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In the aerospace industry, knowledge is frequently encoded 
in various procedural programming languages. These pro- 
grams typically perform computational functions such as 
simulation modeling; dynamic analyzing; and optimizing 
in support of the preliminary design, the detailed design, 
and the test. Design analysis of the product requires that 
these computer programs be integrated in a specific se- 
quence in terms of their input and output data and order 
of execution. Because of the complexity of the interrela- 
tionships among the programs, numerous delays and errors 
occur during their integration. These delays and errors can 
increase costs, cause scheduling crises, and reduce design 
quality. However, the problem-solving knowledge required 
to perform the integration function can be formalized in an 
expert system that “understands” the objectives of the an- 
alyst and executes all programs necessary to produce the 
desired design analysis. This article describes the expert 
executive for preliminary design, which was developed at 
The Boeing Company to expedite the design analysis of 
aerospace vehicles. 

The Problem 

Within the domain of preliminary design of aerospace ve- 
hicles, four codes form the basis of analysis: weight, aero- 
dynamics, propulsion, and performance. Figure 1 depicts 
a typical configuration of these codes for one specific ap- 
plication. The bold rectangles represent technology codes, 
and the light ones represent input and output variables, 
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as indicated by the arrows. For example, wl is an out- 
put of the weight technology code and also an input to 
the aero technology code. Some input variables, such as v, 
are not output by any of the technology codes in the given 
configuration. These are known as free-design parameters. 

From one application to the next, variations occur in 
the versions of the codes to be used and in the input- 
output relationships among them. A typical task might 
be to compute the range of an aerospace vehicle being 
designed for a tactical application. Because the perfor- 
mance code requires inputs from the propulsion and aero 
codes, propulsion and aero, as configured for tactical ap- 
plications, must be run first. In turn, before the aero code 
can be executed, the weight code must be run. When the 
range is finally obtained, the cycle begins again, based on 
perturbations of free-design parameters. If a new applica- 
tion, such as a space vehicle, is considered, the technology 
codes are reconfigured, with possible additions or deletions 
of variables. 

Each program is “owned” and validated by a tech- 
nology group, such as weights technology or propulsion 
technology. In the absence of an automated integration 
program, technology groups interact to identify the ap- 
propriate technology codes to run, obtain input values 

Abstract 
We have implemented a knowledge system that integrates 
the many computational programs (technology codes) Boeing 
aerospace vehicle designers use, thereby expediting design anal- 
ysis. Because this system separates facts about attributes of the 
current set of technology codes from general knowledge about 
running the codes, those who maintain the system can keep it 
continuously up to date at low cost. In contrast, three conven- 
tional approaches failed because they could not be maintained 
easily 
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A Typical Configuration of Technology 
Codes Showing Inputs and Outputs 

Figure 1 

from one another, run the codes, and analyze the results. 
The computed values are manually extracted from code 
outputs and inserted, possibly erroneously, as input values 
for other codes. Because the typical design cycle requires 
several weeks, and multiple design concepts can be gen- 
erated in parallel, technology analysts might be uncertain 
about which version of which design they are addressing. 
Because of the time required for the paper output to be 
analyzed and the appropriate values to be passed to other 
groups and the scheduling problems for such a complex 
activity, often only one or two designs can be considered. 
It is then very difficult to justify the selection of one de- 
sign over all other possible designs. Because of the high 
cost of the preliminary design process with respect to the 
quality and quantity of designs produced, the need for an 
integrated approach to preliminary design has long been 
recognized within the industry. 

Previous Approaches 

Recognition of the problem did not lead directly to the 
development of an integrated preliminary design tool. On 
the contrary, a number of investigations into possible ap- 
proaches to this problem led to the belief that a feasible 
solution might not be possible. 

First, a procedural program that subsumed several 
technology codes was built. This program required 
changes to the technology codes. It was not maintain- 
able because the individual groups continued to alter their 
technology code programs separately. 

Second, a database management system was tried. 
The system featured an extensive library of software prim- 
itives to perform various functions such as unit conversion. 
It too required changes to the technology codes and was 
not maintainable. In addition, the procedural changes to 

the software primitives could not keep up with the changes 
to the technology codes. 

The third approach left the technology codes un- 
touched and built a procedural program that initiated sep- 
arate, independent processes consisting of the technology 
codes communicating through a common database. This 
was better because the technology organizations continued 
to maintain technical and managerial control over their 
codes. The rigid procedural integration program was still 
unacceptably costly to modify, requiring a flow time of ap- 
proximately six weeks. However, it did provide a prototype 
and baseline for the knowledge system. 

The Knowledge System 

Symbolic computing presented a new perspective to this 
problem. We hypothesized that if the general knowledge 
of how to run the technology codes and compute the values 
of design variables could be codified, then the specifics of 
the problem could be addressed relatively inexpensively, 
thereby providing a viable integration capability. Elias 
(1986) had already addressed the symbolic computation 
of design variables in the Paper Airplane project. In our 
approach, however, the numerical computations were re- 
quired to be performed in external procedural programs 
rather than in Lisp functions. To investigate the feasibility 
of integrating the symbolic and numeric computation, we 
developed a preliminary design tool with an expert execu- 
tive that contained symbolic knowledge of how to execute 
a set of computational programs. The expert executive 
assumes the housekeeping functions currently assigned to 
the technologists, thereby freeing them to perform analysis 
functions. By expediting the computation process, it pro- 
vides more design alternatives. Zumsteg and Crossman 
(1986) are currently exploring a similar approach to the 
design of composite material structures. 

The expert executive uses the multiple representation 
system (MRS) developed at Stanford University (Russell, 
1985). Although the development environment was Franz 
Lisp on a Unix VAX 11/780, the entire system has been 
ported to an Apollo workstation network. The rule base 
consists of about 100 rules. In addition, a fact base con- 
tains information about the inputs and outputs for each 
of the programs to be configured. The size of the fact 
base depends mostly on the number of inputs and outputs 
because each is described by one fact. 

Knowledge Base 
The rules provide knowledge about solving a specific, user- 
defined problem. For example, the expert executive has 
several rules for finding the value of a variable. Variable 
values are represented in this form: 

(value-of $var Sval) 

This translates to “the value of $var is $val,” where 
$ indicates a variable. The variable sequence is arbitrary 
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but must be consistent. The internal knowledge base con- 
tains one statement, or proposition, in this format for each 
variable whose value is known through either user input or 
computation. Thus the knowledge base might contain the 
following with reference to Figure 1: 

(value-of s 60 0) 

(value-of wf0 4000 0) 

(value-of WOO 1000.0) 

As additional knowledge is acquired through computa- 
tion or interaction with the user, additional value-of propo- 
sitions are asserted into the knowledge base. 

Fact Base 
The fact base consists of input, output, script-name, and 
theory-name propositions. Input propositions are in the 
following format: 

(input propulsion 1 v) 

This translates to “the first input to the propulsion 
code is v (velocity).” The sequence number indicates the 
sequence in which it is read by the Fortran program. Out- 
put propositions are in the following format: 

(output aero 4 ~12) 

This translates to “the fourth output from the aero 
code is cl2 (coefficient-of-lift-2) .>’ Script-name propositions 
are in the following format: 

(script-name aero “/ul/assoc/kathryn/aeroscr”) 

This provides a path to the script for executing the 
aero code. Theory-name propositions are in the following 
format: 

(file-name default) 

This provides a file name for storing a theory (set of 
propositions). In MRS, a theory provides symbolic par- 
titioning of knowledge, so that a given logical subset of 
knowledge can be loaded from any specified file, or dy- 
namically created by the knowledge system. 

Problem-Solving Paradigm 
The expert executive uses the following problem-solving 
paradigm: “To run a program, if all the inputs to the 
program are present, execute the program, and return the 
result. Otherwise, if there is another program, the outputs 
of which provide the missing inputs, run that program 
first. Otherwise consult the analyst.” This paradigm is 
implemented as follows. First! there must be a rule for 
running the selected binary program: 

(if (and (get-all-input-vals $code) 

(compute-result Bcode $invals $outvak 
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$outvars Sinvars) 

(output-was-obtained $outvals) 

(pairlis $outvars $outvals $result)) 

(run $code $result)) 

This rule can be translated as follows: “If all the val- 
ues for the program’s free-design parameters are present, 
the computation is performed, output is obtained, and the 
output variables are paired with their values, then it is true 
that the program has been run and the result returned.” 

Then, for each of the conditions there must be at least 
one rule with that condition as a conclusion; for example: 

(if (and (ready $code $invals $outvars $invars) 

(script-name $code $pathname) 

(execute-code $pathname $invals $outvals) 

(pairlis $outvars $outvals $pairs) 

(assert-computed-values Bpairs)) 

(compute-result %code Sinvals $outvals $outvars Sinvars)) 

This translates to the following: “If the program is 
ready (all its inputs are present in the required sequence), 
the script-name is known, it is executed, its output vari- 
ables are paired with the computed values, and the com- 
puted values are asserted into the knowledge base, then it 
is true that results have been computed for the program.” 
Execute-code is the Lisp function that integrates symbolic 
and numeric computation. Execute-code is defined as fol- 
lows: 

(defun execute-code (script-name invals) 

(setq ports (*process script-name t t)) 

(sets pi (car ports)) 

(setq po (cadr ports)) 

(mapcar ‘writeall in-vals) 

(setq return-val (readall)) 

(close pi) 

(close PO) 

(wait) 

return-val) 

The *process function creates a process executing 
whatever script is named in script-name and opens input 
and output ports to it. Standard input and output for the 
script are temporarily reassigned to the Lisp function, so 
that the object program reads from the function writeall, 
which writes program input values separated by carriage 
returns. Program output is read analogously by the readall 
function. When the ports are closed, the process dies. 

This compute-result rule can fail because one of the 
inputs is not known. For this case, there is a second rule: 

(if (and (unprovable (ready Scode Sinvals Soutvars 

$invars)) 

(setof $par (parent $par Scode) Sparents) 

(run-all Sparents Signore)) 

(compute-result $code Binvals $outvals Soutvars 

Snvars)) 



This translates: “If the program is not ready to run, all 
the parents of the program (those programs whose output 
is input to the program) are found, and each of them is 
run, then it is true that results have been computed for 
the program.” 

Because the rule for running the program requires that 
the output values be present, the run rule will fail when 
this compute-result rule is invoked. However, the side ef- 
fects of executing this compute-result rule cause the input 
variables to be bound. The first compute-result rule will 
now succeed. This rule is recursive because in order to 
run the parent programs, it might be necessary to run the 
“grandparent” programs. 

The final element in this paradigm is consultation with 
the analyst. This is done by identifying all the free-design 
parameters whose values are unknown and requesting val- 
ues for all of them at once through a Fortran menu-driven 
user interface program: 
(if (and (setof$var-1 (and (input Scode 16” $var-1) 

(unknown 

(output $other-code-l $* $var-1)) 
(unknown 

(value-of $var-1 Gal-1))) $temp-1) 

(setof Svar-2 (and (antecedent Sant $code) 

(input Sant %* $var-2) 

(unknown 

(output $other-code-2 $* Bvar-2)) 

(unknown 

(value-of $var-2 $val-2))) $temp-2) 

(union $temp-1 $temp-2 $var-list) 

(elementsin Svar-list $vars) 

(length $vars $I) 

(> $1 0) 
(execute-monitor Bvars $gvals) 

,user interface program 

,to obtain var bindings 

pairlis $vars $vals $pairs) 

;makes variable-value pairs 

(assert-computed-values $pairs)) 

,forward chains to assert variable bindings 

(get-all-input-vals $code)) 

Because this paradigm is executed recursively, it can 
address any level of depth. Because it executes the pro- 
grams by starting up processes and passing inputs and 
outputs through ports, it can execute programs written in 
any language. The only application-dependent component 
of the system is the fact base, and the only requirement 
for the fact base is that it must name each input and out- 
put for each program and provide a sequence number in 
the argument list, so that the expert system can uniquely 
identify each variable, and the computational codes can 
receive the variables in the correct sequence. Because this 
information is explicitly given? there is no requirement that 
the facts themselves be in any special sequence. 

Example Capabilities 

In the current example, the expert system is capable of 
performing the following tasks: 

It can run the weight program only, asking the analyst 
for any missing input values. 

It can run the aerodynamics code by first running the 
code and passing the computed output values from 
weight to aero, thereby relieving the analyst of the 
responsibility of asking the weight technologist to ex- 
ecute this code and then correctly entering the com- 
puted values into the input list for aerodynamics. 

It can run the propulsion code alone. 

It can run the performance code by first running 
propulsion; then weight; aero; and, finally, perfor- 
mance. (It could just as easily run weight, propul- 
sion, and aero, or weight, aero, and propulsion. The 
first successful path is chosen based on the sequence 
of rules and facts.) 

It can compute any named output variable, such as l/d 
(lift/drag coefficient), or range, by running the code 
of which it is an output, thereby relieving the analyst 
of the responsibility of knowing anything at all about 
the program configuration. 

It can perform simple convergence, in which the ana- 
lyst wishes to start with a given output, such as range, 
and compute an input, such as surface area, that, with 
all other variables held constant, will provide a close 
approximation of the given range. 

It performs all computations in real time, with the 
computed outputs being used immediately as inputs 
by the receiving programs. 

It takes full advantage of the networking capabilities 
of the operating system; in the case of the Apollo im- 
plementation, the weight, aero, propulsion, and per- 
formance codes are physically located in nodes in sep- 
arate buildings. 

Performance 

Formal benchmarks have not yet been established for the 
expert executive. However, it is known that once the fact 
base is present for a set of four technology codes having 
approximately 30 input and output facts, the design cycle 
requires approximately 1.5 minutes plus the sum of the run 
times of the technology codes. This is comparable to the 
run time for the experimental Fortran executive program 
initiating the technology codes and compares very favor- 
ably with the multiweek design cycle without automated 
integration. Because the primary disadvantage of the For- 
tran executive program is the cost of modifying it to reflect 
changes in the technology codes (requiring one person for 
approximately six weeks), the most significant benchmark 
for the expert executive will be its reconfiguration cost. A 
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single data point indicates that the fact base can be re- 
placed in approximately one day. Because the fact base 
is entirely independent of the rule base (which is static) 
and because a simple and straightforward representation 
is used for the fact base, we are optimistic that the expert 
executive will prove clearly superior in its reconfigurability. 

We believe that the expert executive for preliminary 
design will provide a framework for greatly expediting pro- 
cesses that are heavily computation bound with complex 
interfaces where iterations are very expensive. It can be 
generalized for any application by simply replacing the fact 
base. It can interact with any programs that can be com- 
piled in the given hardware and software environment. 

Possible Future Extensions 

We are considering several extensions of this system. One 
extension will be to incorporate other user interface tech- 
nologies such as voice input and plot output. Another 
extension will be to incorporate an interface to the expert 
design analyzer, a prototype version of which has domain- 
specific knowledge of the design variables and their in- 
terrelationships and can, therefore, provide plausible free- 
design parameters and interpret the program outputs. Re- 
lated to this enhancement will be incorporation of numeric 
optimization techniques that will probably employ a sym- 
bolic numeric coupling similar to that used in the expert 
executive. The Apollo-based version of this system has 
full window menu graphics. We plan to provide interfaces 
to other graphics functions such as plotting. Finally, we 
will extend the integration from the current homogeneous 
workstation network to a heterogeneous hardware and 
software environment through use of higher-level network 
protocols. This will enable some numerically computation- 
intensive programs that currently reside on the Cray and 
Cyber machines to be incorporated into this architecture. 

Conclusions 

We have found that when the knowledge of how to exe- 
cute a set of numeric programs is separated from the facts 
about these programs and represented in symbolic form, a 
highly generic and powerful tool can result. This tool can 
be used in any application that involves symbolic or nu- 
meric computation, with any number of programs written 
in any languages available in the given computing environ- 
ment with minimal reconfiguration cost. The architecture 
will accommodate any program for which a path can be 
provided, thereby opening the possibility of loosely cou- 
pled integration of symbolic and numeric computation for 
design analysis. 

References 

Elias, A. L. (1986). Knowledge engineering of the aircraft design 
process. In J. S Kowalik (Ed.), K nowledge-based problem solving. 
Englewood Cliffs, NJ: Prentice-Hall 

Russell, Stuart, Esq (1985) The compleat guide to MRS 
Tech Rep KSL-85-12, Knowledge Systems Laboratory, Stanford 
University 

Zumsteg, J R.; & Crossman, F W. (1986) A computer-based design 
environment for composite material structures ASTM Sympo- 
sium on Composite Materials, Testing, and Design (In press ) 

-.---_- ______.___________----.~ 

AAAI-86 CONFERENCE EXHIBtTORS 

Edribi-tws: I~xhibitors who have signed up by press 
t.ime for AAAI-86 iuclttde: Ablcx IJub!ishittg Corporation, 
Academic Press, Inc.; Addison Wesley Publishing Com- 
pany, Inc.; Addison-Wesley Training Systems; Advanced 
Computer Tutoring, Inc,; Advattccwl Decision Systems; 
Aion Corporation; Apollo Computers Jttc.; Arity Corpo- 
ration; Artificial irttclligetta~ Corporation; Automata Dc- 
sigtt A3socinbcs; Automation News; J3ettjamin/Cummings 
I’ul~lishittg; Cambridge University Press; Carnegie Group, 
Inc,; CL Publications; Computer ‘l%ought Corporation; 
Cottfcrcttce llook Scrvicc, Inc.; Data General Corporation; 
Delaware Valley Al Association; Digital Equil>mettt Cor- 
poratiott; EIC/Intolligcncc, Iuc.; JZlectronic Trend Publi- 
cations; Eiscvicr Science Pttblisltittg Co., Inc.; J,awrcnce 
i[Srlbautn Associates, lnc; Exper’hlligencc, Inc.; Expert 
Systems lntcrnaliottal; Flavors Teclmology, Inc.; Frana 
Inc.; Gcncral Research Corporation; Georgia Tech Re- 
scarclt instlitutc; Gold lfill Com~~utcrs, Inc; IJarper & 
Row, IJthlisItcrs, Inc.; Ilcwlett-Packard Company; Infer- 
ence Corporation; htcgratcd 11hwu:e Machines) Inc.; 
ItttclliCorp; Intclligcncc; lntcrmctrics, Iuc.; Intelligencc- 
Ware, Jttc.; 1J3M; Kemp-Carroway heart Institute; Kluwcr 
Academic J’ttblisltcrs; Lcarrtctl luformatiott, Ittc.; Lisp IVIa- 
chine, Inc.; Lithp Systems BY., Lockheed Missiles & Space 
~otn~xtny, Inc.--Austin 11ivisiott; Logicware, Inc.; Lucid, 
htc.; McGraw-I-fill Book Compaq~; Micro Ihta J3ase Sys- 
tcms, Inc.; the MT%’ Press; Mitrc Coq~oratiou, Morgan 
Kauftttatttt Publishers, Jttc; Naval Research Laboratory, In- 
formation ‘Ikchttology Division; fu’cttron Data: Ohio State 
Uttivcrsity Laboratory for Al Research; W. W. Norton & 
Compatty; Programming Logic Syslents, Inc.; Programs In 
&lotion. Jttc.; Quectt’s Univcrsiiy Corrtputer Science TIC- 
~)itrltItCIttn; ()uintus ~otttpUh?r $dA?txX3, Its.; Iiatliiirl or- 

poratiott; JLCA Corporation- Advaurctl Technology IA~o- 

rator&; 11: icltmond Publishing Corporation; SEAJ ‘l’ech- 
ttical I’ublicatiot~s; Silo&c, Inc.; Scientific DataLink; Soft- 
ware Arcltitccturc & Jhgittcering, Inc.; Software House, 

Inc.; Software Intclligcnce J,aboratory, Inc.; Tlte Sperry 
Cotporatiott; Springer-Verlag New York: Inc.; Sun Mi- 
crosystems, Inc.; Sytnbolics, Inc.; Systems Concepts; Sys- 
tems Designers Software Inc.; TckttowIcdge, Jttc.; Tek- 
trottix, IJX.; Texas Instrtttncuts Irtc.; Uriivcrsity of Califor- 
nia Department of computer Science; .John Wiley t Sons, 
Inc.; Xettologic Inc.; Xerox Artiticial lntclligence Systems, 

84 THE AI MAGAZINE Summer, 1986 




