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Abstract, 

GLISI’ is a high-level language that. is compiled into LISP It provides 
a versatile abst~art,-dnt.a-t.ypc facility with hierarchical inheritance of 
pl oprl ties and object,-centered programming GLISP programs are 
shorter and more readable than equivalent LISP programs The 
object code produced by GLISP is optimized, making it about as 
cfflcient as handwritten LISP An integrated programming environment 
is provided, including automatic incremental compilation, interpretive 
programming features, and an intelligent display-hased inspector/editor 
for data and data-type descriptions GLISP code is relatively portahlr; 
the compiler and the data inspcrtor are implemcntcd for most major 
dialects of LISI’ and arc availablr flee or at nominal cost 

GI,ISP (NOVAK 1982, 1983A, 1983B) is a high-level lan- 
guage, based on LISP and including LISP as a sublanguage, 
that is compiled into LISP (which can be further compiled 
t,o machine language by the LISP compiler). The GLISP sys- 
tem runs within an existing LISP system and provides a.11 in- 
trgratcd programming environment, that includes automatic 
incremental compilation of GLISP programs, interactive ex- 
ecution and debugging, and display-based editing and inspec- 
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tion of data. IJse of GLISP makes writing, debugging, and 
modifying programs significantly easier; at the same time, 
the code produced by the compiler is optimized so that, it,s 
execution efficiency is comparable to that of handwritten 
LISP This article describes features of GLISP and illustrates 
them with examples Most of the syntax of GI,ISI’ is similar 
to LISP syntax or PASCAL synt,ax, so explicit. treatment of 
GLISP syntax will be brief. 

GLISP programs are compiled rclativc to a knowleflgc 
hasc of ohjcct, descriptions, a form of abstract. data types 
(Liskov et al. 1977; Wulf, London, ,Q Shaw 1976). A primary 
goal of the USC of abstract data types in GLISP is to make 
programming easier The ifnplerrient.:tt,iolis of’ objects are 
described in a single place; the compiler uses t,hc object. 
descriptions to convert GLISP code written in terms of user 
objects into efficient 1,TSP code writt,en in terms of the im- 
plcment,ations of the oqjects in LISP This allows the im- 
plcmentations of ol?jects to hc changed without, changing 
the code; it also allows the same code t.o be cffect,ivc for 
ol?ject.s that arc implemented in diffcrcnt, ways and thereby 
allows the accumulation of programming knowledge in the 
form of generic programs Figure 1 illustrates the combina- 
tion of information from these t,hree sources; the recursive 
use of abstract, data types and generic programs in the coin- 

pilation process provides multiplicative power for describing 
programs 

Overall, GLISP progranl syntax is like t,hat, of I,lSI’ 
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Figure 1 GLISP compila.tioIl 

GLISP contains ordinary LISP as a sublanguage; LISP code 
can be mixed with GLISP code, so t,hat no capabilities 
of the underlying LISP syst,cm arc lost. WISP provides 
I’ASC!AI,-like reference to sllbstrllct.11res and properties, infix 
arit,hmct,ic expressions, and PASCZAI-like conl,rol statements 
Ol?jcd,-cerit.ered programming is built, in; oplimized compila- 
tion allows object,-c,cnt,cred programs to ruii efficiently. 

GLISP is easily cxt,ensible for new ot~.jcct, represenl,at,ions. 
Operator ovcrloatling for user-defined objects occurs auto- 
matically when arit,hmet,ic operators are tlcfincd as mes- 
sage selcct,ors for t,liose objects The compiler can compile 
optimized code for access to object8 represent,ed in user- 
specified reprcscnt,at,ion languages. GLISP has also been ex- 
!,cndcd as a hardware description language for describing 
VLSI designs. 

Object Descriptions 

In GLISP, programs are separat,ed into a knowledge base 
of object descriptions and application programs that, are 
wril,t,cn in t,erms of ot?jcct,s The compiler uses the object, 
dcscript,ions to guidr the l,ranslat,ion of GLISI’ programs, 
written in tcrnis of objects, into LISP programs, writtell in 
t,crms of t,hc irIll)lement.at,ions of objed,s in LISP. The use of 
objecl 

1. 

descriptions has several advantages: 

Object tirscript,ions provide multiplicat,ivc l)ower for 
describing progrartls The code for a prop&y of an 
ohjcct is st.at.4 oncr in i.hr object descript,ion hut, 
can i,hcn 1~ invoked many times in programs that 
refprrncac i.hr propelty, either direct,ly or through in- 
herit.ancr ’ 

2. The implemcnt.ations ol’ ohjccts CRII 1~: qhnngrd with- 
out changing code that refereI]res 011e objrc1.s. 

3 Generic programs can be used for conc:ept.~~ally sinlilat 
objects that arc ilnplrnlent,ed in different, ways, facili- 
tating the accumulation of programming knowledgr 
in t,hr form of collect,ions of al)st.ract, object. descrip 
Cons and generic programs 

,1 Exist,ing LISP dat,a slrucf.rircs can IW descrihcxtl, so 
that GLISP and it,s assoc?al,ed programs (sucti as 
the (ZEV clat,a inspect,or) can t)(l used with existing 
programs that. arc not, written in GI,ISI 

5 Ohjcct descriptions provide valuable pr0grillll tloc*- 

umentation. 

The payofl from using abstract dala t,ypcs in C:I,ISI’ in- 
creases as systenis become larger. GLISI’ programs arc typi- 
tally short,er than cquivalcnt, I,ISP programs t)y a factor of 
t,wo to t,lirec. 

An obpct descrzptzon describes the actual dat,a st,ruc:tllrc 
occupied by it11 object; in addition, it,’ descrihcs propertzes 
(values t,hat are computed rather than being stored as data), 
adpctzves (used in predicate expressions t.o t,cst, features of 
t,he object,), and lnessages to which the object, can respond. 
An example of a GLISP object, description is shown in Figure 
2 Tht name of the object type, CIRCLE, is followed by a 
description of t,he actual data st,ruct,nre occupied by t,hc otl- 
ject: a LISP list, of t,he CENTER, wllicll is of l,ype VECTOR, 
and the RADIUS, which is a REAL number The remaining 
itSems describe properties, adjectives, and messagts for t,his 
oll.ject, type As this example illustrates, the syntax of object 
descriptions makes it easy to dtfine computed properties of 
objects The language for describing t,hc st,oragt struct,urcs 
of objects allows most, of the common data st.ruct,ures of LISP 
to be described. 

Figure 3 shows the object description for a DCIRCLE, 
which is a different implementation of a circle object, A 
DCIRCLE has a difl’erent storage structure t,han a CIRCLE 

(CIRCLE (LIST (CENTER VECTOR) 
(RADIUS REAL)) 

PROP ((PI (3 1415926)) 
(AREA (PI*RADIUSf2)) 
(DIAMETER (RADIUS*2)) 
(CIRCUMFERENCE (PI*DIAMETER)) ) 

ADJ ((BIG (AREA > 100))) 

MSG ((DRAW DRAWCIRCLEFN) 
(GROW (AREA t -I- 100)) )) 

Figure 2 A GLISI’ ol)ject clcsc:ripl,ion 
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(DEFINEQ 
(CR (GLAMBDA (C CIRCLE) 

C RADIUS)) ) 

(DCIRCLE (ATOM (PROPLIST (DIAMETER REAL) 
(CENTER VECTOR))) 

PROP ((RADIUS (DIAMETER/2))) 

SUPERS(CIRCLE)) 

Figure 3 A different, implementation of circle objects 

(a LISP atom with data stored on its propert,y list), and it 
st,ores t,he DIAMETER of the circle rat,her than the radius. 
However, since the RADIUS of a DCIRCLE is defined as a 
computed property, all of the properties of CIRCLES can he 
inherited by DCIRCLEs simply by naming CIRCLE as one 
of t,he SUPERS (superclasses) of DCIRCLE. 

Compilation of Property References 

(Compilation of a GLISP function occurs automatically 
the first time it is called; recompilation occurs automatically 
if the function or an object description on which it depends is 
modified. Thus, it appears to the user that a “GLTSP inter- 
preter” exists There are also facilit,ies for double compila- 
tion (from GLISP to LISP to compiled LISP) using the exist- 
ing LISP compiler. When a GLISP function is compiled, t,he 
original GLISP definition is saved on t,he function’s property 
list, and the function is redefined as a LISP EXPR 

GLISP functions are defined using a defining form similar 
to the one in the underlying LISP dialect; the examples in 
this article are shown in t,he form appropriate for INTER- 
LISP (Teitelman 197X). Types of function arguments may be 
declared, as in PASCAL, using the syntax 

“<variable> <type>“. 

Within program code, substructures or properties of objcct,s 
ma,y be referenced using the syntax 

“<variable> <property>“. 

A simple funct,ion named CR, which retrieves the RADIUS 
of a CIRCLE, could be writ,tcn as follows: 

Such a function can be explicitly compilccl by calling the 
function GLCP (GLISP Compile and Print), as shoivn below: 

(GLCP ‘CR) 
GLRESULTTYPE REAL 
(LAMBDA (C) (CADR C)) 

GLCP prints the t,ype of the result returned by the func- 
tion (which is inferred by the compiler) and the LISP code 
produced. 

Properties of an ol?ject are referenced in the same way 
as stored data. This facilitates hiding the internal st,ruc:- 
tures of objects, so that programs do not, depend on which 
property values are stored and which property values arc 
computctl. For example, a CIRCLE has RADIUS stored, 
while a DCIRCLE has DIAMETER stored; this distinct,ion 
is transparent to programs using these objeck As an ex- 
ample of property reference, the area of a CIRCLE C cm 1~ 
referenced as: 

C AREA 

which is compiled as: 

(TIMES 3 1415926 
(EXPT (CADR C) 2)) 

If the absence of a distinction in program code between 
data t,hat arc stored and data that, are comput,ed is 1.0 br 
maintained, it must be possible to “store into” computed 
data The compiler is able to “invert” arithmetic expressions 
involving constant,s and a single stored value For cxarnplc, 
the area of a circle can be increased by 100 using the follow- 
ing code (the operator “+ +” means “is increased by”): 

(C AREA ++ loo) 

which compiles int,o: 
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(RPLACA (CDR C) 
(SQRT 

(QUOTIENT (PLUS (TIMES 3 1415926 
(EXPT (CADR C) 2)) 

100) 
3 1415926))) 

As this example illustmks, bhe fcaturcs of c:I,ISP form 
an integrated whole and cm bc combined. 111 this case, t,he 
GLISP source code is easier to understand than the equivalent 
LISP code, and t,hcre is a high ratio of output code to input, 
COdC. 

GLISP Statements 

GLISP provides several kinds of statements that arc 
t,ranslated into equivalent, code in 1,ISP; each is identified by 
a key word at, the front of a list containing the code for the 
stwtemcnt. Many of these statements are similar to t,hose 
provided by I’ASC!AL: 

If . .then .else 

While . . .Do 

Repeat . .Until 

Case 

These control st,atements provide A compact and well- 
st,ruct,ured way of stating some commonly used control con- 
st,ruct,s and also provide a degree of LISP-dial& indcpen- 
dence As an exmlple, a simple square-root, function can be 
writ,ten as follows: 

(SQRT (GLAMBDA (X REAL) 
(PROG (S) 

6 + Xl 
(IF X < 0 THEN (ERROR) 

ELSE (WHILE (ABS s*s - X) > 0 00001 
DO (S + (S+X/S) * 0 5))) 

(RETURN S)))) 

Two special forms, THE and THOSE, are provided to 
select a sir& clement or subset of element)s that, satisfy a 
given condition from a set of similar clcnients: 

(THE COWBOY WITH HORSE=‘TRIGGER) 

(THOSE EMPLOYEES WITH SENIORITY > 3) 

Thr A fullcation is provided to create data in a reprcscnta- 
t,ioil-inclel,elitlrnt maimer. Given a. set of name/value pa,irs, 

the A function creates a new tlat,a st,ruct,urc having t,ht: 
specified values: 

(A CIRCLE WITH RADIUS = R) 

Given the earlier ob.jcct dcscript,ion for CIRCLE, this will 
compile as: 

(LIST (APPEND ‘(0 0)) R) 

The A function works interpretively as well as wit,hin caonl- 
piled code 

Context and Type Inference 

One of t,hc design goals of CLISP is that program code 
should be independent of the irnpl~~T~le~~t,at,ic,rls of the struc- 
tures manipulated by the code to the grcat,cst, dcgrcc pos- 
siblc Inclusion of redundanl t,ype declarations in program 
code would make the code dependent on the actual in- 
plementwtion of structures; instead, GLISI’ relies on type in- 
ference and its compile-time context, mechanism to tletcrmine 
the types of object,s. 

The context is analogous to a symbol table, associating 
a set of named ol,jects with their types When a function is 
compiled, the context, is illitializcd to contain the fun&on’s 
arguments and their types; the other types used wit,hin t,he 
function can in most, cases be derived by type inference. Dur- 
ing compilation, the type of each intermediate cxprcssion is 
computed and propagated together with the code tallat, com- 
putes the expression. The type of any substructure retrieved 
from a larger struct,ure is inferrrd by the compiler from the 
structure description of thr larger structure Assignment of 
a value to an untyped variable causes t,het variable to be as- 
signed t,he type of the value assigned to it. Type infcrcnce 
is performed automat,ically by the compiler for the common 
“system” fllnctions of LISP The type of the value computed 
by a user function may bc declared; usually, t.1~ compiler is 
able to infer the type of t,he result of a fun&on t,hai, is COIII- 
piled, and it saves a declaration for the result, type. Using 
these mechanisms, the compiler can dct,crminc object, t,ypes 
without requiring redundant type declarations within pro- 
gram code. Type checking is done during compilation at the 
point of use; t,hat, is, a feature of an object, must be defined 
for the type of the object at t,hc time the feature is referenced 
or a compilation error will result. 

When properties, adjectives, and messages are compiled, 
the compilation takes place within a context cont.aining the 
object whose properties arc being compiled. Direct, rcfcrcnce 
to the properties and substructures of the object is permitted 
within the code that defines properties; this is analogous to 
with. do in PASCAL. For example, the tlcfinit,ion of AREA 
of a CIRCLE contains direct references to the stored value 
RADIUS and the property PI 

Compilation of Messages 

Object-centcrcd programming, which treats dat,a ol)- 
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jects as active ent.it,ics t,hat, communicate by sending mes- 

sages, was int,roduced in SIMULA (Birt,wish et d 1973) 
and popularized by SMALLTALK (Goldberg et al. 1981, In- 
galls 1978). Ol)Sject,-centered programming has recently been 
implement,ed for several LISP dialects as well (Bobrow & 
Stefik 1981, Cannon 1981) In GLISP, the sending of a mes- 
sage t,o an object is specified in t,he form: 

(SEND <object> <selector> <arguments>) 

where the funct,ion name “SEND” specifies the sending of 
a lnessage l,o <object> The <selector > dcnot,es the 
action to be performed by t,hc message When a message 
is executed at, runtime, the <selector > is looked up f’ol 

the t,ype of the actual <object> l,o which t,he message is 
sent to get, t,he name of the funct,ion t,hat, executes t,he mes- 
sage. This function is then called with t,he <object> and 
t,he act,ual <arguments> as it,s argumcnt,s In effect,, a 
message is a function call in which the dynamic <object> 

t,ypc and t,he <selector > together determine the function 
name. Interpretive lookup of messages is compuMionally 
expensive-oftzen more than an order of magnitude costlie 
than direct, cxecut.ion of the same code Howcvcr, the types 
of objects can usually bc known at, compile t,ime (Borning 
81 Ingalls 1982) When the response t.o a message can be 
uniquely determined at compile time, GLISP compiles in-line 
code for t,hc response; otherwise, the message is interpreted 
at run time, as usual. 13y performing message lookup only 
once at compile time rather than repeat,edly during execu- 
tion, performance is dramatically improved while retaining 
t,he flexibility of object-centcrcd programming. 

Associat,ed with each message selector” in an object 
description is a respo?rse specification t,hat t,ells how t,o com- 
pile the corresponding message; the response consists of code 
and a property lisl.. There are t,hree basic fornls of response 
code. The first, form of response code is simply a function 
name, and t,he code that is compiled is a call to that function. 
The second form is a function name and a flag l,o specify 
open compilation, in which the named function is “macro- 
expanded” in place with the actual compile-time argument 
values and types substit,ut,ed for those of the function’s for- 
mal arguments The third form of response is GLISP code, 
which is recursively compiled in place of the message refer- 
ence, in t,hc context, of t,he object whose pr0pert.y was rcfer- 
enced. 

The last, form of response code is a convenient and power- 
ful way of defining computed propertics of objects The 
more usual way of defining such properties by means of small 
functions has several disadvantages. Function-call overhead 
(and message-lookup ovrrhead in an object-centered system) 
is expensive for small functions. Since function names must 

“And likewise wii.h each p~opcrty 01 adjcct.ive; p opert,y and adjec- 
tive ~cfc~cnccs arc cornpilcd as if they were message calls without any 
<arguments> 

llsually be unique, long function names proliforale ‘I’hc SJY- 
t.actic overhead of writing small func%ions and calling i,hc~n 
discourages their use In GLISI’, tilnc%iou-call overhead is 

eliminat,ed by expanding the response code in place; t.hcl 
resulting code is then sut?jcct to standard compiler opt.imixn- 
Cons (e g , constant, folding). Names of propert,ies do not, 
have to be miique because they arc rcfcrcnced rclativc t,o a 
particular object type. Response code is easy t,o wrilc and 
easy t,o refcrcncc 

Property Inheritance 

Object-centered languages organize objcct~ int,o a hierar- 
thy of classes and instancrs; this provides ccononiy of rel)rt:- 
scntatiori by allowing feat,ures that apply t,o all menibcrs of 
a class to be described only once, at, the class level (:I,ISP 
treats ob~jcct, descriptions as classes and allows properties, 
adjectives, and niessagcs to be iriherit,ed from parent, classes 
in the hierarchy Thr compilat,ion of propcltics, adSjec:(.ivc:s, 
and messages in 61~~31’ is recursive al, compile time. That, 
is, when a properl,y is t,o be compiled, Ibe dcfinit,ion of the 
property is taken as a new cxprcssion to bc conlpiled and 
is compiled rccursivcly in l,he cont,cxt of t,lie original 011,jc:ct 
whose propert,y was referenced. This allows an al)st,ract, data 
type to define its propertics in t.erms of other properties tallat. 
are implemented differently in il,s subclasses., It also allows 
expansion of code through mlllt,iplc lcvcls of imple1lrell(,at,iorl 
description. 

(~onipile-tinie propert*y inheritance allows objcct,s t,tl;rt. 
are implemented in diflercnt, ways t,o share the sang property 
definitions For exnmplc, veclors might have X and Y values 
of various possible t,ypes (e.g , int,eger or real) stored in 
various ways A single abstract, class VECTOR can define 
vect,or properties (e.g., how to add vectors) that, can he in- 
herited by t,he various kinds of v&or inl~)lrl~~ent,:~t,ions. This 
is illustrated in Figure 4 The class VECTOR defines a 
storage structure that is a list of t,wo int,cgcrs The definition 
of “+” as a messagr selector causes t,his operator t,o be over- 
loaded for objects of type VECTOR; “+” is implcmcntJctl 
by t,he function VECTORPLUS, which is specified as being 
compiled 0?1e?z, that, is, macro-expanded in line The class 
FVECTOR defines a different storage structure wit,h clc- 
ment,s whose types are STRING and BOOLEAN 7’lle class 
VOFV defines a vector whose components arc VECTORS 
Since FVECTOR and VOFV have VECTOR as a sllperclass, 

these classes inherit t,hc overloading of t,he “+” operator 
defined in class VECTOR 

The TYPEOF operator t.llat, apI)ears in t,hc function 
VECTORPLUS returns the compile-t,imc t.ype of t,lle exprcs- 
sion t,hat, is it,s argument,; this allows VECTORPLUS t.o 
produce a new ot).ject, of the same t,ypc as its firsi, argumrnl, 
Given an expression “F+G”, where F and G are VECTORS, 

the compiler will produce the code: 
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(VECTOR (LIST (X INTEGER) (Y INTEGER)) (PHYSICAL-OBJECT ANYTHING 
MSG ((+ VECTORPLUS OPEN T))) PROP ((DENSITY (MASS/VOLUME)))) 

(FVECTOR (CONS (Y BOOLEAN) (X STRING)) 
SUPERS (VECTOR)) 

(VOFV (LIST (X VECTOR) (Y VECTOR)) 
SUPERS (VECTOR)) 

(VECTORPLUS (GLAMBDA (u VECTOR v VECTOR) 
(A (TYPEOF U) WITH X = U X + v X 

Y = u Y + v Y))) 

(ORDINARY-OBJECT ANYTHING 
PROP ((MASS (WEIGHT/ 9 88))) 
SUPERS (PHYSICAL-OBJECT)) 

(SPHERE ANYTHING 
PROP ((VOLUME ((4 0 / 3 0) * 3 1415926 * RADIUS 1 3)))) 

(PARALLELEPIPED ANYTHING 
PROP ((VOLUME (LENGTH*wIDTH*HEIGHT)))) 

Figure 1 Tlwcc kinds of vectors and a gcncric func*t.ion (~J~NET (LISTOBJECT(MASS REAL) 
(RADIUS REAL)) 

SUPERS (PHYSICAL-OBJECT SPHERE)) 

(BRICK (OBJECT (LENGTH REAL) 
(WIDTH REAL) 
(HEIGHT REAL) 

(LIST (IPLUS (CAR F) (CAR G)) 
(IPLUS (CADR F) (CADR G))) 

(WEIGHT REAL)) 
SUPERS (ORDINARY-OBJECT PARALLELEPIPED)) 

(BOWLING-BALL (ATOMOBJECT (TYPE ATOM) 

If’ F :md G are FVECTORs, the conlpiler will produce 
t hc code: 

(CONS (OR (CAR F) (CAR G)) 
(CONCAT (CDR F) (CDR G))) 

(WEIGHT REAL)) 
PROP ((RADIUS ((IF TYPE=‘ADULT THEN 0 1 

ELSE 0 07)))) 
SUPERS (ORDINARY-OBJECT SPHERE)) 

Ipigure 5 Tnherii,ancc from mnlt.iple hierarchies 

Finally, if F anti G are VOFVs, the conlpiler will product 
the code: 

(LIST [PROG ((U (CAR F)) 
(V (CAR GN 

(RETURN (LIST (IPLUS (CAR U) 
(CAR w 

(IPLUS (CADR U) 
(CADR V] 

[PROG ((U (CADR F)) 
(V W”R GIN 

(RETURN (LIST (IPLUS (CAR U) 
(CAR w 

(IPLUS (CADR U) 
(CADR V]) 

The “+‘I operxt,ors within VECTORPLUS are inter- 
pret,cd according l,o the t,ypes of the components of the ac- 
l,uel vector type with respect 1.0 which VECTORPLUS is 
compiled, so t,hat, the BOOLEAN components are ORed, 
STRING conlponents arc concatcnatcd, and VECTOR com- 

ponents invoke VECTORPLUS again 

Multiple Inheritance. In GLISI’, an object, can 1~ 
a member of multiple hierarchies; this aids representation 
of “0rthogonaI” propert,ies of objects Figure 5 shows 
how a single definition of a property, in this cane the 
definition of DENSITY as MASS/VOLUME, can be effective 
for several kinds of objects. DENSITY is defined once 

for all PHYSICAL-OBJECTS, and this definition is in- 
hcrited by subclasses of PHYSICAL-OBJECT When DEN- 
SITY is inherited by a suldass of PHYSICAL-OBJECT, 
its definition as MASS/VOLUME is compiled recursively 
in the context. of the original object. For PLANETS, the 
property MASS is stored directly, while for ORDINARY- 
OBJECTS the WEIGHT of the object is stored and MASS 
is computed 1,~ dividing the weight. 1)~ the value of gravity 
(assuming MKS mcasurement,s) Thr VOLUME is also com- 
putcd differently for each class of objects. BRICKS are 
defined to be PARALLELEPIPEDS and inherit the VOLUME 



computation from that, class. Both BOWLING-BALLS and 
PLANETS inherit their VOLUME definition from SPHERE 
RADIUS is stored for PLANETS; BOWLING-BALLS are 
defined so that there are two fixed RADIUS values, depend- 
ing on whether the BOWLING-BALL’s TYPE is “ADULT” 
or “CHILD ” Given this set of da&a-type descriptions, the 
DENSITY of a BOWLING-BALL B is compiled as follows: 

(QUOTIENT 
(QUOTIENT r8TPROP B ‘WEIGHT) 

(TIMES 
4 18879 
(EXPT (COND 

((EQ (GETPROP B ‘TYPE) 
‘ADULT) 

1) 
CT 07)) 

3))) 

This example illustrates how properties such as the 
definition of density or the volume of a sphere can be defined 
once at a high level and can then become effective for many 
classes of objects. 

Virtual Objects In some cases, one would like to 
view an object as being an object of a different, type, but 
without materializing a separate data struct,ure for the alter- 
nate view. For example, a name that is drawn on a display 
screen might be viewed as a REGION (a rectangle on the 
screen) for the purpose of testing whether the display mouse 
is positioned on the name. In this example, we assume that 
the position of the lower l&-hand corner of the region is 
stored explicitly, that the region has a constant height of 12 
pixels, and that the width of the region is 8 pixels times the 
number of characters in the name. Such a region is shown in 
Figure 6. GLISP allows such a view t,o be specified as a VW- 
tual object, which is defined in terms of the original object. 
A property definition for the name area illustrated above as 
a virtual ob.ject is: 

(NAMEREGION ((VIRTUAL REGION WITH 
START = NAMEPOS , 
WIDTH = 8*(NCHARS NAME) , 
HEIGHT = 12))) 

Given this definition, propert,ies of the abstract data type 
REGION can be used for the virtual object NAMEREGION; 
in particular, the message that t,ests whether a region con- 
tains a given point can be inherited to test whether the name 
region contains the mouse posit,ion. 

Virtual objects are implemented by creating a compiler- 
generated data type whose stored implementation is the 
original data t,ype The type of the view is made a super- 
class of t,he new type, and the features of the superclass are 

Figure 6. A Virtual Region. 

implemented as property definitions in the new type. 

Compilation of Generic Functions 

GLISP can compile a generic function for a specified 
set of argument types, result,ing in a closed LISP function 
specialized for those particular argument types. For example, 
given a generic function for searching a binary tree and a 
view of a sorted array as a tree, GLISP products a bihary 
search of a sorted array. 

Generic functions can also combine separately written 
algorithms into a composite algorithm. For example, a num- 
ber of iterative programs can be viewed as being made up of 
the following components: 

Iterator 

Filter 

Viewer 

Collector 

Initialize 

Accumulate 

Report 

Collection ---f Element* 

Element 4 Boolean 

Element + View 

nil + Aggregate 

Aggregate X View --) Aggregate 

Aggregate --f Result 

The lterator enumerates the elements of t,he collcct,ion 
in temporal order, the Filter selects the clcmcnts to be 
processed, the Viewer views each element in the desired way, 
and the Collector collects the views of the element int)o somr 
aggregate. For example, finding the average monthly salary 
of the plumbers in a company might involve enumerating 
the employees of the company, salcct,ing only the pllmlbers, 
viewing an employee record as “monthly salary,” and col- 
lecting the monthly salary data for the average. 

GLISP allows such an iterative program to bc cxpressetl 
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as a single generic function; this function can then be instan- 
tiated for a given set of component, functions to produce a 
single LISP funct,ion that performs the desired task. Such an 
approach allows programs to be constructed very quickly 
The It,erator for a collection is determined by the type of 
the collection, and the element type is likewise determined. 
A library of standard Collect,ors (average, sum, maximum, 
etc.) is easily assembled; each Collector constrains the type 
of View that. it can take as input. The only remaining items 
ncccssary to construct, such an iterative program are the Fil- 
ter and Viewer These could easily be acquired by menu 
selection using knowledge of the element type (as is done in 
C,EV, described below). 

Symbolic Optimization and Conditional Compilation 

The GLISP compiler performs symbolic optimization of 
the compiled code Operations 011 constants arc pcrformcd 
at, compile timr; these may cause test,s within condit,ional 
stat,emenl,s to have constant values, allowing some or all 
of the conditions to be eliminated This is illustrated in 
compilation of the following example: 

(SQUASH 
(GLAMBDA NIL 

(IF 1>3 THEN ‘AMAZING 
ELSEIF (SQRT 7 2) < 2 

THEN ‘INCREDIBLE 
ELSEIF 2 + 2 = 4 THEN ‘OKAY 
ELSE ‘JEEZ))) 

which is compilrd as: 

(LAMBDA NIL ‘OKAY) 

Symbolic opt,imization permits conditional compilation 
in a clean f’orm Certain variables can he declared to the 
compiler to have values that are considered to be compile- 
time constants; code involving these variables will then 
bt optimized, causing unnecessary code to vanish For 
large software packages, such as symbolic algebra packages, 
elimination of unwanted options can produce large savings in 
code size and execution time without changing the original 
source code The language used to specify conditional com- 
pilation is the same as the language used for run-time code; 
t,est,s of conditions can be nlade at compile time or at, run 
time as desired 

Symbolic optiniizal,ion provides additional efficiency for 
compiled object,-centered programming. Messages to ob- 
jects in ordinary ohjec:t,-c:ent,ered languages are referentzally 
opaque; t,hat, is, it, is not, possible to %ee inside” the messages 
to see how t,hey work. This opacity inhibits optimizat)ion, 
since most optimizations are of the fornl “If both operations 
A and B are to 1)e performed, there is a way to do A and 
B tog&her that is cheaper than doing each scparat,ely ” If 

the insides of A and B cannot be seen, the opportunity for 
optimization cannot, be recognized. For example, suppose it 
is desired to print the names of the female “A” students in a 
class. The most efficient way to do this may bc t,o make one 
pass over the set of students, selecting those who are both 
female and “A” students. However, in an ol,jcct-centered 
programming system in which the female students and “A” 
student,s were found by sending messages, it would not be 
possible to perform this optimization because it would not 
be known how t,he two sets were computed. 

GLISP allows simple filters such as those that select, 
females and “A” students to be writt,en easily as properties 
in a form that compiles open: 

(WOMEN 
((THOSE STUDENTS WITH SEX=‘FEMALE))) 

(A-STUDENTS 
((THOSE STUDENTS WITH AVERAGE>90))) 

The desired loop can bc written using t,he ‘r*” operator, 
which is int,erpret,ed as intersection for sets: 

(FOR S IN CLASS WOMEN * CLASS A-STUDENTS 
DO (PRINT S NAME)) 

The expansion of the property code makes possible loop 
optimizations that result in a single loop over the students 
without actual construct,ion of intermediat)e sets. The trans- 
formations used for this example are: 

(subset S P) n (subset S Q) 
--) (subset S P/\ Q) 

(for each (subset S P) do F) 
--f (for each S do (if P then F)) 

These and other transformations allow the compiler t,o 
produce efficient code for loops that arc clcgantly stated at 
t,he source code level The above example is compiled as: 

(MAPC (GETPROP CLASS ‘STUDENTS) 
(FUNCTION (LAMBDA (S) 

(AND (EQ (GETPROP S ‘SEX) 
‘FEMALE) 

(GEQ (STUDENT-AVERAGE S) 

90) 
(PRINT (GETPROP S ‘NAME)))))) 



LISP Dialect Independence 

The implementors of different LISP systems have unfor- 
tunately introduced many variations in the names, syntax, 
and semantics of the basic system functions of LISP. GLISP 
runs within a number of different LISP systems and must 
therefore cope with these dXerences; it is also desirable that 
code written in GLISP be easily transportable to GLISP sys- 
tems running within different LISP systems. 

The primary version of the GLISP compiler is written 
in INTERLISP-D This version is translated into the other 
LISP dialects by a source-to-source Lisp translator; a few 
pages of compatibility fmictions written for each dialect then 
allow t.he compiler to run in the foreign dialects. IIowever, 
the compiler must not, only run in foreign dialects but also 
generate code for them. To do this, the appropriate LISP 
translator is translat,ed (by it,self!) for the target dialect, 
and included as part of the compiler. The GLISP compiler 
running on the target machine generates TNTERI,ISI’ but 
then immediat,ely translates it for the machine on which it 
is running. 

The GLISP compiler contains knowledge about t,he LISP 
system within which it runs; this knowledge simplifies pro- 
gramming and aids program transportability. For example, 
the programmer need not remember which of the six com- 
parison operators are implemented for strings in t,he LISP 
dialect in question or what t,he names of the functions are; 
GLISP translates expressions involving any of the operators 
into appropriate forms using the available functions. The 
compiler is able to infer the types of t,he results returned by 
commonly used ~1% system functions; this relieves the user 
of the burden of writing type declarations for these values. 
Basic LISP data types are t,hemselves described by GLISP 
object descriptions, allowing featurrs of these types (e.g., 
the LENGTH of a STRING) to be referenced direct,ly in a 
dialect-independent, manner. Such descriptions also facilitate 
inspection of basic LISP data for debugging, since alternxt,ive 
views of data (e.g , viewing a st,ring as a sequence of ASCII 
codes or viewing an integer in octal) are built in and can be 
directsly seen using the GEV dat,a inspector. 

The data-abstraction facilities of GLISP encourage the 
user to write abstract-data-type packages that mediate the 
interact,ion between user programs and idiosyncratic system 
feat,ures. 6lobal data t,ypes can he defined that have no 
storage realization but t,hat translate property references 

(es , “MOUSE POSITION”) and messages into the ap- 
propriate calls to the operating system The GEV data in- 
spector is written using wzndow and rne?lu abstract, dat,a 
types that allow it. to work with a variety of display media 
in different LISP environments. 

Programming Environment 

GLISP provides an interactive programming environ- 
mcnt that complements the LISP environment and provides 
support for abstract data types The compiler performs 

error checking and provides cxpI:inat.ory error mcssagcs; 
many common errors are caught, by the compiler, simplifying 
debugging Facilities arc provided to compile filrs of GI,ISl 
code into files of LISP code in the underlying 1,ISP dialect. 
Int,eractive versions of GI,ISP statements are provided fol 
creating objects, sending messages to them, and rc:t,rieving 
their properties and substructures. The interpreted message 
features arc available for LISP data, as well as f’or ol)ject.- 
centered data, when the class of the I,ISl’ dat,n is specified. 
Interpreted messages may reference properties, adjectives, 
and substructures of an object as well as messages When 
a property of an object, is first referenced by an interpreted 
message, GLISP compiles code to perform the requested ac- 
cess as a LAMBDA form and cachrs it in the class of the 
ob.ject, Interfaces l,o the LISP editor are provided for edit,- 
ing GLLSP functions and abstract-data-type descriptions; t,hc 
GEV program is provided for inspecting and editing GLISP 
data. 

GEV” (Novak 1983) is an interactive displa,y-based pro- 
gram that, allows the user to inspect data based on its tlat;i- 
type description, “zoom in” on features of interest,, edit ob- 
ject,s, display computed properties, send mcssagcs to objects, 
and interactively write programs. GEV is initiated by giving 
it a pointer to an object, and tht type of the o1).jec:t. 1Jsing 
the data-type description of the object, GEV interprets the 
data and displays it within a window, as show11 in Figure 7. 

Data are displayed in the window in three sections: the 
edit path (the path by which the currently displayecl ob- 
ject was reached from the original ot>ject,), the actdual data 
contained in the object, and computed properties that have 
been requested or that arc spccificd in the object description 
to be displayed automatically. Oft,en, the full value of a.11 
item cannot be displayed in t,hc limited space available. In 
such cases, the SHORTVALUE property of the object, is con- 
put,ed and displayed; a tilde (-) before the value indicates 
a SHORTVALUE display The SHORTVALUE provides a 
meaningful “view from afar” for large data oh.jects; for ex- 
ample, thr SHORTVALUE of an employee record could be 
defined to be the employee’s name 

Most, interaction with GEV is clone with the display 
mouse (or short mnemonic commands on ordinary C!RT tar- 
minals). If the name of a displayed item is selected, the type 
of that item is printed If a value is selected, GEV “zooms 
in” on that value, displaying it in great,er det,ail according to 
its data-type description The command menu below the dis- 
play window is used to specify additional commands to GEV 
The EDIT command calls the LISP editsor, or a type-specific 
editor, on the current, object ‘rile PROP, ADJ, ant1 MSG 
commands cause a menu of the available properties, adjec- 
tives, or messages for t,he type of the current object, to be 
displayed; the property selected from this mrnu is c:onlp~~t,ed 
for t*hc c,urrent object and added to the display. A GLISP 
o1,ject description can specify that. certain propcrtics should 
be displayed automatically whenever an object, of t,hat type 
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Figure 7. GEV data inspector display 

Computed Data 

is displayed. For example, the type RADIANS (whose stored 
implementation is simply ii real number) can automatically 
display the equivalent angle in DEGREES 

The PROGRAM command allows the user to create 
looping programs that operate on the currently displayed 
object; t,hese programs are specified interactively using menu 
selection. This process and its result are illustrated in Figure 
8. Aflcr the PROGRAM command is selected, a menu is 
presented for selection of the operation to be performed. 
The next menu selects t,he set over which the program will 
operate; it contains all substructures of the current object 
that are represented as lists. Next,, menus of all appropriate 
it,ems of computed or stored data visible from the current, 
item (initia.lly the “loop index ” item from the selected set) 
are presented until a terminal item type (e g., a number) is 

reached. GEV constructs from the program specificat,ions a 
CLISP program to perform the specified romputat,ion, com- 
piles it, and runs it on the current object; t,ypically, t,his 
process takes less than one second The results of the pro- 
gram are printed and added to the display. 

The user of GEV does not need to know the actual im- 
plcmentations of t,he objects that are being examined This 
makes GEV useful as an interactive dat,abase query language 
that is driven by the data-type descriptions of the oljjects 
being examined. Since CLISP object descriptions are thcm- 
selves GLISP objects, t,hey can be inspected with GEV. 

/ 

- \ 
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Figure 8 GEV men11 programming 

GEV is written in GLISP. The GEV code is compiled 
relative to a package of window and menu abstract data 
types; these data types mediate the interactions between 
GEV and the display t,hat is used. The window and menu 
abstract, data types enable t,he same GEV code to work with 
Xerox LISP machines, vector graphics displays, or ordinary 
CRT terminals. 

Discussion 

We have discussed the methods by which the CLISP sys- 
tem provides several novel programming language capabili- 
ties: 

1. An ext,cnded form of abstract data t,ype, including 
properties, adjectives, and messages, is provided 
Data t,ypes may be organized in multiple hierarchies 
with inheritance of properties 

2. Properties of objects are compilcd recursively relative 
to their actual compile-time data types. 

3. Optimized compilation is performed for object-ceri- 
tered programming by performing inheritance at 
compile time; this markedly improves performance 
of object-centered programs. 

4 Generic programs and expressions can be compiled 
into closed functions that are specialized for par- 
ticular data types. 



5. Jntcract.ive programming and display-based cditillg 
arc providrd for abstracl, data types 

GJ,JSP aild GEV, including all features described in this 
Paper, are running and are being usctl for application pro- 
grams at, several sites 

How to Obtain GLISP 

Versions of t,hc compiler aw availa.ble for JNTJCKJ,ISP 
(DEC 2060, Xerox LISP machinrs), MACLISI’, FRANZ J,ISP, 
TIC1 LJSI’, JzJmr’, and I’ortal)le Standard LISP (DEC 2060, 
VAX, JJP 9836); a version for ZJSTALISP is planned As of 
this writing, GE\J is available for JN’I’ERJ~JSI’, MACLJSJ’, md 

Portable Standard J,JSP; versions for t,hc ot,her dialects are 
planned. 

GLJSP and its documentation are avwilahlc free to mem- 
bers of 1 he Al<l’ANJ<‘F community; the files are conbined 
on the host SUMEX-NM in t,he directory <(iLISP> 4 The 
GLISP I&r’s Manual (Novak 1983) is contained in t,he file 
GLUSER LPT (iinc printer form) or GLTJSER MSS (SCRIRE 
source form); printed copies may be ordered for $5.00 at the 
address given hclow Chapter 8 of the manual t,clls how t,o 
obtain tdie code for C,l,JSP and GJW 

GLlSI is availahlc l,o norl-ARPANEr~ sites for a nominal 
taping charge Address correspondence to t,he author at 
Comput,er Science Department,, IJniversity of Texas at Aus- 
tin, Austin, TX 78712 Phone (512)471-4353 The author’s 
ARJ’ANET address is CS NOVAJ’C@IJTEXAS 
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“The login “ANONYMOLIS GUEST” may he used at SUMEX to FTI’ 
files 

NASA Ames Research Center 
Moffett Field, CA 94035 

EXPERT SYSTEMS RESEARCHER 

Ames Research Center (35 miles south of San 
Francisco) is seeking a senior investigator for the 
development of generic software tools and 
computer architectures applicable to image-based 
expert systems. The research areas include knowl- 
edge representation, system control (rule inter- 
preter), symbolic representation languages, and 
information extraction (pattern recognition). 
Poorly understood issues include the impact of 
the space environment on software and hardware 
architectures including reliability (fault-tolerance) 
for image-based expert systems; portability of lan- 
guages between von Neumann and non- 
von Neumann systems and ease of user interface; 
and ability of the crew to interact, understand, 
and diagnose failures for spaceborne expert 
systems. Responsibilities will include (1) directing 
and participating in basic artificial intelligence 
(Al) research for the development of new hard- 
ware and software technologies for image-based 
expert systems within the constraints of the space 
environment; (2) managing pilot demonstrations 
of new expert system technology applications; 
(3) participating in and monitoring the coopera- 
tive Al research grants; and (4) establishing and 
maintaining peer interaction with the science and 
technical communities. 

Specified qualifications include: (1) in-depth 
knowledge of expert system development, and 
computer system architectures (double-weighted); 
(2) ability to plan, conduct, direct, and report 
on expert system research (double-weighted); 
(3) knowledge of cognitive psychology and/or 
linguistics; and (4) ability to direct and work as a 
member of an applications team. U.S. citizen- 
ship and Ph.D. or equivalent in electrical/ 
electronic engineering and/or computer science 
are required. Permanent position in Federal 
Service. Salary ranges between $41,277 and 
$63,115,’ commensurate with experience/ 
education. For further details regarding require- 
ments and application procedures, write 28-83 at 
the above address or phone (415)965-5084. 
Formal applications must be filed by Septem- 
ber 30, 1983. An Equal Opportunity Employer. 
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gramming,” and had t.he Athenians personal comput,crs with 
LISP-cont,rolled graphics they might. well have sentenced him 
a11.y wa.y There is great, contrast between the pleasures of 
programming and t,he tedium of analysis, between the chal- 
lenge of the myst,erious bug and the death of a beautiful 
hypothesis at the hands of an ugly fact 

Rational psychology also offers improved communica- 
tiolls The frequency of reinvention of ideas in artificial in- 
telligence is legendary. While it is unreasonable to expect 
(and undesirable to at,tempt) t,o make reinventions rare oc- 
currences, artificial intelligence clearly seems extravagant, 
It is not alone in this. Tl lcre is the old joke in compute1 
science about the result, that was lost because it, was only 
published four times I3ut, even the magnitude of the problem 
is unclear Not only do researchtrs lack deep understanding 
of their 0~11 proposals, but they usually cannot understand 
those of others either. This incomprehension is not due to 
stupidit,y, but to the vague, metaphorical t,erms on which 
the field relies in the absence of precise, formal vocabularies 
for presenting Uicories. In mathematics, physics, and many 
oI,her sciences, papers, if properly written, define concepts 
in t.crms of the accept,ed vocabulary, state claims or dis- 
coveries, and t,hcn leave comprehension up to the intelligence 
and motivation of the reader. In artificial intelligence, even 
conscientiously written papers can be unintelligible no mat- 
tcr how cwpahlc and motivated the reader, for much of the 
accepted vocabulary is about as precise as that of poet,ry, 
and about, as substant,ivc as t,hat of advertising copy If we 
had adequat,e mathematical concepts, if we had conventions 
for clear, exact statements of problems -- two large ifs - 
then we could hope for reduced reinvention, more rapid com- 
munication, comparison, and reproduction of ideas, and a 
t,rue chance to build on the work of others: things all taken 
for granted in other fields 

Conclusion 

A mathematical, analytic::tl enterprise like rational psych- 
ology is not for everyone Indeed, rational psychology feeds 
011 int.uit.ions gain4 only through experience, so it, makes 
no more sense for everyone to abandon the usual efforts 
of artificial intelligence and cognitive science than for all 
physicists to forsake experiment and experience in favor of 
rational mechanics On t,he ot,her hand, rational psychol- 
ogy need not, be purely parasitic, for its pursuit may some- 
day xdvance t.he construction of thinking machines, much 
as aerodynamics has advanced the construction of flying 
machines Hut these practical benefits cannot, be real- 
ized wit,hout effort. At Icast, some people must st,ray from 
1 he usual investigations of artificial int,elligenc:e and cogni- 
tivc science, and their work must be judged by the aims 
and methods of rational psychology inst,ead of by those of 
artificial intelligence and cognitive science. I would 11ot 

bot,her to invent, the label “rational psychology” for these 
aims and mrthods, except, that they are somewhat different 
front the usual ones of’ artificial intelligence and cognitive 

science, and more easily understood and encouraged when 
explicit,ly recognized For example, questions about im- 
plementation st.atus or experiment,al verificat,ion of thcorics 
are legitimate questions for artificial int,elligencc and cogni- 
tive science, but not, for rational psychology, even thollgh the 
same theories may be under discussion As with chemistry 
and cookcry, mere recipes for constructing machinrs and 
men do not guarantee Imderstanding the product’ And 
for rational psychology, the main question is whct,her the 
theories have been adequately understood. 
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