
A Knowledge System that Integrates
Heterogeneous Software for a
Design Application

Kathryn M. Chalfan

Artificial Intelligence Center, Boeing Computer Services, Seattle, Washington 98124

In the aerospace industry, knowledge is frequently encoded
in various procedural programming languages. These pro-
grams typically perform computational functions such as
simulation modeling; dynamic analyzing; and optimizing
in support of the preliminary design, the detailed design,
and the test. Design analysis of the product requires that
these computer programs be integrated in a specific se-
quence in terms of their input and output data and order
of execution. Because of the complexity of the interrela-
tionships among the programs, numerous delays and errors
occur during their integration. These delays and errors can
increase costs, cause scheduling crises, and reduce design
quality. However, the problem-solving knowledge required
to perform the integration function can be formalized in an
expert system that “understands” the objectives of the an-
alyst and executes all programs necessary to produce the
desired design analysis. This article describes the expert
executive for preliminary design, which was developed at
The Boeing Company to expedite the design analysis of
aerospace vehicles.

The Problem

Within the domain of preliminary design of aerospace ve-
hicles, four codes form the basis of analysis: weight, aero-
dynamics, propulsion, and performance. Figure 1 depicts
a typical configuration of these codes for one specific ap-
plication. The bold rectangles represent technology codes,
and the light ones represent input and output variables,

I wish to acknowledge the inspiration of Dr Janusz Kowalik of Boe-
ing, who first suggested this research topic and provided continual
encouragement in the face of technical difficulties Dr Alan Mitchell
of Boeing provided project management and domain expertise and
encouragement Dr Antonio Elias of the MIT Flight Transportation
Lab introduced me to the paper airplane approach to symbolic ma-
nipulation of design equations Steve White, now of Asymetrix, Phil
Harrison and Tom Skillman, both of Boeing, and Kevin Layer of
Franz Inc all provided invaluable technical assistance Dr Dou-
glas Dorrough and Caroline Fu of Boeing provided management
commitment

as indicated by the arrows. For example, wl is an out-
put of the weight technology code and also an input to
the aero technology code. Some input variables, such as v,
are not output by any of the technology codes in the given
configuration. These are known as free-design parameters.

From one application to the next, variations occur in
the versions of the codes to be used and in the input-
output relationships among them. A typical task might
be to compute the range of an aerospace vehicle being
designed for a tactical application. Because the perfor-
mance code requires inputs from the propulsion and aero
codes, propulsion and aero, as configured for tactical ap-
plications, must be run first. In turn, before the aero code
can be executed, the weight code must be run. When the
range is finally obtained, the cycle begins again, based on
perturbations of free-design parameters. If a new applica-
tion, such as a space vehicle, is considered, the technology
codes are reconfigured, with possible additions or deletions
of variables.

Each program is “owned” and validated by a tech-
nology group, such as weights technology or propulsion
technology. In the absence of an automated integration
program, technology groups interact to identify the ap-
propriate technology codes to run, obtain input values

Abstract
We have implemented a knowledge system that integrates
the many computational programs (technology codes) Boeing
aerospace vehicle designers use, thereby expediting design anal-
ysis. Because this system separates facts about attributes of the
current set of technology codes from general knowledge about
running the codes, those who maintain the system can keep it
continuously up to date at low cost. In contrast, three conven-
tional approaches failed because they could not be maintained
easily

80 THE AI MAGAZINE Summer, 1986

AI Magazine Volume 7 Number 2 (1986) (© AAAI)

. . L-Y vl

A Typical Configuration of Technology
Codes Showing Inputs and Outputs

Figure 1

from one another, run the codes, and analyze the results.
The computed values are manually extracted from code
outputs and inserted, possibly erroneously, as input values
for other codes. Because the typical design cycle requires
several weeks, and multiple design concepts can be gen-
erated in parallel, technology analysts might be uncertain
about which version of which design they are addressing.
Because of the time required for the paper output to be
analyzed and the appropriate values to be passed to other
groups and the scheduling problems for such a complex
activity, often only one or two designs can be considered.
It is then very difficult to justify the selection of one de-
sign over all other possible designs. Because of the high
cost of the preliminary design process with respect to the
quality and quantity of designs produced, the need for an
integrated approach to preliminary design has long been
recognized within the industry.

Previous Approaches

Recognition of the problem did not lead directly to the
development of an integrated preliminary design tool. On
the contrary, a number of investigations into possible ap-
proaches to this problem led to the belief that a feasible
solution might not be possible.

First, a procedural program that subsumed several
technology codes was built. This program required
changes to the technology codes. It was not maintain-
able because the individual groups continued to alter their
technology code programs separately.

Second, a database management system was tried.
The system featured an extensive library of software prim-
itives to perform various functions such as unit conversion.
It too required changes to the technology codes and was
not maintainable. In addition, the procedural changes to

the software primitives could not keep up with the changes
to the technology codes.

The third approach left the technology codes un-
touched and built a procedural program that initiated sep-
arate, independent processes consisting of the technology
codes communicating through a common database. This
was better because the technology organizations continued
to maintain technical and managerial control over their
codes. The rigid procedural integration program was still
unacceptably costly to modify, requiring a flow time of ap-
proximately six weeks. However, it did provide a prototype
and baseline for the knowledge system.

The Knowledge System

Symbolic computing presented a new perspective to this
problem. We hypothesized that if the general knowledge
of how to run the technology codes and compute the values
of design variables could be codified, then the specifics of
the problem could be addressed relatively inexpensively,
thereby providing a viable integration capability. Elias
(1986) had already addressed the symbolic computation
of design variables in the Paper Airplane project. In our
approach, however, the numerical computations were re-
quired to be performed in external procedural programs
rather than in Lisp functions. To investigate the feasibility
of integrating the symbolic and numeric computation, we
developed a preliminary design tool with an expert execu-
tive that contained symbolic knowledge of how to execute
a set of computational programs. The expert executive
assumes the housekeeping functions currently assigned to
the technologists, thereby freeing them to perform analysis
functions. By expediting the computation process, it pro-
vides more design alternatives. Zumsteg and Crossman
(1986) are currently exploring a similar approach to the
design of composite material structures.

The expert executive uses the multiple representation
system (MRS) developed at Stanford University (Russell,
1985). Although the development environment was Franz
Lisp on a Unix VAX 11/780, the entire system has been
ported to an Apollo workstation network. The rule base
consists of about 100 rules. In addition, a fact base con-
tains information about the inputs and outputs for each
of the programs to be configured. The size of the fact
base depends mostly on the number of inputs and outputs
because each is described by one fact.

Knowledge Base
The rules provide knowledge about solving a specific, user-
defined problem. For example, the expert executive has
several rules for finding the value of a variable. Variable
values are represented in this form:

(value-of $var Sval)

This translates to “the value of $var is $val,” where
$ indicates a variable. The variable sequence is arbitrary

THE AI MAGAZINE Summer, 1986 81

but must be consistent. The internal knowledge base con-
tains one statement, or proposition, in this format for each
variable whose value is known through either user input or
computation. Thus the knowledge base might contain the
following with reference to Figure 1:

(value-of s 60 0)

(value-of wf0 4000 0)

(value-of WOO 1000.0)

As additional knowledge is acquired through computa-
tion or interaction with the user, additional value-of propo-
sitions are asserted into the knowledge base.

Fact Base
The fact base consists of input, output, script-name, and
theory-name propositions. Input propositions are in the
following format:

(input propulsion 1 v)

This translates to “the first input to the propulsion
code is v (velocity).” The sequence number indicates the
sequence in which it is read by the Fortran program. Out-
put propositions are in the following format:

(output aero 4 ~12)

This translates to “the fourth output from the aero
code is cl2 (coefficient-of-lift-2) .>’ Script-name propositions
are in the following format:

(script-name aero “/ul/assoc/kathryn/aeroscr”)

This provides a path to the script for executing the
aero code. Theory-name propositions are in the following
format:

(file-name default)

This provides a file name for storing a theory (set of
propositions). In MRS, a theory provides symbolic par-
titioning of knowledge, so that a given logical subset of
knowledge can be loaded from any specified file, or dy-
namically created by the knowledge system.

Problem-Solving Paradigm
The expert executive uses the following problem-solving
paradigm: “To run a program, if all the inputs to the
program are present, execute the program, and return the
result. Otherwise, if there is another program, the outputs
of which provide the missing inputs, run that program
first. Otherwise consult the analyst.” This paradigm is
implemented as follows. First! there must be a rule for
running the selected binary program:

(if (and (get-all-input-vals $code)

(compute-result Bcode $invals $outvak

82 THE AI MAGAZINE Summer, 1986

$outvars Sinvars)

(output-was-obtained $outvals)

(pairlis $outvars $outvals $result))

(run $code $result))

This rule can be translated as follows: “If all the val-
ues for the program’s free-design parameters are present,
the computation is performed, output is obtained, and the
output variables are paired with their values, then it is true
that the program has been run and the result returned.”

Then, for each of the conditions there must be at least
one rule with that condition as a conclusion; for example:

(if (and (ready $code $invals $outvars $invars)

(script-name $code $pathname)

(execute-code $pathname $invals $outvals)

(pairlis $outvars $outvals $pairs)

(assert-computed-values Bpairs))

(compute-result %code Sinvals $outvals $outvars Sinvars))

This translates to the following: “If the program is
ready (all its inputs are present in the required sequence),
the script-name is known, it is executed, its output vari-
ables are paired with the computed values, and the com-
puted values are asserted into the knowledge base, then it
is true that results have been computed for the program.”
Execute-code is the Lisp function that integrates symbolic
and numeric computation. Execute-code is defined as fol-
lows:

(defun execute-code (script-name invals)

(setq ports (*process script-name t t))

(sets pi (car ports))

(setq po (cadr ports))

(mapcar ‘writeall in-vals)

(setq return-val (readall))

(close pi)

(close PO)

(wait)

return-val)

The *process function creates a process executing
whatever script is named in script-name and opens input
and output ports to it. Standard input and output for the
script are temporarily reassigned to the Lisp function, so
that the object program reads from the function writeall,
which writes program input values separated by carriage
returns. Program output is read analogously by the readall
function. When the ports are closed, the process dies.

This compute-result rule can fail because one of the
inputs is not known. For this case, there is a second rule:

(if (and (unprovable (ready Scode Sinvals Soutvars

$invars))

(setof $par (parent $par Scode) Sparents)

(run-all Sparents Signore))

(compute-result $code Binvals $outvals Soutvars

Snvars))

This translates: “If the program is not ready to run, all
the parents of the program (those programs whose output
is input to the program) are found, and each of them is
run, then it is true that results have been computed for
the program.”

Because the rule for running the program requires that
the output values be present, the run rule will fail when
this compute-result rule is invoked. However, the side ef-
fects of executing this compute-result rule cause the input
variables to be bound. The first compute-result rule will
now succeed. This rule is recursive because in order to
run the parent programs, it might be necessary to run the
“grandparent” programs.

The final element in this paradigm is consultation with
the analyst. This is done by identifying all the free-design
parameters whose values are unknown and requesting val-
ues for all of them at once through a Fortran menu-driven
user interface program:
(if (and (setof$var-1 (and (input Scode 16” $var-1)

(unknown

(output $other-code-l $* $var-1))
(unknown

(value-of $var-1 Gal-1))) $temp-1)

(setof Svar-2 (and (antecedent Sant $code)

(input Sant %* $var-2)

(unknown

(output $other-code-2 $* Bvar-2))

(unknown

(value-of $var-2 $val-2))) $temp-2)

(union $temp-1 $temp-2 $var-list)

(elementsin Svar-list $vars)

(length $vars $I)

(> $1 0)
(execute-monitor Bvars $gvals)

,user interface program

,to obtain var bindings

pairlis $vars $vals $pairs)

;makes variable-value pairs

(assert-computed-values $pairs))

,forward chains to assert variable bindings

(get-all-input-vals $code))

Because this paradigm is executed recursively, it can
address any level of depth. Because it executes the pro-
grams by starting up processes and passing inputs and
outputs through ports, it can execute programs written in
any language. The only application-dependent component
of the system is the fact base, and the only requirement
for the fact base is that it must name each input and out-
put for each program and provide a sequence number in
the argument list, so that the expert system can uniquely
identify each variable, and the computational codes can
receive the variables in the correct sequence. Because this
information is explicitly given? there is no requirement that
the facts themselves be in any special sequence.

Example Capabilities

In the current example, the expert system is capable of
performing the following tasks:

It can run the weight program only, asking the analyst
for any missing input values.

It can run the aerodynamics code by first running the
code and passing the computed output values from
weight to aero, thereby relieving the analyst of the
responsibility of asking the weight technologist to ex-
ecute this code and then correctly entering the com-
puted values into the input list for aerodynamics.

It can run the propulsion code alone.

It can run the performance code by first running
propulsion; then weight; aero; and, finally, perfor-
mance. (It could just as easily run weight, propul-
sion, and aero, or weight, aero, and propulsion. The
first successful path is chosen based on the sequence
of rules and facts.)

It can compute any named output variable, such as l/d
(lift/drag coefficient), or range, by running the code
of which it is an output, thereby relieving the analyst
of the responsibility of knowing anything at all about
the program configuration.

It can perform simple convergence, in which the ana-
lyst wishes to start with a given output, such as range,
and compute an input, such as surface area, that, with
all other variables held constant, will provide a close
approximation of the given range.

It performs all computations in real time, with the
computed outputs being used immediately as inputs
by the receiving programs.

It takes full advantage of the networking capabilities
of the operating system; in the case of the Apollo im-
plementation, the weight, aero, propulsion, and per-
formance codes are physically located in nodes in sep-
arate buildings.

Performance

Formal benchmarks have not yet been established for the
expert executive. However, it is known that once the fact
base is present for a set of four technology codes having
approximately 30 input and output facts, the design cycle
requires approximately 1.5 minutes plus the sum of the run
times of the technology codes. This is comparable to the
run time for the experimental Fortran executive program
initiating the technology codes and compares very favor-
ably with the multiweek design cycle without automated
integration. Because the primary disadvantage of the For-
tran executive program is the cost of modifying it to reflect
changes in the technology codes (requiring one person for
approximately six weeks), the most significant benchmark
for the expert executive will be its reconfiguration cost. A

THE AI MAGAZINE Summer, 1986 83

single data point indicates that the fact base can be re-
placed in approximately one day. Because the fact base
is entirely independent of the rule base (which is static)
and because a simple and straightforward representation
is used for the fact base, we are optimistic that the expert
executive will prove clearly superior in its reconfigurability.

We believe that the expert executive for preliminary
design will provide a framework for greatly expediting pro-
cesses that are heavily computation bound with complex
interfaces where iterations are very expensive. It can be
generalized for any application by simply replacing the fact
base. It can interact with any programs that can be com-
piled in the given hardware and software environment.

Possible Future Extensions

We are considering several extensions of this system. One
extension will be to incorporate other user interface tech-
nologies such as voice input and plot output. Another
extension will be to incorporate an interface to the expert
design analyzer, a prototype version of which has domain-
specific knowledge of the design variables and their in-
terrelationships and can, therefore, provide plausible free-
design parameters and interpret the program outputs. Re-
lated to this enhancement will be incorporation of numeric
optimization techniques that will probably employ a sym-
bolic numeric coupling similar to that used in the expert
executive. The Apollo-based version of this system has
full window menu graphics. We plan to provide interfaces
to other graphics functions such as plotting. Finally, we
will extend the integration from the current homogeneous
workstation network to a heterogeneous hardware and
software environment through use of higher-level network
protocols. This will enable some numerically computation-
intensive programs that currently reside on the Cray and
Cyber machines to be incorporated into this architecture.

Conclusions

We have found that when the knowledge of how to exe-
cute a set of numeric programs is separated from the facts
about these programs and represented in symbolic form, a
highly generic and powerful tool can result. This tool can
be used in any application that involves symbolic or nu-
meric computation, with any number of programs written
in any languages available in the given computing environ-
ment with minimal reconfiguration cost. The architecture
will accommodate any program for which a path can be
provided, thereby opening the possibility of loosely cou-
pled integration of symbolic and numeric computation for
design analysis.

References

Elias, A. L. (1986). Knowledge engineering of the aircraft design
process. In J. S Kowalik (Ed.), K nowledge-based problem solving.
Englewood Cliffs, NJ: Prentice-Hall

Russell, Stuart, Esq (1985) The compleat guide to MRS
Tech Rep KSL-85-12, Knowledge Systems Laboratory, Stanford
University

Zumsteg, J R.; & Crossman, F W. (1986) A computer-based design
environment for composite material structures ASTM Sympo-
sium on Composite Materials, Testing, and Design (In press)

-.---_- ______.___________----.~

AAAI-86 CONFERENCE EXHIBtTORS

Edribi-tws: I~xhibitors who have signed up by press
t.ime for AAAI-86 iuclttde: Ablcx IJub!ishittg Corporation,
Academic Press, Inc.; Addison Wesley Publishing Com-
pany, Inc.; Addison-Wesley Training Systems; Advanced
Computer Tutoring, Inc,; Advattccwl Decision Systems;
Aion Corporation; Apollo Computers Jttc.; Arity Corpo-
ration; Artificial irttclligetta~ Corporation; Automata Dc-
sigtt A3socinbcs; Automation News; J3ettjamin/Cummings
I’ul~lishittg; Cambridge University Press; Carnegie Group,
Inc,; CL Publications; Computer ‘l%ought Corporation;
Cottfcrcttce llook Scrvicc, Inc.; Data General Corporation;
Delaware Valley Al Association; Digital Equil>mettt Cor-
poratiott; EIC/Intolligcncc, Iuc.; JZlectronic Trend Publi-
cations; Eiscvicr Science Pttblisltittg Co., Inc.; J,awrcnce
i[Srlbautn Associates, lnc; Exper’hlligencc, Inc.; Expert
Systems lntcrnaliottal; Flavors Teclmology, Inc.; Frana
Inc.; Gcncral Research Corporation; Georgia Tech Re-
scarclt instlitutc; Gold lfill Com~~utcrs, Inc; IJarper &
Row, IJthlisItcrs, Inc.; Ilcwlett-Packard Company; Infer-
ence Corporation; htcgratcd 11hwu:e Machines) Inc.;
ItttclliCorp; Intclligcncc; lntcrmctrics, Iuc.; Intelligencc-
Ware, Jttc.; 1J3M; Kemp-Carroway heart Institute; Kluwcr
Academic J’ttblisltcrs; Lcarrtctl luformatiott, Ittc.; Lisp IVIa-
chine, Inc.; Lithp Systems BY., Lockheed Missiles & Space
~otn~xtny, Inc.--Austin 11ivisiott; Logicware, Inc.; Lucid,
htc.; McGraw-I-fill Book Compaq~; Micro Ihta J3ase Sys-
tcms, Inc.; the MT%’ Press; Mitrc Coq~oratiou, Morgan
Kauftttatttt Publishers, Jttc; Naval Research Laboratory, In-
formation ‘Ikchttology Division; fu’cttron Data: Ohio State
Uttivcrsity Laboratory for Al Research; W. W. Norton &
Compatty; Programming Logic Syslents, Inc.; Programs In
&lotion. Jttc.; Quectt’s Univcrsiiy Corrtputer Science TIC-
~)itrltItCIttn; ()uintus ~otttpUh?r $dA?txX3, Its.; Iiatliiirl or-

poratiott; JLCA Corporation- Advaurctl Technology IA~o-

rator&; 11: icltmond Publishing Corporation; SEAJ ‘l’ech-
ttical I’ublicatiot~s; Silo&c, Inc.; Scientific DataLink; Soft-
ware Arcltitccturc & Jhgittcering, Inc.; Software House,

Inc.; Software Intclligcnce J,aboratory, Inc.; Tlte Sperry
Cotporatiott; Springer-Verlag New York: Inc.; Sun Mi-
crosystems, Inc.; Sytnbolics, Inc.; Systems Concepts; Sys-
tems Designers Software Inc.; TckttowIcdge, Jttc.; Tek-
trottix, IJX.; Texas Instrtttncuts Irtc.; Uriivcrsity of Califor-
nia Department of computer Science; .John Wiley t Sons,
Inc.; Xettologic Inc.; Xerox Artiticial lntclligence Systems,

84 THE AI MAGAZINE Summer, 1986

