Al Magazine Volume 4 Number 3 (1983) (© AAAI)

GLISP:

A Lisp-based Programming System
with Data Abstraction

Gordon S. Novak Jr.

Heuristic Programmang Project
Computer Science Department
Stanford Unwerstity
Stanford, CA 94305

Abstract.

GLISP is a high-level language that is compiled into LISP It provides
a versatile abstiact-data-type facility with hierarchical inheritance of
properties and object-centered programming GLISP programs are
shorter and more readable than equivalent LISP programs The
object code produced by GLISP is optimized, making it about as
efficient as handwritten LISP An integrated programming environment
is provided, including automatic incremental compilation, interpretive
programming features, and an intelligent display-based inspector /editor
for data and data-type descriptions GLISP code is relatively portable;
the compiler and the data inspector are implemented for most major
dialects of LISP and arc available fice or at nominal cost

GLISP (NOVAK 1982, 1983A, 19838B) is a high-level lan-
guage, based on LISP and including LISP as a sublanguage,
that is compiled into LISP (which can be further compiled
to machine language by the LISP compiler). The GLISP sys-
tem runs within an existing LISP system and provides an in-
tegrated programming environment that ineludes automatic
incremental compilation of GLISP programs, interactive ex-
ecution and debugging, and display-based editing and inspec-

This research was supported in part by NSF grant SED-7912803 in
the Joint National Science Foundation - National Institute of Educa-
tion Program of Research on Cognitive Processes and the Structure
of Knowledge in Scicnce and Mathematics, and in part by the Defense
Advanced Reseaich Projects Agency under contract MDA-903-80-¢-007

Author’s present address: Computer Scicnce Departinent, University of
Texas at Austin, Austin, TX: 78712

tion of data. Use of GLISP makes writing, debugging, and
modifying programs significantly easier; at the same tlime,
the code produced by the compiler is optimized so that its
execution efficiency is comparable to that of handwritten
LISP This article describes features of GLISP and illustrates
them with examples Most of the syntax of GLISP is similar
to LISP syntax or PASCAL syntax, so explicil treatment of
GLISP syntax will be brief.

GLISP programs are compiled relative to a knowledge
base of ohject descriptions, a form of abstract data types
(Liskov et al. 1977; Wul(, London, & Shaw 1976). A primary
goal of the use of abstract data types in GLISP is to make
programmang easter The Implementations of objects are
described in a single place; the compiler uses the object
descriptions to convert, GLISP code written in terms of user
objects into efficient, LISP code written in terms of the im-
plementations of the objects in LISP This allows the im-
plementations of objects to be changed without changing
the code; it also allows the same code to be effective for
objects that are implemented in different, ways and thereby
allows the accumulation of programming knowledge in the
form of generic programs TIigure 1 illustrates the combina-
tion of information from these three sources; the recursive
use of abstract data types and generic programs in the com-
pilation process provides multiplicative power for deseribing
programs

Overall, GLISP program syntax is like that of LISP

THE Al MAGAZINE Fall 1983 37

Generic
Programs '\‘

GLISP LISP
Compiler Code

Object
Descriptions

Application
Programs

Figure I GLISP compilation

GLISP contains ordinary LISP as a sublanguage; LISP code
can be mixed with GLISP code, so that no capabilities
of the underlying LISP system are lost. GLISP provides
PASCATL-like reference to substructures and properties, infix
arithmetic expressions, and PASCAL-like control statements
Object-centered programming is built in; optimized compila-
tion allows object-centered programs to run efficiently.

GLISP is easily extensible for new object, representations.
Operator overloading for user-defined objects oceurs auto-
matically when arithmetic operators are defined as mes-
sage selectors for those objects The compiler can compile
optimized code for access to objecls represented in user-
specified representation languages. GLISP has also been ex-
tended as a hardware description language for describing
VLSI designs.

Object Descriptions

In GLISP, programs are separated into a knowledge base
of object descriptions and application programs that are
written in terms of objects The compiler uses the object
descriptions to guide the translation of GLISI’ programs,
written in terms of objects, into LISP programs, written in

terms of the implementations of objects in LISP. The use of

object, descriptions has several advantages:

1. Object descriptions provide multiplicative power for
describing programs The code for a property of an
object is stated once in the object description but
can then be invoked many times in programs that
reference the property, either directly or through in-
heritance '

YGrise properties have mote generality than macios for

deseribing computed properties

38 THE AT MAGAZINE Tall 1983

2. The implementations of objects can be changed with-
out changing code that references the objeets.

3 Generic programs can be used for conceptually similar
objects that are implemented in different ways, facili-
tating the accumulation of programming knowledge
in the form of collections of abstract object deserip-
tions and generiec programs

1 Iixisting LISP data structures can be deseribed, so
that GLISP and its associaled programs (such as
the GEV data inspector) can he used with existing
programs that arc not written in GLISP

5 Object descriptions provide valuable program doc-
umentation.

The payoll from using abstract data types in GLISP in-
creases as systems become larger. GLISP programs are typi-
cally shorter than cquivalent LISP programs by a factor of
two to three.

An object descriptrion describes the actual data structure
occupied by an object; in addition, it’ deseribes properties
(values that are computed rather than being stored as data),
adjectwes (used in predicate expressions to test features of
the object), and messages to which the object can respond.
An examnple of a GLISP object description is shown in Figure
2 The name of the ohject type, CIRCLE, is followed by a
description of the actual data structure occupied by the ob-
ject: a LISP list of the CENTER, which is of type VECTOR,
and the RADIUS, which is a REAL number The remaining
items describe properties, adjectives, and messages for this
object. type As this example illustrates, the syntax of object
descriptions makes it, easy to define computed properties of
objects The language for describing the storage structures
of ohjects allows most of the common data structures of LISP
to be described.

Figure 3 shows the object description for a DCIRCLE,
which is a different immplementation of a circle object A
DCIRCLE has a different storage structure than a CIRCLE

(CIRCLE (LIST (CENTER VECTOR)
(RADIUS REAL))

PROP ((PI (3 1415926))
(AREA (PI*RADIUS12))
(DIAMETER (RADIUS*2))
(CIRCUMFERENCE (PI*DIAMETER)))
ADJ ((BIG (AREA > 100)))
MSG ((DRAW DRAWCIRCLEFN)
(GROW (AREA « -+ 100))))
Figure 2 A GLISP object description

(DCIRCLE (ATOM (PROPLIST (DIAMETER REAL)
(CENTER VECTORY))

PROP ((RADIUS (DIAMETER/2)))

SUPERS(CIRCLE))

Figure 3 A different implementation of circle objects

(a LISP atom with data stored on its property list), and it
stores the DIAMETER of the circle rather than the radius.
However, since the RADIUS of a DCIRCLE is defined as a
computed property, all of the properties of CIRCLESs can be
inherited by DCIRCLESs simply by naming CIRCLE as one
of the SUPERS (superclasscs) of DCIRCLE.

Compilation of Property References

Compilation of a GLISP function occurs automatically
the first time it is called; recompilation occurs automatically
if the function or an object, description on which it depends is
modified. Thus, it appears to the user that a “GLISP inter-
preter” exists There are also facilities for double compila-
tion (from GLISP to LISP o compiled LISP) using the exist-
ing LISP compiler. When a GLISP function is compiled, the
original GLISP definition is saved on the function’s property
list, and the function is redefined as a LISP EXPR

GLISP functions are defined using a defining form similar
to the one in the underlying LISP dialect; the examples in
this article are shown in the form appropriate for INTER-
LISP (Teitelman 1978). Types of function arguments may be
declared, as in PASCAL, using the syntax

“<variable> <type>".
Within program code, substructures or properties of objects
may be referenced using the syntax

“<variable> <property>".

A simple function named CR, which retrieves the RADIUS
of a CIRCLE, could be written as follows:

(DEFINEQ
(CR (GLAMBDA (C CIRCLE)
C RADIUS)))

Such a function can be explicitly compiled hy calling the
function GLCP (GLISP Compile and Print), as shown below:

(GLCP 'CR)
GLRESULTTYPE REAL
(LAMBDA (C) (CADR C))

GLCP prints the type of the result returned by the func-
tion (which is inferred by the compiler) and the LISP code
produced.

Properties of an ohject are referenced in the same way
as stored data. This facilitates hiding the internal struc-
tures of objects, so that programs do not depend on which
property values are stored and which property values arc
computed. For example, a CIRCLE has RADIUS stored,
while a DCIRCLE has DIAMETER stored; this distinction
is transparent to programs using these objects. As an ex-
ample of property reference, the area of a CIRCLE C can be
referenced as:

C AREA

which is compiled as:

(TIMES 3 1415926
(EXPT (CADR C) 2))

If the absence of a distinction in program code between
data that are stored and data that are computed is to be
maintained, it must be possible to “store intoe” computed
data The compiler is able to “invert” arithmetic expressions
involving constants and a single stored value For example,
the area of a circle can be increased by 100 using the follow-
ing code (the operator “« +” means “is increased by”):

(C AREA <+ 100)
which compiles into:

THE AT MAGAZINE Fall 1983 39

(RPLACA (CDR C)
(SQRT
(QUOTIENT (PLUS (TIMES 3 1415926
(EXPT (CADR C) 2))
100)
3 1415926)))

As this example illustrates, the features of GLISP form
an integrated whole and can be combined. In this case, the
GLISP source code is easier Lo understand than the equivalent
LISP code, and there is a high ratio of output code to input
code.

GLISP Statements

GLISP provides several kinds of statements that are
translated into equivalent. code in LISP; each is identified by
a key word at the front of a list containing the code for the
statement. Many of these statements are similar to those
provided by PASCAL:

If ..then .else
While .. .Do
Repeat . .Until

Case

These control statements provide a compact and well-
structured way of stating some commmonly used control con-
struets and also provide a degree of LISP-dialect indepen-
dence As an example, a simple square-root. function can be
written as follows:

(SQRT (GLAMBDA (X REAL)
(PROG (S)
(S« X)
(IF X < 0 THEN (ERROR)
ELSE (WHILE (ABS S*S - X) > 0 00001
DO (S « (S+X/S) * 05)))
(RETURN S))))

Two special forms, THE and THOSE, are provided to
select a single clement or subset of elements that satisfy a
given condition from a set of similar elements:

(THE COWBOY WITH HORSE="TRIGGER)
(THOSE EMPLOYEES WITH SENIORITY > 3)

The A function is provided to create data in a representa-
tion-independent manner. Given a set of name/value pairs,

10 THE Al MAGAZINE Fall 1983

the A function creates a new data structure having the
specified values:
(A CIRCLE WITH RADIUS = R)

Given the earlier object deseription for CIRCLE, this will
compile as:
(LIST (APPEND *(0 0)) R)

The A function works interpretively as well as within com-
piled code

Context and Type Inference

One of the design goals of GLISP is that program ecode
should be independent of the implementations of the struc-
tures manipulated by the code to the greatest degree pos-
sible Inelusion of redundant type declarations in program
code would make the code dependent on the actual im-
plementation of structures; instead, GLISP relies on type in-
ference and its compile-time context mechanism to determine
the types of objects.

The context is analogous to a symbol table, associating
a set of named ohjects with their types When a funetion is
compiled, the context, is initialized to contain the function’s
arguiments and their types; the other types used within the
function can in most cases be derived by type inference. Dur-
ing compilation, the type of each intermediate expression is
computed and propagated together with the code that com-
putes the expression. The type of any substructure retrieved
from a larger structure is inferred by the compiler from the
structure description of the larger structure Assignment of
a value to an untyped variable causes that variable to be as-
signed the type of the value assigned to it. Type inference
is performed automatically by the compiler for the common
“system” functions of LISP The type of the value computed
by a user function may be declared; usually, the compiler is
able to infer the type of the result of a function that is com-
piled, and it saves a declaration for the result type. Using
these mechanisms, the compiler can determine object types
without requiring redundant type declarations within pro-
gram code. Type checking is done during compilation al the
point of use; that is, a feature of an object must be defined
for the type of the object at the time the feature is referenced
or a compilation error will result.

When properties, adjectives, and messages are compiled,
the compilation takes place within a context containing the
object whose properties are being compiled. Direct reference
to the properties and substructures of the object is permitted
within the code that defines properties; this is analogous to
with. do in PASCAL. For example, the definition of AREA
ol a CIRCLE contains dircet references to the stored value
RADIUS and the property PI

Compilation of Messages

Object-centered programming, which treats data ob-

jects as active entitics that communicate by sending mes-
sages, was introduced in SIMULA (Birtwistle et al 1973)
and popularized by SMALLTALK (Goldberg et al. 1981, In-
galls 1978). Object-centered programming has recently been
implemented for several LISP dialects as well (Bobrow &
Stefik 1981, Cannon 1981) In GLISP, the sending of a mes-
sage Lo an object is specified in the form:

(SEND <object> <selector> <Carguments>)

where the function name “SEND” specifies the sending of
a message lo <object> The <selector> denotes the
action to be performed by thc message When a message
is executed at runtime, the <selector> is looked up for
the type of the actual <object> to which the message is
sent, to gel the name of the function that executes the mes-
sage. This function is then called with the <object> and
the actual <arguments> as its arguments In effect, a
message is a function call in which the dynamic <object>
type and the < selector> together determine the function
name. Interpretive lookup of messages is computationally
expensive—often more than an order of magnitude costlier
than direct execution of the same code However, the types
of objects can usually be known at compile time (Borning
& Ingalls 1982) When the response to a message can be
uniquely determined at compile time, GLISP compiles in-line
code for the response; otherwise, the message is interpreted
at run time, as usual. By performing message lookup only
once at compile time rather than repeatedly during execu-
tion, performance is dramatically iinproved while retaining
the flexibility of object-centered programming.

Associated with each message selector? in an object
description is a response specification that tells how to com-
pile the corresponding message; the response consists of code
and a property list. There are three basic forms of response
code. The first form of response code is simply a function
name, and the code that is compiled is a call to that function.
The second form is a function name and a flag to specify
open compilation, in which the named function is “macro-
expanded” in place with the actual compile-time argument
values and {ypes substituted for those of the function’s for-
mal arguments The third form of response is GLISP code,
which is recursively compiled in place of the message refer-
ence, in the context of the object, whose property was refer-
enced.

The last form of response code is a convenient and power-
ful way ol deflining computed properties of objects The
more usual way of defining such properties by means of small
functions has several disadvantages. IF'unction-call overhead
(and message-lookup overhead in an object-centered system)
is expensive for small functions. Since function names must

2And likewise with each property o1 adjective; property and adjec-
tive 1cferenees arc compiled as if they were message calls without any
< arguments >

usually be unique, long function names proliferate The syn-
tactic overhead of writing small functions and calling them
discourages their use In GLISP, function-call overhead is
climinated by expanding the response cpde in place; the
resulting code is then subject to standard compiler optimiza-
tions (e g, constant folding). Names of properties do not
have to be unique because they are referenced relative to a
particular object type. Response code is casy to write and
easy to reference

Property Inheritance

Object-centered languages organize objects into a hierar-
chy of classes and instances; this provides economy of repre-
sentation by allowing features that apply to all members of
a class Lo be described only once, at the elass level GLISP
treats objecetl descriptions as classes and allows properties,
adjectives, and messages to be inherited from parent classes
in the hierarchy The compilation of properties, adjectives,
and messages in GLISI” is recursive al. compile time. That
is, when a property is to be compiled, the definition of the
property is taken as a new expression to be compiled and
is compiled recursively in the context of the original object
whose property was referenced. This allows an abstract data
type to define its properties in terms of other properties that
are implemented differently in its subclasses.. It also allows
expansion of code through multiple levels of implementation
deseription.

Clompile-time property inheritance allows objects that
are implemented in different ways to share the same property
definitions For example, vectors might have X and Y values
of various possible types (e.g, integer or real) stored in
various ways A single abstract class VECTOR can define
vector properties (e.g., how to add vectors) that can he in-
herited by the various kinds of vector implementations. This
is illustrated in Figure 4 The class VECTOR defines a
storage structure that is a list. of two integers The definition
of “4” as a message sclector causes this operator to be over-
loaded for objects of type VECTOR; “+” is implemented
by the function VECTORPLUS, which is specified as being
compiled open, that is, macro-expanded in line The class
FVECTOR defines a diffcrent storage structure with ele-
ments whose types are STRING and BOOLEAN The class
VOFV defines a vector whose components arc VECTORSs
Since FVECTOR and VOFV have VECTOR as a superclass,
these classes inherit, the overloading of the “+4” opcrator
defined in class VECTOR

The TYPEOF operator that appears in the function
VECTORPLUS returns the compile-time type of the expres-
sion that is its argument; this allows VECTORPLUS Lo
produce a new object of the same type as its first. argument.
Given an expression “F+G”, where F and G are VECTOR,
the compiler will produce the code:

THE Al MAGAZINE Fall 1983 11

(VECTOR (LIST (X INTEGER) (Y INTEGER))
MSG ((+ VECTORPLUS OPEN T)))

(FVECTOR (CONS (Y BOOLEAN) (X STRING))
SUPERS (VECTOR))

(VOFV (LIST (X VECTOR) (Y VECTOR))
SUPERS (VECTORY))

(VECTORPLUS (GLAMBDA (U VECTOR V VECTOR)
(A (TYPEOF U) WITH X = UX + V X
Y=UY+VY))

Figure 4 Three kinds of vectors and a gencerie function

(LIST (IPLUS (CAR F) (CAR Q))
(IPLUS (CADR F) (CADR G)))

If F and G are FVECTORSs, the compiler will produce
the code:

(CONS (OR (CAR F) (CAR G))
(CONCAT (CDR F) (CDR G)))

Finally, if F and G are VOFVs, the compiler will produce
the code:

(LIST [PROG ((U (CAR F))
(V (CAR Q)
(RETURN (LIST (IPLUS (CAR U)
(CAR V))
(IPLUS (CADR U)
(CADR V]
[PROG ((U (CADR F))
(V (CADR G)))
(RETURN (LIST (IPLUS (CAR U)
(CAR V))
(IPLUS (CADR U)
(CADR V])

The “4” operators within VECTORPLUS are inter-
preted according to the types of the components of the ac-
tual veetor type with respect to which VECTORPLUS is
compiled, so that the BOOLEAN components are ORed,
STRING components are concatenated, and VECTOR com-

12 THE AT MAGAZINEE Fall 1983

(PHYSICAL-OBJECT ANYTHING
PROP ((DENSITY (MASS/VOLUME))))

(ORDINARY-OBJECT ANYTHING
PROP ((MASS (WEIGHT/ 9 88)))
SUPERS (PHYSICAL-OBJECT))

(SPHERE ANYTHING
PROP ((VOLUME ((4 0 / 30) * 31415926 * RADIUS 1 3))))

(PARALLELEPIPED ANYTHING
PROP ((VOLUME (LENGTH*WIDTH*HEIGHT))))

(PLANET (LISTOBJECT(MASS REAL)
(RADIUS REAL))
SUPERS (PHYSICAL-OBJECT SPHERE))

(BRICK (OBJECT (LENGTH REAL)
(WIDTH REAL)
(HEIGHT REAL)
(WEIGHT REAL))
SUPERS (ORDINARY-OBJECT PARALLELEPIPED))

(BOWLING-BALL (ATOMOBJECT (TYPE ATOM)
(WEIGHT REAL))
PROP ((RADIUS ((IF TYPE=’ADULT THEN 0 1
ELSE 0 07))))
SUPERS (ORDINARY-OBJECT SPHERE))

Figure 5 Tnheritance from multiple hierarchies

ponents invoke VECTORPLUS again

Multiple Inheritance. In GLISP, an object can be
a member of multiple hierarchies; this aids representation
of “orthogonal” properties of objects Iigure 5 shows
how a single deflinition of a property, in this case the
definition of DENSITY as MASS/VOLUME, can be effective
for several kinds of objects. DENSITY is defined once
for all PHYSICAL-OBJECTs, and this definition is in-
herited by subelasses of PHYSICAL-OBJECT When DEN-
SITY is inherited by a subclass of PHYSICAL-OBJECT,
its definition as MASS/VOLUME is compiled recursively
in the context of the original object. For PLANETSs, the
property MASS is stored directly, while for ORDINARY-
OBJECTs the WEIGHT of the object is stored and MASS
is computed by dividing the weight by the value of gravity
(assuming MKS measurements} The VOLUME is also com-
puted differently for cach class of objects. BRICKs are
defined to be PARALLELEPIPEDs and inherit the VOLUME

computation from that class. Both BOWLING-BALLs and
PLANETS inherit their VOLUME definition from SPHERE
RADIUS is stored for PLANETs; BOWLING-BALLs are
defined so that there are two fixed RADIUS values, depend-
ing on whether the BOWLING-BALL’s TYPE is “ADULT?”
or “CHILD ” Given this set of data-type descriptions, the
DENSITY of a BOWLING-BALL B is compiled as follows:

(QUOTIENT
(QUOTIENT (GETPROP B *WEIGHT)
9 88)
(TIMES
418879

(EXPT (COND
((EQ (GETPROP B 'TYPE)
'ADULT)
1)

(T 07))
3))

This example illustrates how properties such as the
definition of density or the volume of a sphere can be defined
once at a high level and can then hecome effective for many
classes of objects.

Virtual Objects In some cases, one would like to
view an object as being an object of a different type, but
without materializing a separate data strueture for the alter-
nate view. For example, a name that is drawn on a display
screen might be viewed as a REGION (a rectangle on the
screen) for the purpose of testing whether the display mouse
is positioned on the name. In this example, we assume that
the position of the lower left-hand coruner of the region is
stored explicitly, that the region has a constant height of 12
pixels, and that the width of the region is 8 pixels times the
number of characters in the name. Such a region is shown in
Figure 6. GLISP allows such a view to be specified as a vir-
tual object, which is defined in terms of the original object.
A property definition for the name area illustrated above as
a virtual object is:

(NAMEREGION ((VIRTUAL REGION WITH
START = NAMEPOS ,
WIDTH = 8*(NCHARS NAME) ,
HEIGHT = 12)))

Given this definition, properties of the abstract data type
REGION can be used for the virtual object NAMEREGION;
in particular, the message that tests whether a region con-
tains a given point, can be inherited to test whether the name
region contains the mouse position.

Virtual objects are implemented by creating a compiler-
generated data type whose stored implementation is the
original data type The type of the view is made a super-
class of the new type, and the features of the superclass are

¢——— 8% (NCHARS NAML) —_—

AREA

NAMEPOS

Figurc 6. A Virtual Region.

implemented as property definitions in the new type.

Compilation of Generic Functions

GLISP can compile a generie function for a specified
set of argument types, resulting in a closed LISP function
specialized for those particular argument types. For example,
given a generic function for searching a binary tree and a
view of a sorted array as a tree, GLISP produces a hinary
search of a sorted array.

Generice functions can also combine separately written
algorithms into a composite algorithm. For example, a num-
ber of iterative programs can be viewed as being made up of
the following components:

Iterator Collection ~» Element*

Filter Element — Boolean

Viewer Element — View

Collector
Initialize nil — Aggregate
Accumulate Aggregate X View — Aggregate
Report Aggregate — Result

The Iterator enumnerates the elements of the collection
in temporal order, the Tilter selects the elements to be
processed, the Viewer views each element in the desired way,
and the Collector collects the views of the element into some
aggregate. For example, finding the average monthly salary
of the plumbers in a company might involve enumerating
the employees of the company, selecting only the plumbers,
viewing an employee record as “monthly salary,” and col-
lecting the monthly salary data for the average.

GLISP allows such an iterative program to be expressed

THE AT MAGAZINE Fall 1983 43

as a single generic function; this function can then be instan-
tiated for a given set of component functions to produce a
single LISP function that performs the desired task. Such an
approach allows programs to be constructed very quickly
The Iterator for a collection is determined by the type of
the collection, and the element type is likewise determined.
A library of standard Collectors (average, sum, maximum,
ele.) is easily assembled; each Collector constrains the type
of View that it can take as input. The only remaining items
necessary to construet such an iterative program are the Fil-
ter and Viewer These could easily be acquired by menu
selection using knowledge of the element type (as is done in
GV, described below).

Symbolic Optimization and Conditional Compilation

The GLISP compiler performs symbolic optimization of
the compiled code Operations on constants are performed
al compile time; these may cause tests within conditional
statements to have constant values, allowing some or all
of the conditions to be eliminated This is illustrated in
compilation of the following example:

(SQUASH
(GLAMBDA NIL
(IF 1>>3 THEN *AMAZING
ELSEIF (SQRT 72) < 2
THEN ’INCREDIBLE
ELSEIF 2 + 2 = 4 THEN *OKAY
ELSE *JEEZ)))

which is compiled as:

(LAMBDA NIL *OKAY)

Symbolic optimization permits conditional compilation
in a clean form Clertain variables can be declared to the
compiler to have values that are considered to be compile-
time constants; code involving these variables will then
be optimized, causing unnecessary code to vanish Tor
large software packages, such as symbolic algebra packages,
elimination of unwanted options can produce large savings in
code size and executlion time without, changing the original
source code The language used o specify conditional com-
pilation is the same as the language used for run-time code;
tests of conditions ean be made at compile time or at run
time as desired

Symbolic optimization provides additional efficiency for
compiled object-centered programming. Messages to ob-
jects in ordinary object-centered languages are referentially
opague; that is, il is not possible to “see inside” the messages
to see how they work. This opacity inhibits optimization,
since most optimizations are of the form “If both operations
A and B are to be performed, there is a way to do A and
B together that is cheaper than doing each separately 7 If

44 THE AI MAGAZINE Fall 1983

the insides of A and B cannot be seen, the opportunity for
optimization cannot he recognized. For example, suppose it
is desired to print the names of the female “A” students in a
class. The most cfficient way to do this may be to make one
pass over the set of students, selecting those who are both
female and “A” students. However, in an object-centered
programming system in which the female students and “A”
students were found by sending messages, it would not be
possible to perform this optimization because it would not
be known how the two sets were computed.

GLISP allows simple filters such as those that select.
females and “A” students Lo be written ecasily as properties
in a form that compiles open:

(WOMEN

((THOSE STUDENTS WITH SEX="FEMALE)))
(A-STUDENTS

((THOSE STUDENTS WITH AVERAGE >90)))

The desired loop can be written using the “*” operator,
which is interpreted as intersection for sects:

(FOR S IN CLASS WOMEN * CLASS A-STUDENTS
DO (PRINT S NAME))

The expansion of the property code makes possible loop
optimizations that result in a single loop over the students
without actual construction of intermediate sets. The trans-
formations used for this example are:

(subset S P) [(subset S Q)
— (subset SP A Q)

(for each (subset S P) do F)
— (for each S do (if P then F))

These and other transformalions allow the compiler to
produce efficient, code for loops that are elegantly stated at
the source code level The above example is compiled as:

(MAPC (GETPROP CLASS *STUDENTS)
(FUNCTION (LAMBDA (S)
(AND (EQ (GETPROP S ’SEX)
'FEMALE)
(GEQ (STUDENT-AVERAGE S)
90)
(PRINT (GETPROP S "NAME)))))

LISP Dialect Independence

The implementors of different LISP systems have unfor-
tunately introduced many variations in the names, syntax,
and semantics of the basie system functions of LISP. GLISP
runs within a number of different LISP systems and must
therefore cope with these differences; it is also desirable that,
code written in GLISP be easily transportable to GLISP sys-
tems running within different LISP systeins.

The primary version of the GLISP compiler is written
in INTERLISP-D This version is translated into the other
LISP dialects by a source-to-source Lisp translator; a few
pages of compatibility functions written for each dialect then
allow the compiler to run in the foreign dialects. Iowever,
the compiler must not only run in forcign dialects but also
generate code for them. To do this, the appropriate LISP
translator is translated (by itself!) for the target dialect
and included as part of the compiler. The GLISP compiler
running on the target machine generates INTERLISI> but
then immediately translates it for the machine on which it
is running.

The GLISP compiler contains knowledge about the LISP
system within which it runs; this knowledge simplifies pro-
gramming and aids program transportability. For example,
the programmer need not remember which of the six com-
parison operators are implemented for strings in the LISP
dialect in question or what the names of the functions are;
GLISP translates expressions involving any of the operators
into appropriate forms using the available functions. The
compiler is able to infer the types of the results returned by
commonly used LISP> system functions; this relieves the user
of the burden of writing type declarations for these values.
Basic LISP data types are themselves described by GLISP
object descriptions, allowing features of these types (e.g.,
the LENGTH of a STRING) to be referenced directly in a
dialect~-independent. manner. Such descriptions also facilitate
inspection of basic LISP data for debugging, since alternative
views of data (e.g , viewing a string as a sequence of ASCII
codes or viewing an integer in octal) are built in and can be
directly seen using the GEV data inspector.

The data-abstraction facilities of GLISP encourage the
user to write abstract-data-type packages that mediate the
interaction between user programs and idiosyneratic system
features. Global data types can be defined that have no
storage realization but that translate property references
(e.g, “MOUSE POSITION”) and messages into the ap-
propriate calls to the operating system The GEV data in-
spector is written using window and menu abstract data
types that allow it to work with a varicty of display media
in different LISP environments.

Programming Environment

GLISP provides an interactive programming environ-
ment, that complements the LISP environment and provides
support for abstract data types The compiler performs

error checking and provides explanatory error messages;
many common errors are caught by the compiler, simplifying
debugging Facilities arc provided to compile files of GLISP
code into files of LISP code in the underlying LISP dialect.
Interactive versions of GLISP statements are provided for
creating objeets, sending messages to them, and retrieving
their properties and substructures. The interpreted message
features are available for LISP data, as well as for object-
centered data, when the class of the LISI> data is specified.
Interpreted messages may reference properties, adjectives,
and substructures of an object as well as messages When
a property of an object is first referenced by an interpreted
message, GLISP compiles code to perform the requested ac-
cess as a LAMBDA form and caches 1t in the class of the
object. Interfaces 1o the LISP editor are provided for edit-
ing GLISP functions and abstract-data-type deseriptions; the
GEV program is provided for inspecting and editing GLISP
data.

GEV?® (Novak 1983) is an interactive display-based pro-
gram that allows the user Lo inspect data based on its data-
type description, “zoom in” on features of interest, edit ob-
jeets, display computed properties, send messages to objeets,
and interactlively write programs. GEV is initiated by giving
it. a pointer to an object and the type of the object. Using
the data-type description of the object, GEV interprets the
data and displays il within a window, as shown in IFigure 7.

Data are displayed in the window in three sections: the
edit path (the path by which the currently displayed ob-
jeet was reached from the original object), the actual data
contained in the objecl, and computed properties that have
been requested or that are specified in the object description
to be displayed automatically. Often, the full value of an
item cannot be displayed in the limited space available. In
such cases, the SHORTVALUE property of the object is com-
puted and displayed; a tilde (~) before the value indicates
a SHORTVALUE display The SHORTVALUE provides a
meaningful “view [rom afar” for large data obhjects; for ex-
ample, the SHORTVALUE of an employee record could be
defined to be the employee’s name

Most, interaction with GEV is donc with the display
mouse {or short mnemonic commmands on ordinary CRT ter-
minals). If the name of a displayed item is selected, the type
of that item is printed If a value is selected, GEV “zooms
in” on that value, displaying it in greater detail according to
its data-type description The command menu below the dis-
play window is used to specify additional commands to GEV
The EDIT command calls the LISP editor, or a type-specific
editor, on the current object The PROP, ADJ, and MSG
commands cause a menu of the available properties, adjec-
tives, or messages for the type of the current object to be
displayed; the property selected from this menu is computed
for the current objeet and added to the display. A GLISP
object description can specify that certain properties should
be displayed automatically whenever an object. of that type

3For GLLISP Edit Value

THIS AT MAGAZINE Trall 1983 15

GEVtrU atuire EQItGEDIndo W

HPP ~ HPP

CONTRACTS ~ {Advanced A.L. Archit- ...)

#4 ~ BLISP Edit Path
LEADER ~ B3N

MUME Gordon S. Nowvak Jr,

INITIALS B3N

TITLE YISITOR Stored Data
PROJECT ~ HPP

SHLARY 3ER@a. 6B

238N0 AB5827377

BIRTHOATE - July 21, 1947

PHIONE ~ {415) 497-4532

OFFICE ~ MJIH 244

HOME-ABODRE- ~ Palo Altao, CA

HOME-FHOMNE ~ (415) 493-5887
DNTRACTS ~ {GLISP
gGFiIT HOTS ggL) Computed Data
HONTHLY -S4~ Z500, 8
QuIT POP EDIT PROGRAM
PROP ADJ 154 M5G
Figure 7. GEV data inspector display

is displayed. For example, the type RADIANS (whose stored
implementation is simply a real number) can automatically
display the equivalent angle in DEGREES

The PROGRAM command allows the user to create
looping programs that operate on the currently displayed
object; these programs are specified interactively using menu
selection. This process and its result are illustrated in Figure
8. After the PROGRAM command is selected, a menu is
presented for selection of the operation to be performed.
The next menu selects the set over which the program will
operate; it contains all substructures of the current object
that are represented as lists. Next, menus of all appropriate
items of computed or stored data visible from the current
item (initially the “loop index” item from the selected set)
are presented until a terminal item type (e g., a number) is

reached. GEV constructs from the program specifications a
CGLISP program to perform the specified computation, com-
piles it, and runs it on the current object; typically, this
process takes less than one second The results of the pro-
gram are printed and added to the display.

The user of GEV does not need to know the actual im-
plementations of the objects that are being examined This
makes GEV useful as an interactive database query language
that is driven by the data-type descriptions of the objects
being examined. Since GLISP object descriptions are them-
selves GLISP objects, they can be inspected with GEV.

46 THIE Al MAGAZINE Fall 1983

GENSItrucburEIED T oYW d o WM

HPF ~ HPP

TITLE ~ Heuristic Programming Proj-
HBBREWIATI- HPP

SOMINIZTRA- ~ TCR

CONTEACTS ~ (gdvanced &. 1., Archit- ...)
EXECUTIVES ~ [(EsF MRG GEN TCR)

BUDGET
TOTAL LuBOR

533487 .2
263081, 4

SOTAL 2 e CONTRACTS
AYERAGE
P v IRALIPA
P MM

OYERHESD
TOTAL
SHORTYALUE

TOTAL BUDGET LABOR OF HPP CONTRACTS = 260001.4

Figure 8 GEV menu programming

GEV is written in GLISP. The GEV code is compiled
relative to a package of window and menu ahstract data
types; these data types mediate the interactions between
GEV and the display that is used. The window and menu
abstract, data types enable the same GEV code to work with
Xerox LISP machines, vector graphics displays, or ordinary
CRT terminals.

Discussion

We have discussed the methods by which the GLISP sys-
tem provides several novel programming language capabili-
ties:

1. An extended form of abstract data type, including
properties, adjectives, and messages, is provided
Data types may be organized in multiple hierarchies
with inheritance of properties

2. Properties of objects are compiled recursively relative
to their actual compile-lime data types.

3. Optimized compilation is performed for object-cen-
tered programming by performing inheritance at
compile time; this markedly improves performance
of object-centered programs.

4 Generic programs and expressions can be compiled
into closed functions that are specialized for par-
ticular data types.

5. Interactive programming and display-based editing
are provided for abstract data types

GLISP and GEV, including all features described in this
paper, are running and are being used for application pro-
grams at several sites

How to Obtain GLISP

Versions of the compiler are available for INTERLISP
(DEC 2060, Xerox LISP machines), MACLISP, FRANZ LISP,
UCI LISP, ELISP, and Portable Standard LISP (DEC 2060,
VAX, 1P 9836); a version for ZETALISP is planned
this writing, GEV is available for INTERLISP, MACLISP, and
Portable Standard LISP; versions for the other dialects are
planned.

GLISP and its documentation are available free to mem-
bers of the ARPANET community; the files are contained
on the host SUMEX-AIM in the directory < GLISP> * The
GLISP User’s Manual (Novak 1983) is contained in the file
GLUSER LPT (linc printer form) or GLUSER MSS (SCRIBE
source formn); printed copies may be ordered for $5.00 at the
address given below Chapter 8 of the manual tells how to
obtain the code for GLISP and GEV

GLISP is available to non-ARPANET sites for a nominal
taping charge Address correspondence to the author at
Compruter Science Departiment, University of Texas at. Aus-
tin, Austin, TX 78712 Phone (512)471-4353 The author’s
ARPANET address is CS NOVAKQUTEXAS

References

Birtwistle, Dahl, Myhrhaug, and Nygaard. (1973) SIMULA Begin
Philadelphia, PA: Auerbach

Bobrow, D G., and Stefik, M (1981) The LOOPS Manual Tech
Rept. KB-VLSI-81-13, Xerox PPalo Alto Research Center

Borning, A, and Ingalls, D. (1982) A Type Declaration and Inference
System for Smalltalk Proc 9th Conf. on Principles of Programmang
Languages, Association for Computing Machinery, New York

Cannon, H. I (1981) Flavors A Non-Hierarchical Approach to Object-
Onriented Programmang Working Paper, A I Lab, Massachusetts
Institute of Technology

Goldberg, A., et al (1981) Special Issue on Smalltalk BYTE
Magazine.

Ingalls, D (1978) The Smalltalk-76 Programming System Design
and Implementation Association for Computing Machinery, 5th
ACM Symposium on Principles of Programming Languages, New
York

Liskov, B., Snyder, A, Atkinson, R, and Schaffert, ¢ (1977)
Abstraction Mechanisms mn CLU CACM 20, 8

Novak, GG S (1983) GLISP Reference Manual Tech Rept. HPP-
82-1, Heuristic Programming Project, Computer Science Dept. ,
Stanford University

Novak, G. S (1982) GLISP A High-Level Language for A I Program-
ming American Association for Artificial Intelligence, Proc

(Continued on page 53)

4The login “ANONYMOUS GUEST” may be used at SUMEX to FT'P
files

As of

NASA Ames Research Center
Moffett Field, CA 94035

EXPERT SYSTEMS RESEARCHER

Ames Research Center (35 miles south of San
Francisco) is seeking a senior investigator for the
development of generic software tools and
computer architectures applicable to image-based
expert systems. The research areas include knowl-
edge representation, system control (rule inter-
preter), symbolic representation languages, and
information extraction (pattern recognition).
Poorly understood issues include the impact of
the space environment on software and hardware
architectures including reliability (fault-tolerance)
for image-based expert systems; portability of lan-
guages between von Neumann and non-
von Neumann systems and ease of user interface;
and ability of the crew to interact, understand,
and diagnose failures for spaceborne expert
systems. Responsibilities will include (1) directing
and participating in basic artificial intelligence
(Al) research for the development of new hard-
ware and software technologies for image-based
expert systems within the constraints of the space
environment; (2) managing pilot demonstrations
of new expert system technology applications;
(3) participating in and monitoring the coopera-
tive Al research grants; and (4) establishing and
maintaining peer interaction with the science and
technical communities.

Specified qualifications include: (1) in-depth
knowtledge of expert system development, and
computer system architectures (double-weighted);
{2) ability to plan, conduct, direct, and report
on expert system research {double-weighted);
(3) knowledge of cognitive psychology and/or
linguistics; and (4) ability to direct and work as a
member of an applications team. U.S. citizen-
ship and Ph.D. or equivalent in electrical/
electronic engineering and/or computer science
are required. Permanent position in Federal
Service. Salary ranges between $41,277 and
$63,115, commensurate with experience/
education. For further details regarding require-
ments and application procedures, write 28-83 at
the above address or phone (415)965-5084.
Formal applications must be filed by Septem-
ber 30, 1983. An Equal Opportunity Employer.

THE AT MAGAZINE Fall 1983

47

gramming,” and had the Athenians personal computers with
LISP-controlled graphics they might well have sentenced him
anyway There is great contrast between the pleasures of
programming and the tedium of analysis, between the chal-
lenge of the mysterious bug and the death of a beautiful
hypothesis at the hands of an ugly fact

Rational psychology also offers improved communica-
tions The frequency of reinvention of ideas in artificial in-
telligence is legendary. While it is unreasonable to expect
(and undesirable to attempt) to make reinventions rare oc-
currences, artificial intelligence clearly seems extravagant
It is not. alone in this. There is the old joke in computer
science aboutl, the result that was lost because it was only
published four times But even the magnitude of the problem
is unclear Not only do researchers lack deep understanding
of their own proposals, but they usually cannot understand
those of others either. This incomprehension is not due to
stupidity, but to the vague, metaphorical terms on which
the field relies in the absence of precise, formal vocabularies
for presenting theories. In mathematies, physics, and many
other sciences, papers, if properly written, define concepts
in terms of the accepted vocabulary, state claims or dis-
coveries, and then leave comprehension up to the intelligence
and motivation of the reader. In artificial intelligence, even
conscientiously written papers can be unintelligible no mat-
ter how capable and motivated the reader, for much of the
accepted vocabulary is about as precise as that of poetry,
and about as substantive as that of advertising copy If we
had adequate mathematical concepts, if we had conventions
for clear, exact statements of problems — two large ifs —
then we could hope for reduced reinvention, more rapid com-
munication, comparison, and reproduction of ideas, and a
true chance to build on the work of others: things all taken
for granted in other fields

Conclusion

A mathematical, analytical enterprise like rational psych-
ology is not for everyone Indeed, rational psychology feeds
on intuitions gained only through experience, so it makes
no more sense for everyone to abandon the usual efforts
of artificial intelligence and cognitive scicnce than for all
physicists to forsake experiment and experience in favor of
rational mechanics On the other hand, rational psychol-
ogy need not be purely parasitie, for its pursuit may some-
day advance the construction of thinking machines, much
as aerodynamics has advanced the construction of flying
machines But these practical benefits cannot be real-
ized without effort. At least some people must stray from
the usual investigations of artificial intelligence and cogni-
tive science, and their work must be judged by the aims
and mecthods of rational psychology instead of by those of
artificial intelligence and cognitive science. I would not
bother to invent the label “rational psychology” for these
aims and methods, except that they are somewhat different
from the usual ones of artificial intelligence and cognitive

science, and more easily understood and encouraged when
explicitly recognized Tlor example, questions about im-
plementation status or experimental verification of theorics
are legitimate questions for artificial intelligence and cogni-
tive science, but not for rational psychology, even though the
same theories may be under discussion As with chemistry
and cookery, mere recipes for constructing machines and
men do not guarantee understanding the product And
for rational psychology, the main question is whether the

theorics have been adequately understood.

References

Courant, R and Robbins, H, (1944) What s mathematics? An
elementary approach to ideas and methods, London: Oxford Univer-
sity Press

Doyle, J. (1982a) The foundations of psychology, Pittsburgh:
Department of Computer Science, Carnegie-Mellon University

Doyle, J (1982bh) Some theories of reasoned assumptions: an essay
in rational psychology, Pittsburgh: Department of Computer
Science, Carnegie-Mellon University

Doyle, J (1983) What is rational psychology? Toward a modern
mental philosophy, Pittsburgh: Department of Computer Science,
Carnegie-Mellon University

Hartmanis, J (1981) Remarks in “Quo Vadimus: computer science
in a decade,” in J F Traub (ed), Communications of the ACM
24, 351-369

Minsky, M. (1962) Problems of formulation for artificial in-
telligence, Proc Symp on Mathematical Problems i Biology,
Providence: American Mathemaltical Society, 35-46

Nilsson, N. J. (1980) The interplay between experimental and
theoretical methods in artificial intelligence, Menlo Park: SRI
International, TN 229

Truesdell, C. (1958) Recent advances in rational mechanics,
Science 127, 729-739

(Continued from page 49)

Second Natwonal Conference on Artificral Intelligence, Pittsburg,
PA., 300-331

Novak, G S (1982) The GEV Display Inspector/Editor Tech
Rept. HPP-82-32, Heuristic Programming Project, Clomputer
Science Dept , Stanford University

Novak, G. S (1983) Knowledge-Based Programmang in GLISP
American Association for Artificial Intelligence, Proc Third Na-
tional Conference on Artificial Intelligence, Washington, D C | in
press

Teitelman, W (1978) INTERLISP Reference Manual Xerox Palo
Alto Research Center

Wulf, W. A, London, R, and Shaw, M. (1976) An Introduction to
the Construction and Verification ol Alphard Programs IEEEL
Transactions on Software Engincering SE-2, 4

THE AT MAGAZINIS Fall 1983 53

