily curved
boundaries to achieve arbitrarily gen-
eral classification. Given enough of
the critical features on which to
reach a decision, networks have been
able to recognize and categorize dis-
eased hearts from heartbeat patterns.
With a sufficiently rich supply of
clues, the accuracy of such classifiers
can approach 100 percent. Accuracy
depends on the sample length of the
heartbeat pattern—a hurried decision
is an error-prone decision.

Ron Rivest, associate director of
MIT’s Laboratory for Computer Sci-
ence, surveyed the theoretical aspects
of learning and networks. He
addressed the question, “How do we
discover good methods of solution
for the problems we wish to solve?”
In studying neural networks, he
noted their strengths and characteris-
tics: the ability to learn from exam-
ple, expressiveness, computational
complexity, sample-space complexi-
ty, and the ability to learn a map-
ping. The fundamental unit of a
neural network is a linear adder, fol-
lowed by a threshold trigger. If the
algebraic sum of the input signals
exceeds threshold, the output signal
fires. Neural nets need not be con-
strained to Boolean signals (zero/one)
but can handle continuous analog
signal levels. In addition, the thresh-
old trigger can be relaxed to an S-
shaped response. Rivest said that any
continuous function mapping the
unit interval [-1, 1] into itself can be
approximated arbitrarily well with a

three-stage neural network. (The the-
orem extends to the Cartesian prod-
uct: The mapping can be from an
m-fold unit hypercube into an n-fold
unit hypercube.) Training the neural
net amounts to finding the coeffi-
cients that minimize the error
between the examples and the neural
network’s approximation. The so-
called error back-propagation algo-
rithm is mathematically equivalent
to least squares curve fitting using
steepest descent. Although this
method works, it can be slow. In fact,
training a three-stage neural network
is an NP-complete problem—the
work increases exponentially with
the size of the network. The classical
solution to this dilemma is to decom-
pose the problem into smaller prob-
lems (subproblems), each solvable by
a smaller system. Open issues in
neural network technology include
the incorporation of prior domain
knowledge and the inapplicability of
powerful learning methods such as
Socratic-style guided discovery and
experimentation. There is a need to

merge the statistical paradigm of
neural networks with the more tradi-
tional knowledge representation
techniques of the analytic and sym-
bolic approaches.

Terry Sejnowski, director of the
Computational Neurobiology Labora-
tory at the Salk Institute for Biologi-
cal Studies, gave a captivating lecture
entitled “Learning Algorithms in the
Brain.” Sejnowski, who studies bio-
logical neural networks, has wit-
nessed the successful reverse
engineering of several complete sys-
tems. The vestibular ocular reflex is
the feed-forward circuit from the
semicircular canals of the inner ear to
the eye muscles that allow us to fix
on a target even as we move and bob
our heads. (If you shake your head as
you read this sentence, your eyes can
remain fixed on the text.) This circuit
has been around for hundreds of mil-
lions of years, going back to our rep-
tilian ancestors. It is found in the
brain stem and operates with only a
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7-millisecond delay. (Tracking a
moving target is more complex,
requiring a feedback circuit that taps
into the higher cognitive centers.)
The vestibular ocular reflex appears
to be overdesigned, generating
opposing signals that at first appear
to serve no function. Only recently, a
veteran researcher finally explained
how the dynamic tension between
opposing signals allows the long-
term adaptation to growth of the
body and other factors (such as new
eyeglasses) that could otherwise
defeat the performance of the reflex.

Sejnowski also described the opera-
tion of one of the simplest neurons,
found in the hippocampus, that
mediates long-term memory. The
Hebbs synapse undergoes a physio-
logical change when the neuron fires
during a simultaneous occurrence of
stimuli, representing the input-
output pair of a training sample.
After the physiological change, the
neuron becomes permanently sensi-
tized to the input stimulus. The
Hebbs synapse seems to be the foun-
dation for superstitious learning.

After a refreshing lunch of cold
roast beef and warm conversation,
Thomaso Poggio returned to the

podium to speak on networks for
learning: a vision application. He
began by reviewing the theoretical
result that equates the operation of a
two-layer neural network to linear
regression. To achieve polynomial
regression, one needs a three-layer
neural network. Such a neural net
can reconstruct a (smooth) hypersur-
face from sparse data. (An example
of a nonsmooth map would be a
telephone directory that maps names
into numbers. No smooth interpola-
tion will enable you to estimate the
telephone number of someone
whose name is not in the directory.)
Poggio explored the deep connection
between classical curve fitting and
three-stage neural networks. The
architecture of the neural net corre-
sponds to the so-called hyperbasis
functions, which are fitted to the
training data. A particularly simple
but convenient basis is a Gaussian
function centered on each sample x
value. The interpolated y value then
is just the average of all the sample y
values weighted by their Gaussian
multipliers. Thus, the nearest neigh-
bors to x are averaged to estimate the
output, y(x). For smooth maps, such
a scheme works well.

Richard Lippmann of the MIT Lin-
coln Laboratory spoke on neural net-
work pattern classifiers for speech
recognition. Historically, classifica-
tion has progressed through four
stages—probabilistic classifiers using
linear discriminant functions, hyper-
plane separation using piecewise
linear boundaries, receptive field
classification using radial basis func-
tions, and the new exemplar method
using multilayer perceptrons and fea-
ture maps. Surveying and comparing
alternate architectures and algo-
rithms for speech recognition, Lipp-
mann reviewed the diversity of
techniques, comparing the results,
accuracy, speed, and computational
resources required. From the best to
the worst, they can differ by orders of
magnitude in cost and performance.

Michael Jordan of MIT’s Depart-
ment of Brain and Cognitive Science
spoke on adaptive networks for
motor control and robotics. Much
progress has been made in this field
over the last five years, but neural
nets do not represent a revolutionary
breakthrough. The inverse problem
in control theory is classical: Find the
control sequence that will drive the
system from the current state to the
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goal state. It is well known from
cybernetics that the controller must
compute (directly or recursively) an
inverse model of the forward system.
This problem is equivalent to diag-
nosing cause from effect. The classi-
cal solution is to build a model of the
forward system and let the controller
learn the inverse through unsuper-
vised learning (playing with the
model). The learning proceeds incre-
mentally, corresponding to back
propagation or gradient descent
based on the transposed Jacobian
(first derivative). This approach is
essentially how humans learn to fly
and drive using simulators.

Danny Hillis, founding scientist of
Thinking Machines Corporation,
captured the audience with a spell-
binding talk entitled “Intelligence as
an Emergent Phenomenon.” Hillis
began with a survey of computation-
al problems well suited to massively
parallel architectures—matrix algebra
and parallel search. He used the bio-
logical metaphor of evolution as his
model for massively parallel compu-
tation and search. Because the evolu-
tion of intelligence is not studied as
much as the engineering approach
(divide and conquer) or the biologi-
cal approach (reverse engineer
nature’s best ideas), Hillis chose to
apply his connection machine to the
exploration of evolutionary process-
es. He invented a mathematical
organism (a ramp) that seeks to
evolve and perfect itself. A popula-
tion cloud of these ramps inhabits
his connection machine, mutating,
evolving, and competing for survival
of the fittest. Hillis’s color videos
showed the evolution of the species
under different circumstances. He
found that the steady state did not
generally lead to a 100-percent popu-
lation of perfect ramps; rather, two or
more immiscible populations of sub-
optimal ramps formed pockets with
seething boundaries.

Hillis then introduced a species of
parasites that attacked ramps at their
weakest points so that stable popula-
tions would eventually succumb to a
destructive epidemic. The parasites
did not clear the way for the emer-
gence of perfect and immune ramps;
rather, the populations cycled
through a roiling rise and fall of sub-
optimal ramps, still sequestered in
camps of Gog and Magog. The eerie
resemblance to modern geopolitics
and classical mythology was palpable
and profound.

John Wyatt of the MIT Department

of Electrical Engineering and Com-
puter Science closed the first day’s
program with a talk entitled “Analog
VLSI Hardware for Early Vision: Par-
allel Distributed Computation with-
out Learning.” Wyatt’s students are
building analog devices that can be
stimulated by focusing a scene image
onto the surface of a chip. His
devices for image processing use low-
precision (about eight bits) analog
processing based on the inherent
bulk properties of silicon. His goal is
to produce chips that cost $4.95. One
such chip can find the fixed point
when the scene is zoomed. (Say you
are approaching the back of a slow
moving truck. As the back of the
truck looms larger in your field of
view, the fixed point in the scene
corresponds to the point of impact if
you fail to slow down.) Identification
of the coordinates of the fixed point
and the estimated time to impact are
the output of this chip. Charged-cou-
pled devices and other technologies
are being transformed into image-
processing devices that can perform
such tasks as stereo depth estimation,
image smoothing and segmentation,
and motion vision.

The second day of the symposium
focused on the Japanese, European,
and American perspectives for the
development and application of
neural nets. Shun-Ichi Amari of the
Department of Mathematical Engi-
neering and Information Physics at
the University of Tokyo explored the
mathematical theory of neural nets.
Whereas conventional computers
operate on symbols using pro-
grammed sequential logic, neural
nets correspond to intuitive styles of
information processing—pattern
recognition, dynamic parallel pro-
cessing, and learning. Amari explored
neural network operation in terms of
mathematical mapping theory and
fixed points. Here, the fixed points
represent the set of weights corre-
sponding to the stable state after
extensive training.

Wolfram Büttner of Siemens Cor-
porate Research and Development
discussed several initiatives in Europe
to develop early commercial applica-
tions of neural net technology. Work-
piece recognition in the robotic
factory and classification of stimuli
into categories are recurring themes
here. There is also interest in unsu-
pervised learning (playing with
models or exploring complex envi-
ronments), decision support systems
(modeling, prediction, diagnosis, sce-

nario analysis, optimal decision
making with imperfect information),
and computer languages for neural
network architectures. Büttner
described NeuroPascal, an extension
to Pascal for parallel neurocomputing
architectures.

Scott Kirkpatrick, manager of work-
station design at IBM’s Thomas J.
Watson Research Center, explored
numerous potential applications of
neural nets as information-process-
ing elements. These neural nets can
be used as filters, transformers, classi-
fiers, and predictors. Commercial
applications include routine process-
ing of high-volume data streams,
such as in credit checking and pro-
grammed arbitrage trading.

Neural nets are also well suited to
adaptive equalization, echo cancella-
tion, and other signal-processing
tasks. Science Applications Interna-
tional Corp. is using them in its auto-
mated luggage inspection system to
recognize the telltale signs of suspect
contents of checked luggage. Neu-
rogammon 1.0, which took two years
to build, plays a mean game of
backgammon, beating all other
machines and giving world class
human players a run for their money.
Hard problems for neural nets
include three-dimensional object
recognition in complex scenes, natu-
ral language understanding, and
database mining (theory construc-
tion). Today’s commercially viable
applications of neural nets could
only support about 200 people. It
will be many years before neurocom-
puting becomes a profitable industry.

Marvin Minsky, MIT’s Donner Pro-
fessor of Science, gave an entertain-
ing talk on future models. The
human brain has over 400 special-
ized architectures and is equivalent
in capacity to about 200 Connection
Machines™ (Model CM-2). There are
about 2000 data buses interconnect-
ing the various departments of the
brain. As one moves up the informa-
tion-processing hierarchy, one begins
at sensory motor and advances
through concrete thinking, opera-
tional thinking, and other stages and
arrives at formal thinking, the high-
est cognitive stage. A human subject
matter expert who is a world-class
master in his field has about 20,000
to 50,000 discrete chunks of knowl-
edge. Among the computational
paradigms found in the brain are
space frames (for visual information),
script frames (for stories), transframes
(for mapping between frames), K-
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lines (recurring themes in a person’s
lifetime experiential learning curve),
semantic networks (for vocabulary
and ideas), trees (for hierarchical and
taxonomic knowledge), and rule-
based systems (for bureaucrats).
Minsky’s theory is summarized in his
latest book, Society of Mind (Simon &
Schuster, 1986). Results with neural
networks solving interesting prob-
lems, such as backgammon moves or
freshman calculus problems, reveal
that we don’t always know which
problems are hard. It appears that a
problem is hard until somebody dis-
covers an easy way to solve it. At this
point, it’s deemed trivial. Referring to
intelligence, Minsky says that
humans are good at what humans
do: “A frog is very good at catching
flies. And you’re not.”

The afternoon panel discussion,
led by Patrick Winston, provided the
speakers and audience another
chance to visit and revisit topics of
interest. That commercial neural net-
works are not solving profoundly
deep and important problems was a
source of dismay to some, who
thought that we had enough pro-
grammed trading and credit checking
going on already, and we don’t need

more robots turning down our loans
and sending the stock market into
instability. The deeper significance of
the symposium was that research in
neural networks is stimulating the
field of brain and cognitive science
and giving us new insights into who
we are, how we came to be this way,
and where we can go if we use our
higher cognitive functions to our
best advantage.

Barry Kort is a
visiting scientist
at BBN Laborato-
ries in Cambridge,
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computer-animated simulation modeling.
He holds an M.S. in electrical engineering
and a Ph.D., both from Stanford Universi-
ty, and is a member of the American
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the Institute of Electrical and Electronic
Engineers. In addition, he works as a vol-
unteer in the Discovery Room at the
Boston Museum of Science.
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