
Research in Progress 

Artificial Intelligence Research 
at the 

Information Sciences Institute 

William Mann 

Unzversity of Southern Californza 
4676 Admiralty Way 

Marina de1 Rey, Californza 90291 

FOUNDED IN 19 72 to develop and disseminate new ideas in 
computer science, the Information Sciences Institute @SI] is 
an off-campus research center of the University of Southern 
California, with a combined research and support staff of 
over one hundred. The Institute engages in a broad set of 
research and application-oriented projects in the computer 
sciences. These projects range from basic research efforts, 
through development of prototype systems, to operation of 
a major Arpanet computer facility. 

The Institute’s AI research focuses on program syn- 
thesis, user interfaces, programming environments, natural 
language, and expert systems. AI researchers are sup- 
ported by ten personal LISP workstations, several VAXs, two 
TOPS- 20 systems, and a magnificent view of Marina de1 
Rey. 

Transformation Based Maintenance and Mappings Projects 

Software specification and development continue to pre- 
sent an enormous problem to everyone involved with com- 
puters. We believe that the computer itself must play a 
far more significant role in the software development process 
than it does presently. The software designer’s role should 
be streamlined to require only decision making and guidance, 
while the computer’s is expanded to manipulation, analysis, 
and documentation. The key to such support is to capture 

in the machine all crucial information about the processes of 
specification, design, implementation, and maintenance. 

For several years we have been developing an alternative 
s,oftware paradigm based on this tenet (Balzer 1983) We 
envision a future user developing a high-level specification 
of what he or she wants a program to do, and transforming 
the specification into an efficient program, using a catalog 
of (proven) correctness-preserving transformations. Most 
debugging and all maintenance will be performed on the 
specification, which will have an operational interpretation 
suitable for testing. 

Our specification language, called GIST, formalizes some 
of the constructs commonly used in natural language specifi- 
cations, including descriptive reference (“the message from 
Bill”), nondeterminism (“a message from another site”), his- 
torical reference (‘(the last message the user looked at”), con- 
straints (“never send multiple copies of a message to the same 
person”), and demons (“if a week passes without a reply to a 
request, inform the sender”). A GIST specification describes 
the behavior of both the program and its environment; this 
provides a natural way to specify embedded programs that 
interact in complicated ways with their environment GIST’S 
expressive power makes it possible to specify what behavior 
a program should exhibit without saying how it should be 
implemented. 

We are also developing tools to support the specification 
process, i.e., to help bridge the gap between the specifier’s 

THE Al MAGAZINE Spring 1984 65 

AI Magazine Volume 5 Number 1 (1984) (© AAAI)



informal intentions and their formal expression in GIST. Un- 
fortunately, specifications in any formal language tend to be 
difficult to understand. Hence, we have developed programs 
that explain GIST specifications in English (see Specification 
Validation project, immediately following). 

The Mappings project is discovering transformations 
for translating GIST’S high-level constructs into the lower- 
level constructs used in more conventional programming lan- 
guages (London & Feather 1982), as well as criteria for select- 
ing among alternative transformations. The user will guide 
this process by stating a high-level goal for the system to 
achieve, selecting a transformation from a catalog for the 
system to apply, or manually applying a transformation that 
the catalog lacks. We have developed problem-solvers that 
help find a sequence of transformations that achieves a given 
goal (Fickas 1982, Mostow 1983). 

The Transformation Based Mazntenance project is devel- 
oping the system support needed to facilitate the automated 
implementation of specifications using transformations. To 
this end we have developed the system called POPART - 
Producer of Parsers and Related Tools - which produces 
a parser, lexical analyzer, pattern matcher, editor, pretty 
printer, attribute grammar mechanism, and even a trans- 
formation system for any context-free language input to 
it Through the use of a formal development structure, 
which captures all the design decisions, assumptions, and op- 
timization steps, optimizations can be replayed on a changed 
specification to produce a new implementation automati- 
cally (Wile 1983). That is, the new implementation is de- 
veloped by analogy with the old. We believe that such an 
automated maintenance facility will be an important applica- 
tion of analogical reasoning techniques. 

Personnel: Robert Balzer, Martin Feather, Jack Mostow, 
David Wile. 

References 

Fickas, S. (1982) Automating the transformation development of 
software Doctoral dissertation, University of California, Irvine 

London, P E., & Feather, M S. (1982) Implementing specification 
freedoms. Science of Computer Programming, 2, 91-131. 

Mostow, J (1983) A problem-solver for making advice opera- 
tional AAAI-8.3, Washington, D. C , August, 279-283 

Wile, D S (1983) Program developments: Formal explanations 
of implementations. CACM, 26 (11). 

Specification Validation References 

Regardless of the specification language used, formal 
program specifications can be difficult to understand. Yet, 
because a specification is frequently the means by which a 
customer communicates his desires to a programmer, it is 
critical that both the customer and programmer be able 
to examine and comprehend the specification. Two of the 

major impediments to understandability are the unfamiliar 
syntactic constructs of the language and non-obvious inter- 
actions between widely separated parts of the specification. 
These interactions may cause the specification to denote be- 
haviors that were unintended by the original specifier or not 
to denote behaviors that were intended. The Specification 
Validation project seeks to overcome these impediments by 
constructing tools to make specifications more understand- 
able, both to specifiers and to those unfamiliar with formal 
specification languages. 

One tool, the GIST paraphraser (Swartout 1982), ad- 
dresses the syntax problem by directly translating a GIST 
specification into English. We have found the paraphraser 
to be useful in both clarifying specifications and revealing 
specification errors. 

The paraphraser deals only with the static aspects of a 
specification. Our second tool addresses the more difficult 
problem of making non-local specification interactions ap- 
parent by simulating the dynamic behavior implied by the 
specification. Our approach has been to discover non-local 
interactions by using a symbolic evaluator (Cohen 1983) to 
analyze a specification. The symbolic evaluator gathers and 
integrates constraints from the specification. It discovers 
what sorts of behaviors the specification allows, and what 
is prohibited. Since a symbolic evaluator does not require 
specific inputs, it is possible to test a specification symboli- 
cally over a range of inputs that would require many test 
runs if specific inputs were employed. 

The symbolic evaluator produces an execution trace, 
which details everything discovered about the specification 
during evaluation and which contains mechanically produced 
proofs justifying the evaluator’s discoveries. Unfortunately, 
the trace is much too detailed and low-level to be readily 
understood by most people. To overcome that difficulty, 
we have constructed a trace explainer (Swartout 1983) that 
selects from the trace those aspects believed to be interest- 
ing or surprising to the user and uses that information to 
produce an English summary. The trace explainer employs a 
number of heuristics about what the user is likely to want to 
see to summarize the trace. In addition, since the mechani- 
cally produced proofs are often very detailed and appear un- 
natural, the explainer reformulates the proofs into a more 
understandable form. The use of these heuristics has resulted 
in quite readable output from the trace explainer. 

Personnel: Bill Swartout, Don Cohen. 

Cohen, D. (1983) Symbolic execution of the GIST specification 
language. IJCAI-83, Karlsruhe, Germany. 

Swartout, W (1982) GIST English generator AAAI-82, Pit- 
tsburgh, PA., 404-409 

Swartout, W. (1983) The GIST behavior explainer. AAAI-83, 
Washington, D. C., August, 402-407 

66 THE AI MAGAZINE Spring 1984 



Consul and CUE 

CONSUL and CUE comprise a single research approach 
to the problem of producing a natural user interface to com- 
puter services. We are focusing on two basic problems: 

1. translating the user’s description of what he wants to 
do into descriptions of what the system can do (and 
translating back the other way for explanation); 

2. insuring that the functions and data structures of the 
individual services can be combined to perform the 
tasks that the user describes. 

We believe that users may think of interactive computer 
services very differently than the builders of these services. 
A system that provides a natural interface must take these 
differences into account, making sure that the user’s expres- 
sions of his service needs can be understood and, wherever 
possible, actually performed by the service functions that 
have been implemented. Similarly, when the user requires 
explanation of service requirements and capabilities, the sys- 
tem must be able to determine what the user is asking about 
in system terms and then provide him with an appropriate 
answer in user terms. 

Our approach is to build a knowledge-based system con- 
sisting of detailed models of what users want to do and what 
the system can do. The knowledge base, implemented in 
KL- ONE, is used both by components that map between 
user and system descriptions and by those that acquire in- 
dividual service function and data descriptions into the in- 
tegrated system view. 

The CONSUL project is responsible for fundamental know- 
ledge representation and inference research, and for a natural 
language interface that allows the user to describe what he 
wants to do in English. CUE (for Consistent Underlying En- 
vironment) is responsible for integrating service functionality 
and for a form/menu/command interface that allows the user 
to describe what he wants to do in a more formal framework. 
Both projects cooperate to build the knowledge base. 

The result of this research will be a single interface 
through which the user sees a completely uniform service 
environment for performing his tasks. The interface will al- 
low the user to describe what he wants to do in terms of 
forms, menus, commands, or natural language-in whatever 
combination he deems appropriate for the task at hand. 

We have implemented a demonstration system that ex- 
hibits this kind of interface in the realm of electronic office 
environments consisting of interactive services like electronic 
mail and personal calendar. Users interact with a worksta- 
tion running CUE; commands and menu selections are in- 
terpreted and executed within the CUE machine. Natural 
language requests and any input that requires help or ex- 
planation is sent off to a separate CONSUL server machine for 
interpretation. The system currently works only on a limited 
number of test cases, and provides response times that are 
suitable for demonstration but not for real use. 

Personnel: William Mark, Thomas Kaczmarek, Thomas Lip- 
kq Robert Fenchel, Norman Sondheimer, Davzd Wilczynski. 

References 

Kaczmarek, T., Mark, W., & Sondheimer, N (1983) The Consul/ 
CUE interface: An integrated interactive environment. CHI-83 

Kaczmarek, T., Mark, W., & Wilczynski, D. (1983) The CUE 
project. Proceedings of SoftFair, July. 

Mark, W. (1981) Representation and inference in the Consul 
system. IJCAI7 

Schmolze, J., & Lipkis, T. (1983) Classification in the KL-ONE 
knowledge representation system IJCAI8. 

Wilczynski, D. (1981) Knowledge acquisition in the Consul sys- 
tem. IJCAI7. 

Information Management 

The Information Management project is attempting to 
build a computing environment which significantly reduces 
the effort required to create, integrate, and evolve ser- 
vices, and permits users to customize these services without 
detailed knowledge of how they were specified. The basis for 
such improvements lies in raising the level of specification 
and modification of these services. 

We have identified and provided several recurring mech- 
anisms that form the basis for the higher level specification 
and evolution dictions. The most important of these are 
descriptive reference, and coordination and automation rules. 
However, since the main activity in any computing environ- 
ment is building and manipulating objects, we start with a 
comprehensive set of lower-level object definition, instantia- 
tion, and modification operations, and a database in which 
the mutable objects defined and manipulated by these opera- 
tions persist. This systematizes session continuity and avoids 
having to use files of characters to communicate between ser- 
vices (the services coexist and share the database). Contexts 
provide a mechanism for hypothetical activity and the com- 
parison of alternative futures. 

Within this database, particular objects must be lo- 
cated. Descriptive reference (associative retrieval) has been 
provided as a universal access mechanism. This avoids hav- 
ing to create limited and ad-hoc access structures. 

The “physics” of this world is defined by coordination 
and automation rules. These specify, respectively, the static 
data consistency and dynamic causal interactions in that 
world. The coordination rules define the consistency among 
objects that must exist within a single state. They also 
define how that data consistency can be restored if and 
when it is violated. For a subset of such rules, called Con- 
straint Equations, the required restorations can be automati- 
cally computed from the consistency conditions. These 
rules allow the system to take responsibility for the main- 
tenance of data consistency. This encourages the use of 
multiple representations (alternative views), which increases 

THE Al MAGAZINE Spring 1984 67 



comprehensibility. These rules facilitate evolution by allow- 
ing modifications to be expressed in terms of the most ap- 
propriate representation (view), and by ensuring that the 
effects are automatically propagated, unobserved and in the 
same state transition, throughout all related structures (a la 
VISICALC) 

Automation rules, on the other hand, define the effects 
(i.e. observable events) that are to result from a cause They 
specify the dynamic interactions that initiate state change, 
and provide a means for describing regularized interactions in 
situation/response form. This enables the system to perform 
these responses on the user’s behalf. Such augmentation is an 
important form of evolution. But altering existing processing 
is also required. By specifying these alterations in terms of 
the observable behavior of the objects, rather than the code 
that generates that behavior, the vocabulary of the domain 
becomes a higher level diction for change (analogous to the 
adaptability of rule-based expert systems). 

These mechanisms have been incorporated into a demon- 
stration system. However, to actually validate these ideas, a 
system embodying them must be used for real work over an 
extended period. Hence, we are constructing a testbed ver- 
sion which contains all key services covering the vast majority 
of our work. These include program development and such 
administrative services as mail, document preparation, and 
personal databases. Our intent is to use these IM services 
to the exclusion of the corresponding external services and 
to evolve them as our needs change and we recognize new 
opportunities for integration. 

criticize the resulting text, and revise the text plan accord- 
ingly. 

The project has concentrated on two areas: sentence 
generation and text planning. 

A large systemic grammar of English, called NIGEL, is 
PENMAN'S sentence generator. NIGEL is designed to be com- 
patible with different knowledge representations, so that it 
can become a portable English grammar for several domains 
and computing environments Michael Halliday, the founder 
of systemic linguistics, is participating in the definition of 
the grammar. Systemic notation has been augmented with 
a semantic notation which expresses the meaning of each 
grammatical feature in terms of the conditions under which 
it is chosen. These definitions of the grammatical features are 
embodied in “choice experts” which control sentence genera- 
tion. Definitions currently exist for over half of the features 
of NIGEL'S grammar of English. 

. 

A new technical description of how text is organized 
has been developed as part of the work on text planning, 
and verified on natural texts. Part of this description shows 
that texts express a large amount of their communication 
load in the relations which make them coherent, rather than 
explicitly in their clauses. This description is currently being 
elaborated into a text planning method. 

These two emphases, representing respectively the ex- 
ecution and creation of plans for text, address the most criti- 
cal needs for new technical knowledge for generating fluent 
multiparagraph natural language text. 

Personnel. Wzlliam Mann, Christian Matthzessen, Sandra 
Thompson, Machael Halladay. Personnel: Bob Baker, Dave Dyer, Neal Goldman, Matt 

Morgenstern, Bob Neches. 

References 
References 

Mann, W C (1983) An Overview of the PENMAN Text Genera- 
tion System (RR-83-114) Marina Del Rey, CA: USC Informa- 
tion Sciences Institute 

Mann, W. C (1983) Inquiry semantics: A functional semantics 
of natural language grammar Proceedings of the First Annual 
Conference: Association for Computataonal Linguistic, European 
Chapter, September. 

Mann, W C., & Matthiessen, C M I. M. (1983) NIGEL: A 
Systemzc Grammar for Text Generatzon (RR-83-105) Marina 
Del Rey, CA: USC Information Sciences Institute (To appear 
in R Freedle (Ed ) Systemzc perspectives on discourse: Selected 
theoretzcal papers from the 9th international systemac workshop ) 

Balzer, R., Dyer: D , Morgenstern, M., & Neches, R (1983) 
Specification-based computing environments AAAI 83, Wash- 
ington, D C., August, 12-16 

Morgenstern, M. (in press) Active databases as a paradigm for 
enhanced computing environments. Proceedings of 9th Interna- 
tzonal Very Large Data Base Conference, October 

Neches, R., Balzer, R., Dyer, D , Goldman, N., & Morgenstern, 
M. (in press) Information management: A specification-oriented, 
rule-based approach to friendly computing environments. Pro- 
ceedings of the IEEE Conference on Systems, Man, d Cyber- 
netzcs, January, 1984 

Text Generation 
Explainable Expert Systems 

This project is developing a theoretical framework and 
implementation to represent the relatively domain-indepen- 
dent parts of the skill of generating fluent multiparagraph 
English text The text generation module, PENMAN, is 
designed to acquire information intended for a reader, or- 
ganize it into a text plan with details down to the indepen- 
dent clause level, generate sentences according to the plan, 

The Explainable Expert Systems project, is just getting 
underway at ISI. Its goal is to create a framework for build- 
ing expert systems that will ease their maintenance and 
evolution and enhance their explanatory capabilities. Using 
current frameworks, it is difficult to create, modify, or ex- 
tend expert systems; the explanations and justifications of 

68 THE AI MAGAZINE Spring 1984 



behavior that such systems can provide (if any) are often 
difficult to understand. In part, these problems stem from 
the fact that current frameworks force a system builder to 
integrate mentally many different kinds of knowledge, such 
as domain facts, heuristics, and control knowledge, and then 
to encode that knowledge at a uniform (and low) level of 
abstraction. Because the integration process occurs men- 
tally, it is unrecorded. Yet it represents the “reasoning be- 
hind the system” and is exactly the knowledge required to 
justify and explain the system’s behavior - both to users and 
to system builders. Further, this confounding of knowledge 
hinders maintenance and evolution. 

We are constructing a framework for building expert 
systems that supports their evolution and explanation by 
encouraging the separation and explicit representation of 
the various kinds of knowledge that go into such systems 
and recording the integration of that knowledge for use 
in explanation and justification. This framework will ex- 
tend the paradigm used in the XPLAIN system (Swartout 
1983a). There will be four major aspects to our expert- 
system-building system: 

1. a knowledge representation framework to explicitly 
represent the various kinds of knowledge that go into 
an expert system (e.g. domain facts, heuristics, con- 
trol knowledge) 

2. an interpreter to dynamically integrate the knowledge 
and produce expert behavior 

(Correction to the Research in Progress Section in the 
AI Magazine, Vol. 4 No. 4, Winter, 1983) 

Jet Propulsion Laboratory 
by 

Steven Vere 

le Winter 1983 issues of AI magazine contains a notice 1 
research at JPL in which I am listed as a member of t 

ltomated Problem Solving Group. My affiliation with t 
sup ended in October, 1982, and I have formed a new “ 
:search Group” at JPL. 

3. a compiler to enhance the system’s efficiency by stati- 
cally integrating the knowledge that does not depend 
on the particulars of an individual session, and 

4. an explanation facility that will use traces recorded by 
the interpreter and compiler to describe and justify 
the system’s behavior. 

There will be two major research areas. The first involves 
the relationship between compilation and interpretation of 
knowledge. The XPLAIN system essentially compiled all 
the knowledge it used. While it does seem that experts 
compile their knowledge as they become more expert, it 
seems they do not always use compiled knowledge; indeed, 
particularly difficult cases may require eschewing compiled 
methods and interpreting “deep” knowledge. The second 
research area will concentrate on how to represent other 
kinds of knowledge (such as efficiency knowledge) in the 
knowledge base. 

Personnel: Bill Swartout. 

References 

Swartout, W. (1983a) XPLAIN: A system for creating and ex- 
plaining expert consulting systems Artificial Intelligence, 3, 21, 
295-325. 

Swartout, W. (198313) Explainable expert systems. IEEE: 
Proceedings of MEDCOMP83. 

NOTICE TO ALL MEMBERS 

Recently, it has come to our attention that individual(s) have 
been misrepresenting themselves as AAAI staff members in 
order to gain access to confidential information about person- 
nel histories and salaries and corporate organizational struc- 
tures. It is not the AAAI’s practice to want or need such 
information. 

We do not know who these people are or what their intentions 
may be. So, please be advised if such individuals contact you, 
please note their names, addresses, and phone numbers and 
confirm the intent of their call with the AAAI office 
:415-328-3123). 

l-hank you. 

THE AI MAGAZINE Spring 1984 69 




