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WORK ON EXPERT SYSTEMS hasreceived extensive atten- 
tion recently, prompting growing interest in a range of en- 
vironments. Much has been made of the basic concept and of 
the rule-based system approach typically used to construct 
the programs. Perhaps this is a good time then to review 
what we know, assess the current prospects, and suggest 
directions appropriate for the next steps of basic research. 

I’d like to do that today, and propose to do it by taking 
you on a journey of sorts, a metaphorical trip through the 
State of the Art of Expert Systems. We’ll wander about the 
landscape, ranging from the familiar territory of the Land 
of Accepted Wisdom, to the vast unknowns at the Frontiers 
of Knowledge I guarantee we’ll all return safely, so come 
along. . . 

The itinerary Our trip has three basic purposes in 
mind. I want first to assess and calibrate the Accepted 
Wisdom, second to understand its limitations, and third to 
characterize the nature of the research that will produce 
the next generation of systems. The talk is correspondingly 
divided into three parts. We begin with a tour through 
the Land of Accepted Wisdom, where we survey the field, 
trying to assess what’s known about building and using these 
systems. What do we know and what can we do with that 

This article has benefited from careful readings by and suggestions from 
Mike Brady, Bruce Buchanan, Ed Feigenbaum, Jo& Gon&lez, Pete 
Szolovits, and Pat Winston 
Editor’s note: This article was the author’s “Invited Lecture” at IJCAI 7 

knowledge? Where has the Accepted Wisdom succeeded? 

One important goal of this part of the journey will be to 
calibrate the current state of the art-Given what we know, 
what can we do and how quickly can we do it? Does building 
a system typically require several months or several years? 
Can we turn them out routinely or are we still hand-crafting 
them? Is the technology a laboratory curiosity or is it ready 
for mass production? 

As the name suggests, any journey through the Land 
of Accepted Wisdom invariably means encountering familiar 
territory. But a review of fundamentals is important if we are 
to accomplish our second goal-the careful determination of 
the nature and location of the Frontiers. We need to examine 
the Accepted Wisdom closely, to see where the ragged edges 
are and to see where experience may have worn holes in some 
of the cherished clichks. That careful examination forms the 
second part of our journey. 

The shortcomings we find will lead us to our final goal, 
an understanding of which way to go next, as we head toward 
the Frontiers of Knowledge. Our vehicle will be a problem in 
equipment diagnosis that nicely characterizes the weaknesses 
of the existing technology and brings sharply into focus the 
challenges we face in building the next generation of systems. 

A glimpse ahead. It’s standard practice in a talk to 
give away the punchlines early on, so here’s a preview: 
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The Central Issues 

The Accepted Wisdom has provided an important foun- 
dation and a useful set of tools 

Those tools can be particularly powerful where perfor- 
mance is based largely on “compiled experience ” 

Additional varieties of knowledge are necessary beyond 
empirical associations 

Expertise is characterized by a range of behaviors 

New problem domains require additional mechanisms. 

We need to reconcile the new directions with the ad- 
vantages of the Accepted Wisdom 

In examining the intellectual foundation and the tools 
provided by the Accepted U’isdom, we’ll see that they can 
be particularly powerful in domains where expertise is well 
described as “compiled experience.” In clinical medicine, 
for example, a considerable amount of diagnostic expertise 
arises from exposure to numerous examples. Typically, rela- 
tively little of a physician’s diagnostic capability is based on 
reasoning from detailed anatomical and physiological con- 
siderations. Instead, what makes a clinician an expert is the 
large collection of empirical associations he accumulates by 
dint of experience in the field. In domains of this sort, the 
existing set of tools can be useful and powerful. 

But we have t.o press on beyond the conventional wis- 
dom, because additional varieties of knowledge are going 
to be necessary in the next generation of systems. There 
are several reasons for this First, as we’ll see: expert,ise is 
characterized by a wide range of behaviors, of which problem 
solving performance-the focus of current work on expert 
systems-is really only the most evident Experts do much 
more than simply solve the problem and it’s not clear that 
empirical associations are capable of supporting those other 
forms of behavior. 

Second, there are domains where problem solving clearly 
relies on more than compiled experience. Other varieties of 
knowledge are involved, knowledge of structure and causal 
models. To take advantage of the power they can provide, 
weire going to have t.o press beyond the existing technology. 

We’ll see that the desire to use those additional kinds of 
knowledge leads us off in directions that conflict with some 
of the advantages that the Accepted Wisdom has provided. 
Hence one of the long term challenges we face is determining 
how to reconcile conflicts between the new directions and the 
advantages of the Accepted Wisdom. 

A word about terminology Let me focus for a mo- 
ment on the phrases “empirical associations” and “causal 
models.” They are, I think, more appropriate than “shallow” 
and “deep,” words that have been used quite a bit recently 
in reference to much the same thing. The problem with 
“shallow” and “deep” is that they are simply labels whose 

technical content is at best obscure (i.e., they are shallow), 
while their overtones from nontechnical use make them far 
too evocative. 
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THE NATURE OF EXPERTISE 

A Range of Behaviors: solve the problem 
explain the result 
learn 
restructure knowledge 
break rules 
determine relevance 
degrade gracefully 

Figure I 

The technical issue is, what grounds exist for believing 
an inference like If A and B then C? If the strongest argu- 
ment we can make is of the sort, Previously, when A and 
B held, C was also found to be true, then the inference is 
justifiably characterizable as an assoczation that grew from 
accumulated empirzcal observations. 

If, on the other hand, we can argue that If A and B are 
true, C follows because of the way thus devzce (or system, 
organ, etc.) works, then we are basing our belief on an 
understanding of structure, function, or causalzty. 

Such terms focus on the relevant issue and have the 
virtue of avoiding the unfortunate connotations of “shallow” 
(i.e., requiring little thought) and “deep” (i.e , profound) that 
carry over from everyday use. Clearly, for example, anyone 
who has a shallow system is missing something (and probably 
doing shoddy work). Anyone who’s got a system based on 
deep models, on the other hand, is clearly doing something 
impressive.’ 

We should be wary too of the images suggested by the 
terms Accepted Wisdom and Frontiers. They are convenient 
abstractions and are rarely as clearcut and static as may 
be implied here. Nor is the population of each Land easily 
determined-those who create the Accepted Wisdom at one 
moment are often found across the borders at the next. The 
metaphor is, nevertheless, a useful abstraction that allows us 
to categorize what we know and measure what we have yet 
to do. 

The Nature of Expertise 

Enough preliminaries. Let us begin by considering the 
nature of expertise. It includes a whole constellation of 
behaviors (Fig. 1). Problem solving is only the most obvious 
and while necessary, it is clearly insufficient. Would we be 
willing to call someone an expert if he could solve a problem, 
but was unable to explain the result; unable to learn anything 
new about the domain, unable to determine whether his 
expertise was relevant, etc.? I think not. 

‘Deep is a word like theory or semantic-it implies all sorts of marvelous 
things It’s one thing to be able to say “I’ve got a theory,” quite another 
to say, “I’ve got a semantic theory” but ah, those who can claim “I’ve 
got a deep semantic theory,” they are truly blessed 



Figure 2. An early expert system. 

W’ork in expert systems has to date explored only the 
first three of these behaviors in any depth First generation 
systems like DENDRAL (Lindsay et al.: 1981) and MACSYMA 
(Macsyma group, 1974) f ocused solely on performance, while 
second generation systems began to explore behaviors like 
explanation (e.g., MYCIN, Shortliffe, 1976; the Digitalis 
Advisor, Swartout, 1981) and knowledge acquisition (e.g.: 
TEIRESIAS, Davis, 1979; Version Spaces, Mitchell, 1978). Of 
these, performance is still the best understood; our efforts at 
explanation and knowledge acquisition have only scratched 
the surface 

By and large the other topics have been almost totally 
unexplored. What would it mean for example to restruc- 
ture knowledge? One example particularly relevant for this 
audience came out of the so-called procedural vs. declarative 
controversy. We, as experts on knowledge representation, 
went to work structuring and restructuring knowledge, so 
that procedural became declarative, got turned back into 
procedural again, and so forth. I think it became clear after 
we went around that loop a couple of times that the prob- 
lem is at least in part in the eye of the interpreter, but 
nevertheless, there we were, restructuring and reorganizing 
knowledge. 

What about breaking rules? One of the most frustrating 
things to an apprentice is that he no sooner learns a rule from 
an expert than he discovers that there are almost as many 
exceptions as there are rules. Experts clearly understand not 
merely the letter of the rule but the spirit as well. 

ItThat about determining relevance? Experts also know 
when they’re beyond their depth. They know when a prob- 
lem is outside their sphere of expertise and they know when 
the best answer they can give is to suggest asking someone 
else. Clearly none of our programs can do that as yet. 

Experts also degrade gracefully. That is, as they get 
close to the boundaries of their expertise, they get less and 
less proficient at solving problems. But their skill decreases 
smoothly, rather than precipitously as do most of our pro- 
grams. 

To illustrate this I’d like to introduce a colleague of mine 

(Fig. 2) who’ll be accompanying us on this journey. It’s been 
suggested that the beaver, engineer of the animal kingdom 
and (not entirely by coincidence) mascot of MIT, would make 
a perfectly good expert system if performance alone were the 
issue. After all, he does a marvelous job of building a dam. 

But performance isn’t all there is. As I was saying a 
moment ago, experts can explain their behavior, know when 
to break rules, and can learn more about their domain. On 
that score, of course, our friend seems to fall short (Fig. 3) 

He will, nevertheless, accompany us as we head off down 
the road to see what lies ahead in the Land of Accepted 
Wisdom (Fig. 4). 

In the Land of Accepted Wisdom 

On the first stop in our journey, I’d like to consider where 
we are by characterizing the stages of development of a field 
and then use that to assess the state of expert systems work. 

The first stage of development of any field is tradition- 
ally case studies. Ideally, we test one single dimension of a 
design-one idea on knowledge representation, or control, or 
system architecture Each of these is in effect an isolated 
point in the design space. 

As the set of such experiments grows, a collection of ar- 
chatectural princaples may emerge. By examining many case 
studies we may begin to understand the shape and charac- 
ter of the design space This allows us to make empirical 
observations about which parts of the space make sense for 
which kinds of problems. Note that these are simply empiri- 
cal observations-we don’t really understand why they hold, 
we can only say that, with our experience this design looks 
like the right one to use. 

Eventually, and of course it’s a big eventually, we get 
to something worthy of being labeled a science. For our 
purposes, that stage is characterized by an understanding 
that goes beyond a set of empirical observations. There 
is instead an understanding of why a particular design is 
appropriate for a particular task, and perhaps a much better 
understanding of the character and shape of the design space. 
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Figure 3. Outmoded by a new technology. 

I think it’s fair to say that work on expert systems is 
currently somewhere between the stage of case studies and 
architectural principles. As is traditional for fields at that 
stage of development, and as is particularly appropriate for 
expert systems, the existing knowledge is well captured as a 
collection of informal rules of thumb. 

Knowledge engineering homilies. So on our next 
stop in the land of Accepted Wisdom, we pause for a moment 
to survey the sights and see what it is that we know (Fig. 5). 

Figure 6 presents six of the basic commandments. Many 
of you will of course recognize these from a talk given 
four years ago by Ed Feigenbaum (Feigenbaum, 1977). I’ve 
glorified their form, but not their content. Let me review 
them briefly. 

Perhaps the most fundamental observation-1rz the 
knowledge lees the power-suggests that problem solving per- 
formance often arises from extensive stores of knowledge 
about the task at hand, not from a large collection of domain- 
independent methods. 

We note that the knowledge is inexact and incomplete, 
because, almost by definition, the kinds of problems attacked 
in /ii very rarely have complete laws or theories. Rather we 
have to deal with an inexact and informal knowledge, the 
stuff of half-baked theories and guesses. 

The knowledge is often all-specified, because the expert 
himself doesn’t always know exactly what it is he knows 
about his domain. That means in turn that one of the things 
we have to do is help the expert to explicate his knowledge, 
help him to make clear what it is that he knows and how 
that is applied to the problem at hand. 

Amateurs, whether they’re people or programs, become 
expert incrementally. Unlike Athena, they don’t emerge fully 
formed. Acquiring expertise is instead a process of incremen- 
tal approach to competence. 

One impact of that is the importance of systems that are 
flexible and transparent. These systems are going to spend 
most of their lives being changed, updated, and improved. 
If it’s too difficult to change them-they are inflexible-the 
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whole process is going to come to a grinding halt. Trans- 
parency is similarly motivated: If we’re going to improve the 
system we have to know what it did in order to determine 
what it is we ought to change. If the system is a black box, it 
becomes impossible to make that determination and system 
evolution will cease. 

Architectural principles. In addition to the basic 
credo, some architectural principles have begun to emerge 
(Fig. 7). One suggestion is to separate the inference engine 
and the knowledge base. By doing so, the knowledge in 
the knowledge base is more easily identified, more explicit, 
and more accessible. If the two are intermixed, domain 
knowledge becomes spread out through the inference engine, 
it becomes less clear what we ought to change to improve 
the system, and flexibility suffers. 

A second architectural principle is uniformity of repre- 
sentation. This cuts down the number of mechanisms re- 
quired, keeping system design simpler and more transparent. 
Each time a new representation is added to the system, some- 
thing else in the system has to be able to handle it, has to 
know its syntax or semantics to be able to use it. Hence fewer 
representations means a simpler, more transparent system. 

Keeping the inference engzne sample helps in several 
ways. Explanations, for example, are easier to produce. 
Since they are currently generated by replaying the ac- 
tions of the system, keeping those actions simple means less 
work is necessary to produce comprehensible explanations. 
Knowledge acquisition is similarly easier. When the inference 
engine is less complicated, less work is needed to determine 
exactly what knowledge to add to improve system perfor- 
mance. 

A fourth principle-exploitzng redundanceis nicely il- 
lustrated by work on HEARSAY (Erman et al., 1980) that 
illustrated how redundancy can be a remedy for incomplete 
and inexact knowledge. The trick is to find multiple over- 
lapping sources of knowledge with different areas of strength 
and different shortcomings. Properly used, the entire collec- 
tion of knowledge sources can be a good deal more robust 



Figure 4 

than any one of them taken alone 
The current state of the art. What then is the 

current state of the art? We can characterize it roughly as 
suggested in Figure 8. Expert systems have to deal with 
very narrow domains of expertise; we have to very sharply 
constrain what it is we hope to achieve with them. As 
we get closer to the boundaries, their behavior gets rather 
fragile; rather than degrading gracefully, it tends to fall 
apart precipitously 

Since the emphasis and the effort, in these systems 
is on accumulating large knowledge bases, the knowledge 
representation used is typically one of the simpler ones, 
like attribute-object-value triples, production rules, and so 
forth. And since the natural language problem has yet to 
be solved, we’re stuck with limited interaction languages, 
usually keyword-based parsing of input and template-gener- 
ated production of text on the output. 

Our model of explanation is useful but limited at the 
moment to recapitulation of the system’s actions. We simply 
hope that’s sufficiently informative that it will explain the 
behavior of the system And finally, we don’t yet know 

very much about dealing with multiple experts. How do 
you reconcile differing and perhaps conflicting views among 
acknowledged experts? At the moment we don’t know, so we 
appoint one expert as knowledge base czar and attempt to 
build the system in his image. 

Successes of the Accepted Wisdom. So much for 
the current state of the art. Where does that get us? In 
what ways has the Accepted Llrisdom led to success? 

One success is the existence of the credo itself. Interest- 
ingly, not very long ago those six commandments were highly 
controversial. Not very long ago Joel Moses was told, when 
working on MACSYMA, “That isn’t AI. Don’t know what 
it is, but it isn’t Al.” Not very long ago the comment on 
DENDRAL was “That’s interesting chemistry, but what has 
it got to do with AS’” The past five or six years have seen 
a significant shift in emphasis: Perhaps it zsn’t cheating to 
build a large store of knowledge about a domain Perhaps 
part of intelligence really does arise from the accumulation 
and use of lots of information about a task. 

A second contribution of the existing wisdom is its utility 
as a simple but effective tool for getting started in problems 
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Figure 5 

involving extensive amounts of informal knowledge. It sug- 
gests extracting knowledge from experts by working through 
sample problems with them to find out what they know. It 
suggests as well a methodology for knowledge acquisition: 
the detailed comparison of system vs. human performance 
on carefully selected problems. 

The Accepted Wisdom also offers a way of using empiri- 
cal associations to deal with inexact knowledge. The problem 
of inexact inference is difficult and far from solved, but the 
Accepted Wisdom provides a tool with a certain pragmatic 
utility. 

The Accepted Wisdom has also given us at least four 
systems in current use, systems that are solving interesting 
and difficult problems. DENDRAL, MACSYMX, PUFF (a pro- 
gram for diagnosing some classes of lung disease; Kunz et al., 
1978), and Rl (system configuration for VXXes; McDermott, 
1980) are no longer the focus of work in research labs, they 
are instead being employed by the appropriate user com- 
munity. 

Those are the technical successes of the Accepted Wis- 
dom. There have also been some important sociological 
effects. It first became evident at last year’s k9AI conference 
and is clearly manifested here as well: The Accepted Wisdom 

CREDO 

In the knowledge lies the power. 
The knowledge is often inexact, incomplete. 
The knowledge is often ill-specified. 
Amateurs become expert incrementally. 
Expert systems need to be flexible. 
Expert systems need to be transparent 

Figure 6 
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has succeeded in arousing considerable interest in expert sys- 
tems (and AI in general) outside the academic centers. We’re 
beginning to see more and more industrial research centers 
becoming interested in the technology Why is that? I think 
that part of it is simply coming of age of the field in general. 
Certainly much the same thing is true in natural language 
and robotics where commercial systems are beginning to be 
available. 

That interest has had a number of results, perhaps the 
most notable being the imbalance between the tremendous 
amount of interest in the technology and the rather sharply 
limited manpower supply capable of building these systems. 
That in turn has led to intensive recruiting of engineers of 
almost every sort (Fig. 9). 

Calibrating the technology. For some, this growing 
collaboration between industry and AI is cause for concern. 
There are issues of manpower spread thin over a wide range 
of sites and concern about manpower available to train the 
next generation. Equally important, however, now that AI 
has become a focus of strong attention, are the expectations 
that industry has about what AI and expert systems can 
supply, and how quickly that promise can be fulfilled. 

It is important to calibrate as closely as we can the dis- 
tance between research results and commercial products. It 
has become important to set expectations that make clear 

Separate the inference engine and knowledge base 

Keep the inference engine simple 

Figure 7 



STATE OF THE ART 

Narrow domain of expertise 
Fragile behavior at the boundaries 
Limited knowledge representation language 
Limited I/O 
Limited explanation 
One expert as knowledge base “czar” 

Figure 8 

what can in fact be expected from expert systems technology 
as it currently exists. 

One way to calibrate is that collection of statements 
about the state of the art. All those catch phrases about 
limited domains of expertise, fragile behavior of the bound- 
aries, etc., help to characterize the state of the art and set 
the appropriate expectations about what can be done with 
today’s technology. 

To push beyond the level of catch phrases, I conducted 
a small survey. I called a number of people who have helped 
build expert systems and asked them to estimate the number 
of man years that were required. The results are shown in 
Figure 10. 

There are a number of interesting things here, but let me 
start with a few caveats about what’s not here. For a number 

of reasons, the curve can’t be taken too literally. First, the 
systems mentioned here vary drastically with respect to the 
size of the problem they are trying to solve. MACSYMA 
is probably two orders of magnitude larger than PUFF, for 
example. Others differ radically in the amount of knowledge 
they need and in the amount of effort required to build 
the knowledge base. So there’s at least one dimension not 
shown-the scale of the problem being solved. 

Another dimension is the level of performance that was 
achieved. Some of these systems are out in the world solving 
problems routinely, while others are research vehicles that 
never made it past the laboratory stage. That too helps to 
account for some of the difference in the amount of time 
involved. 

But with those caveats in mind let’s plunge ahead and 
see what this graph tells us. What’s going on? Clearly there 
is a decline in the time required to build a system. We start 
off with numbers like thirty or forty man-years and come 
eventually to numbers only a quarter that size. I would claim 
in fact that the curve seems to be approaching an asymptote, 
somewhere in the range of five man-years. 

What accounts for the reduction in system construction 
time? One answer is history: The older programs started 
first. All other things being equal, the younger programs 
would have accumulated fewer man-years. But this would 
predict only a linear decrease. 

Figure 9 
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b,CnRSI, 
MAN- 

YEARS 

YEAR BEGUN 

Figure 10 

A second, more interesting answer is accumulation- 
the accumulation of ideas, of code, and experience over 
the past fifteen years. These aren’t unrelated programs- 
there’s a genealogy here: DENDRAL begat MYCIN, which 
begat PUFF; HEARSAY provided an important foundation 
for HARPY and then profited from its experience. We get as 
a result a form of the iceberg phenomenon: a great deal of 
work goes into the first of these in each line of succession, 
then the next can be built as a tip on the iceberg/foundation. 

A third phenomenon that helps to account for the decline 
is a matching of tools to tasks. Early on-for DENDRAL 
and M.4CSYMA-it was the attempt to solve problems in 
chemistry and mathematics that led to the development of 
certain kinds of technology. Later on, as the technology 
matured, a feeling developed for appropriate applications. 
In a sense the positions reversed: now the tools are helping 
us to choose appropriate tasks. The two become as a result 
more closely matched, hence the shorter development time 
for more recent systems. 

The creation of knowledge base development tools (e.g., 
TEIRESL4S; EMYCIN, VanMelle, 1980; or KAS, Reboh, 1980) 
has also accelerated the process of system construction. 

But beyond all the uncertainties of the graph, one ob- 
servation appears to stand out clearly. In all the experience 
available, the curve never drops below five man-years. I think 
that sets an important expectation, a very important lower 
bound. It implies that: 

Even for the best-understood problems, experienced re- 
searchers using the be&understood technologies still re- 
quire at least five man-years to develop a system that 
begins to be robust. 

That’s important to keep in mind, with all its qualifiers: the 
best-understood problems-the problem must be clear and 
the knowledge required to solve it well documented (rarely 
true); experienced researchers-like most arts, this one is 
learned by doing, and the doing provides an important base 
of concepts and software that speeds subsequent efforts; the 

STAGES OF DEVELOPMENT 

1. System design 
2. System development 
3. Formal evaluation of performance 
4. Formal evaluation of acceptance 
5 Extended use in prototype environment 
6 Development of maintenance plans 
7. System release 

Figure 11 

best-understood technologies-the Accepted Wisdom must be 
well-suited to the problem. Fail to satisfy any one of these 
and the lower bound will climb yet higher. 

One final observation about the graph. Everyone I called 
used the same approach to estimating the amount of time 
spent: They multiplied the total lifetime of the project by an 
estimate of the average number of full-time people involved. 
The interesting thing was that everyone used a number be- 
tween two and five for the full-time manpower level. 

Now that’s not terribly profound, but it is a useful order 
of magnitude indicator. It means that widespread experience 
agrees that just a few people-between two and five: not 
20 to 50-function as the prime movers in building these 
systems. That’s probably not limited to expert systems; it’s 
likely true of large software projects in general. But what 
does this mean? It suggests that you can’t cheat the five 
man-year boundary. You can’t say “It’s going to take five 
man-years, so let’s get ten people and we’ll be done in six 
months.” That won’t work. There are limits to what’ can be 
done with division of labor and we encounter one of those 
limits here. 

Stages of development. There’s another way to 
calibrate the effort involved. Several years ago Ted Shortliffe 
and I speculated on the stages of development in the lifetime 
of an expert system and came up with the informal list of 
Figure 11. While these may not be exactly the right stages 
for every project, they do offer another yardstick useful for 
calibrating effort. 

The important point is that, with few exceptions, no 
expert system to date has made it beyond Stage 3. Fewer 
than a half-dozen of the many efforts have made it even that 
far. Two of them--MACSYMA and DENDRAL-sneaked 
their way through as the pioneering efforts; they were the 
“initialization conditions” for the field, and as such, inter- 
mixed all the phases noted here. 

HEARSAY and HARPY had somewhat clearer develop- 
ment histories and were tested sufficiently to provide a rough 
calibration of accuracy on lOOO-word vocabularies. 

Of the systems built to date, Rl had by far the most 
clearly defined development process, evolving through a se- 
quence of stages similar to those listed here. In its first for- 
mal evaluation, the system was tested on approximately 20 
cases. The results suggested that Rl would soon solve prob- 
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lems correctly 90% of the time. This was very encouraging 
and indicated that the program was ready to be distributed 
to its user community for more extended testing. But when 
placed in that setting, users criticized system performance 
40% of the time. 

Performance had suddenly plummeted to the 60% level. 
What happened? To be fair, some of those were mistakes 
on the part of the users resulting from incorrect data or a 
misunderstanding of program operation. But there was a 
more basic lesson: research environments, no matter how 
carefully tailored, are simply not identical to user environ- 
ments. They differ with respect to the problem mix, how 
familiar users are with the program, and a range of other 
factors. As a result, evaluations in the research environment 
can be at best only rough approximations to the results ex- 
pected when the program is placed in the user community. 

Yet many expert systems developed in the laboratories 
don’t even reach the stage of formal evaluation in the re- 
search environment. There’s a long road between systems as 
they are described in conferences like this one and systems 
ready to be employed by a user community. 

In yet another interesting observation about Rl’s devel- 
opment, McDermott notes that “Rl’s knowledge grew at 
least as much during the last stage of its development as 
in any of the previous four stages.” The program appeared 
to be in its final stage of development, yet the knowledge 
base was still growing rapidly. What does that mean? It 
means that a system like this is not built and then polished 
up and distributed. The process is instead one of constant, 
incremental growth and improvement of the knowledge base. 
Fundamental and important growth of the system is a process 
that wzll continue all of its useful lzfe. The knowledge en- 
gineering task is a continual one. The road between systems 
described here and systems ready for a user community is 
not traversed in a single journey; it’s a continuing process. 

One final calibration point arises from characterizing the 
systems described in conferences like this. Those systems are 
designed to test out new ideas in knowledge representation, 
control, acquisition, etc.; they are new sample points in the 
design space. They are most often Stage 2 systems; rarely 
have they reached Stage 3. And when the developers say 
the system “works,” they mean the ideas work. Typically 
they have a fragile prototype which has just begun to display 
credible performance. That alone is generally a significant 
accomplishment and one with non-trivial implications: it 
indicates that the basic design of the system is likely to be 
sound. But it is a long way from being a system ready for 
distribution and use. 

Let me summarize the calibration issue. As the curve 
suggests, building an expert system means a substantial in- 
vestment of time and manpower. As the stages of devel- 
opment suggest, there is a long road between the systems 
described here and a system ready for a user community. As 
the characterization of research systems suggests, a system 
described here is only the beginning of a continuing develop- 
ment effort. 

Toward the Frontiers 

Thus far on our journey we’ve seen the successes of the 
Accepted Wisdom, both technical and sociological, and tried 
to calibrate them. The successes are important and they’re 
numerous, but like all such they have to be understood in 
the appropriate context and their power carefully measured. 

But my central task here is to look forward, to look for 
the holes in the Accepted Wisdom, the places where it starts 
to wear thin. To do that, let’s take off toward the Frontiers 
(Fig. 12). Let’s see what the Accepted Wisdom can’t do and 
find out what we have to deal with as we get closer to the 
Frontiers. 

Where the Accepted Wisdom falls short: The ar- 
chitectural principles again. One place where the Ac- 
cepted Wisdom begins to wear thin, interestingly enough, is 
that set of architectural principles we passed by earlier. Be- 
fore we pass over that foreboding boundary at the Frontiers 
of Knowledge, let’s take a quick glance backward at that set 
of principles (Fig. 13). 

They have not, alas, proved to be uniformly valid. Con- 
sider for example the suggestion that we should separate the 
inference engine and the knowledge base. There are two 
situations where that seems not to work out very well: 

1. where the “chunks” of knowledge are inherently 
large, and 

2. where we’re dealing with basically sequential infor- 
mation. 

Consider the issue of large grain size. The concept is 
not precisely defined, but let me characterize it for a rule- 
based representation as a rule whose “then” part has a large 
number of actions to carry out. That is, there are many 
things we want to do once we’ve satisfied the precondition 
part of the rule. How can we encode such information? Well, 
the obvious way is simply to list each of those actions in the 
order we want them carried out. But if there are a lot of 
them, we probably want some control over them. We may 
want to be careful or clever about the sequence in which 
they’re executed. One option is to further decompose the 
set of actions into more rules, but there are situations where 
that would destroy the comprehensibility of the rule. It may 
hang together as one large chunk of knowledge but become 
lost in the trees if we chop it into a collection of rules. So 
we keep it all together by writing long right-hand-sides that 
begin to look like small programs. 

But wait a moment, isn’t that what the inference engine 
is all about? Isn’t control of those actions just what the 
inference engine is supposed to take care of? If we build large 
action parts in a rule, have we really made that separation? 

In domains where the knowledge falls naturally into large 
chunks, then, we simply may not be able to obey the dictum 
that the inference engine and the knowledge base should be 
kept separate. 

Now consider domains where the information we want 
to encode has a strongly sequential character. Let me return 
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to Rl for an example. As McDermott notes, “Rl’s rules can 
be viewed as state transition operators” and, indeed, that’s 
what they are. The whole process of configuring a system 
can in fact be viewed as a passage through a sequence of 
states. 

What impact does this have on encoding knowledge? 
That depends on the number of such states and how recog- 
nizable they are. If there are relatively few states as com- 
pared to the number of rules, and if those states are relatively 
well-recognized, then it is not difficult to separate what to 
do (the knowledge base) from when to do it (the inference 
engine). 

But if there are almost as many states as rules, and if 
the state names have no intuitive meaning and begin to look 
like arbitrary identifiers, well then perhaps there is a better 
approach. Suppose we label the states with numbers instead 
of names, and suppose we use a counter to keep track of 
which state we’re in. Then, to fire the appropriate rule, all 
we have to do is check the number in the register and fire the 
corresponding rule. We could call it a “program counter.” 

Even though rules written that way look independent, 

‘\ 
Figure 12 

even though they appear as individual inference steps, in 
fact they are locked together in a very tight and impor- 
tant structure-the sequence of state transitions that defines 
what to do next. 

Note that the point is not simply whether rules are an 
appropriate representation here. The point is that some 
information is inherently sequential. Sometimes what we 
want to know is that after you’ve done W, do X, then do 
Y, then do 2. The knowledge in such a domain is knowledge 
of the correct sequence of actions. In such cases the inference 
engine and knowledge base become nearly indistinguishable. 

Our second architectural principle saw virtue in unifor- 
mity of representation. Yet there is strong evidence to the 
contrary: the experience of two of the larger expert systems 
efforts suggests exactly the opposite. The designers of MAC- 
SYMA and HEARSAY-II have both commented explicitly on 
how important it is to have available a range of specialized 
representations. 

In the HEARSAY-II experience, for example, a uniform 
representation was useful for communication between knowl- 
edge sources, but the attempt to enforce the same uniformity 
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ARCHITECTURAL PRINCIPLES 

Separate the inference engine and knowledge base 
grain size 
sequential information 

Use as uniform a representation as possible 
MACSYMA, HEARSAY-II experience 
Specializat,ion is worth the cost of translation 

Keep the inference engine simple 

Figure 13 

on operations within a single knowledge source “. . . either 
failed completely or caused intolerable performance degrada- 
tion” (Erman et al., 1980). Instead, within a single knowledge 
source they used representations appropriately specialized to 
the task at hand. The word recognizer, for example, had 
its own graph network representation of words; the word 
sequence recognizer used a bit matrix to represent word ad- 
jacencies. The common language was used for writing on the 
blackboard to communicate with other knowledge sources, 
but within the scope of a single knowledge source the ap- 
propriate specialized representation was used. 

The MACSYMA experience is similar: a multiplicity of 
representations makes possible the efficient implementation 
of a wide variety of algorithms. 

The lesson here is clear: It’s so expensive to work with 
the wrong representation that you’re better off working with 
the right one and paying the cost Or to put it more posi- 
tively: 

Specialization is often worth the cost of translation. 

Our third architectural principle suggested keeping the 
inference engine simple. Reasonable enough, but if we take 
heed of the warnings we’ve just seen and begin to allow a 
range of specialized representations, we may have a problem. 
The inference engine has to keep step, that is, it has to be 
able to deal with each of those representations. And it’s 
not clear that we can maintain simplicity if we allow the 
representations to multiply. 

Where the Accepted Wisdom falls short: Ex- 
planation and knowledge acquisition. One reason, 
then, for marching across the Frontiers is the mixed ex- 
perience with the set of still-emerging architectural prin- 
ciples. There’s another reason as well, and for that I want to 
go back to my comment about the nature of expertise. As 
we noted earlier, when the only concern is problem-solving 
performance, empirical associations can be a powerful tech- 
nique. Collecting them may be a formidable task, but a large 
collection of them can be effective. 

But what happens when we focus on some of the other 
behaviors, like explanation or knowledge acquisition? Let’s 
consider explanation and examine the kinds of responses we 
get from MYCIN. If the system infers the presence of an or- 
ganism called a bacteroides, and you ask why it believes that, 

the response is of the form, “A gram negative, anaerobic, 
rod-shaped organism is typically a bacteroides.” And if you 
ask why that’s true. . . well, in fact you can’t ask why that’s 
true. I think the system ought to be able to say “Damned 
if I know,” because in fact, damned if anybody knows. It 
really is simply an empirical observation that seems to hold 
true. 

MYCIN does try to provide an answer of sorts by having 
justifications for rules. These are usually pointers into the 
literature where one can discover in medical jargon that “the 
ultimate etiology is yet to be established” (i.e., damned if 
they know either). 

The point is simple: the use of empirical associations 
precludes any more substantive form of explanation. If all 
the system knows is that “A and B suggest C,” then it can’t 
explain why, beyond repeating the rule. For domains where 
such rules are all that’s currently known, that is indeed the 
best we can do. But where more fundamental insight is avail- 
able we should be able to answer more substantively, and we 
will need representations other than simple associations to 
make that possible. 

Next let’s consider knowledge acquisition. I think there 
was a very interesting lesson learned several years ago in work 
on Meta-DENDRAL (Buchanan and Mitchell, 1978). The 
task was to induce new rules about mass spectrum analysis 
from examples of spectra and their analyses. One of the 
clear lessons from that work was that some model for un- 
derstanding events in the domain was crucial for guiding 
and grounding the induction process. The model needn’t be 
elaborate; Meta-DENDRAL needed little more than the ball 
and stick model of chemistry. Yet that model offered a simple 
way of understanding why certain molecules fragmented in 
certain ways, and, equally important, why some other frag- 
mentations were highly unlikely. In doing so it provided a 
crucial filter capable of distinguishing plausibly meaningful 
hypotheses from those that were likely to be mathematical 
coincidences in the data. Without such a filter, the number 
of hypotheses generated is simply much too large; the infor- 
mation cannot be distinguished from the coincidental noise. 

Once again, pure associations fall short. If we wish to be 
able to learn about the domain, we need some understanding 
that pushes beyond that simple form of knowledge. 

Across the Frontier 

We now know a little about what empirical associations 
can do for us. In some domains they can provide an interest- 
ing and useful level of performance, offer a reasonable level 
of explanation, and support a primitive form of knowledge 
acquisition. As we have seen, they begin to display important 
weaknesses in dealing with the last two of these, and offer 
virtually no support for the remaining varieties of expert be- 
havior noted earlier. In domains where expertise really is 
simply a large collection of such associations, this is likely to 
be the best we can do. 

The question then is, what can we do in domains where 
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more than that is available? What can we do for problems 
where we don’t have to be satisfied with a statement like 
“That’s just the way it is”? In particular, what can we do in 
domains where there exist mechanistic or causal models? 

Work on such questions is proceeding in several places. 
At hlIT for example, a group of us is working on the problem 
of computer diagnosis in the literal sense. That is, how can 
we detect and identify malfunctions in computer hardware? 
A group at Stanford is working on a similar problem of 
hardware diagnosis, while another group at MIT is develop- 
ing a similar approach to medical diagnosis. In all these 
cases, the effort is based in part on understanding the struc- 
ture, function, and design of a device well enough to use 
that knowledge to guide the diagnostic process, whether the 
“device” is a RAM chip, a communications multiplexer, or a 
kidney.’ 

Let me illustrate this by considering our domain of digi- 
tal hardware troubleshooting It’s clear there’s much to 
know. Part of the expertise of a good troubleshooter lies 
simply in knowing a lot about the device at hand. 

What is the character of that knowledge? One kind of 
information is knowledge about structure-the “anatomy” 
of the device. We encounter it in forms ranging from block 
diagrams of an entire machine down to schematics indicat- 
ing the devices and wires making up a single register. Infor- 
mation about function-the “physiology’‘-resides in such 
things as our understanding of signals propagating along 
wires, our model of the operation of a RAM cell or mul- 
tiplexer, or the function of an ALU. Knowledge of design 
comes from an understanding of the intent of the designer, 
the purpose and intended function of each component. 

Because the machine is a human-designed artifact we 
have, at least in principle, relatively easy access to such in- 
formation. Such is not often the case elsewhere: in medicine, 
for example, our knowledge of human anatomy and physiol- 
ogy is still growing, and Lord knows we can’t get our hands 
on the design specs. 

places that a large collection of rules is simply not useful or 
convenient enough to be a feasible approach to the problem. 

Second, we’ll see the need for a range of specialized 
representations. As we’ll see, there are too many different 
kinds of knowledge required t,o make feasible a uniform rep- 
resentation scheme. 

Third, we’ll need multiple representations. We’re going 
to want t,o talk about electrical configuration so that we 
can reason about electrical connectivity and current flow 
We’re going to want to talk about the physical configuration 
in order to reason about where something is or how it’s 
connected physically to something else. We’re going to want 
a representation of functional organization as well, since, as 
we’ll see, we reason in large measure by observing behavior 
and making inferences about function. 

Finally, we’ll see a very simple but instructive example 
of what can be done when we have available something more 
fundamental than empirical associations. We’ll see that even 
some very simple mechanistic and causal models can offer 
significant reasoning power. 

There are two caveats to keep in mind as we proceed. 
First, our initial efforts are focused on non-transient hard- 
ware errors. That is, we do not attack the problem of dis- 
tinguishing between hardware and software errors, and will 
not be dealing with transients. Eventually both of these will 
have to be considered, but we focus first on the more tract- 
able cases. 

Second, this example indicates our ultimate goal, not 
our current capabilities. We have just begun building a 
system capable of the kind of representation and reasoning 
we’re about to use. The example illustrates the state of 
our aspirations, not the state of our art. The example is, 
however, quite real and the details are accurate. 

The problem. 

The phone rings at the local field service center.. 

“Field Service Can I help you?” 

“Yeah, my machine doesn’t work!” says a frantic voice 

An Example “What seems to be wrong?” 

I’d like to use the rest of this talk to explore in some 
detail the kinds of technical advances that will be necessary 
in constructing the next generation of expert systems. To do 
that we’ll walk through a sample problem from the domain 
of field engineering, paying careful attention to the kind of 
knowledge needed. 

Let me give you a preview of the issues we’re going to 
encounter. First, I want to use this example to indicate 
how the existing expert systems technology falls short of 
providing the machinery we will need. We will see in several 

2All of these efforts have benefited substantially by the foundation 
provided in work like that of deKleer (1979), Sussman (1978), and 
Rieger and Grinberg (1978) Their ideas about representing and using 
knowledge about structure, function, and design have provided an im- 
portant foundation for thinking about causality, qualitative reasoning, 
and related issues. 

“Well, when I sit at the console terminal and load the 
system, everything’s just fine. The hardware powers 
up, the operating system loads, and it’s clear that the 
operating system is running. From the console terminal 
everything is just fine But the user terminals don’t 
work. They’re turned on and they look OK, but when 
you type something, absolutely nothing happens So 
what’s wrong?” 

Think about that for a minute. What 2s wrong? More 
precisely, What kinds of information do we need in order to 
determzne the answer to the question? 

Clearly, in order even t’o get started, we need some infor- 
mation about the structure of the system. Figure 14 presents 
the configuration of the system we’re talking about. There 
are two main busses with an interface between them; a disk, 
the CPU, and memory hang off bus 1, with the user terminals 
on the other. 

14 THE AI MAGAZINE Spring 1982 



CTTY PROC 
MEM 
CTL 

DISK 

TERMINAL 

Figure 14 

What does this give us? It supplies the anatomy of the 
system at the coarsest level of detail. And what can we 
do with it? Well, not too much until we supply some infor- 
mation about the function of the various components. For 
example, disks and memory are used to store information, 
busses transmit information, and CPU’S execute instructions. 

Now we can begin to use that information about struc- 
ture and function to reason about the behavzor of the sys- 
tem. Loading the system means reading the code off the disk 
into memory, then executing that code. Given the structure 
indicated by the diagram, we know that that process must 
involve the disk, its controller, bus 1, the memory, memory 
controller, and CPU. 

We can annotate our “anatomical diagram” to indicate 
our conclusions about how well the components are work- 
ing. For example, the system load succeeded and that tells 
us quite a lot. It means the transmission of information 
from disk to memory must have succeeded, so we believe the 
source (the disk), the sink (memory), and the transmission 
medium (bus 1) are all functioning properly. The system 
runs, meaning that the hardware is capable of executing a 
program (the system code), hence the the path from memory 
to cpu must be functioning. Thus the memory, bus: memory 
controller, and memory control to cpu link are all probably 
functional. Finally, since the program in question-the sys- 
tem itself-is a large program with a lot of nontrivial code, 
we suspect that the cpu itself is working properly. Since the 
system clearly responds to the console terminal, we suspect 
that is working properly as well. 

And what of the problem with the user terminals? Once 
again, an understanding of behavior derzves from reason- 
ang about structure and functzon. The terminals work in 
full-duplex mode, meaning that they can be viewed in the 
simplest terms as a transmitter and receiver, sending charac- 
ters to the cpu and printing the characters echoed back. If 
they don’t work then there must be something wrong with 
the source (the terminals), the sink (the CPU), or the trans- 
mission path. On those grounds alone we ought to suspect 
the terminals themselves, their controller: bus 2, the bus in- 
terface, bus 1, memory control, and CPU. But we already 

---probably good 
‘. 

- - --suspect 

Figure 15 

have pretty good evidence that the last three of those (bus 1, 
memory control, and CPU) are all functional, so we contain 
our suspicions to the first four. The results of this reasoning 
process are summarized in Figure 15. 

We can begin by narrowing our focus. All of the user 
terminals are malfunctioning identically (no response). We 
have either an extraordinary coincidence, or more likely, the 
problem lies “upstream,” at a point in the data path common 
to all the terminals. We can thus direct our suspicions to the 
bus interface, the second bus, and the terminal controller. 

Conveniently enough, there is a set of diagnostic pro- 
grams designed to test much of this hardware. Life isn’t 
always so easy (as we’ll see below), but it is useful to be able 
to take advantage of diagnostics where they already exist 

So we retrieve the relevant set of diagnostics and run 
them. The results are shown in Figure 16 (Tests 1-5 gave no 
error messages, diagnostics were halted after Test 8). What 
do they tell us? Once again the relevant issue is really What 
kinds of informataon do we need in order to determzne the 
answer to the questzon? 

DLkGNOSTIC RESULTS 

TEST 6 
EXPECTED AAAA 3333 FOFO FFFF 
RECErVED AA48 3331 FOFO FFFD 

TEST 7 
EXPECTED 0000 0000 
RECEWED 0031 OOOD 

TEST 8 
EXPECTED OAOA 0312 
RECEIVED OAO8 0310 

Figure 16 
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We need to know at least two things: 

1 the zktent of the test that encountered the error, and 

2 the behavior of the device responsible for the error. 

The first of these is important because the error messages 
make no sense unless we know what the diagnostic was trying 
to do. The second is important in allowing us to determine 
how the device under test may have failed. 

If we’re lucky, the intent of the test is made clear in the 
documentation; if we’re not so lucky we may have to read the 
code Clearly, no program we build anytime soon is likely to 
be able to do either of these. What reasonable substitute is 
there? 

It appears that a reasonable substitute might be con- 
structed from a suitably annotated, simplified view of the 
hardware. Since the author of a diagnostic is typically try- 
ing to test just a single part of the machine, much of the 
remainder becomes temporarily irrelevant. We can take ad- 
vantage of this to provide a much simplified view of the sys- 

tem. Consider Figure 17, for example. We’ve ignored the 
system disk, terminals, and terminal controller, and added 
a level of detail to the terminator, which for our current 
purposes can be viewed as three registers. 

We then describe the diagnostics in terms of operations 
performed on this simplified machine: The tests in question 
attempt to send bit patterns back and forth between the 
processor and each of the terminator registers. 

Now that we know what the test is trying to do, we still 
need to know something about the behavior of the device 
being tested-a register. For our purposes a register can be 
viewed as a single memory cell (Fig. 18). To make sense of the 
error messages, we need to understand the behavior of that 
device. In particular, we need to determine how its behavior 
changes as a consequence of various forms of failure. 

To do that, we need a reasonably detailed model of 
how it works, a model capable of supporting the sort of 
reasoning that says “if the write-enable line were stuck low, 
then no new information would ever get into the cell, and 
every time we read it the same thing would appear.” If we 
could do that, then we could determine that the symptoms in 
Figure 18 are not consistent with errors in any of the control 
lines, but are consistent with a dropped bit on the data- 
in or data-out path. We have in effect a simple induction 
problem, but we can guide the induction process by using 
our understanding of device function to constrain the set of 
plausible hypotheses. 

We can thus make sense of the error messages by relying 
on both an understanding of what the diagnostic is trying to 
do and a model of the behavior of the device being tested 
The result, of course, is the hypothesis that Bit #l is being 
dropped somewhere on the path from the cpu to the data 
register (the register under test at the moment). Notice that 
the hypothesis is consistent with all the results of this test, 

DIAGNOSTIC RESULTS 

TEST 6 

EXPECTED AAAA 3333 FOFO FFFF 

RECEIVED AAAB 3331 FOFO FFFD 

TEST 7 

EXPECTED 0000 0000 

RECEIVED 0031 OOOD 

TEST 8 

EXPECTED OAOA 0312 

RECEIVED OA08 0310 ENABLE R W 

I II 

-1 MEMORY /=== DATAOUT 

Figure 18 
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both the failures (where expected and received differ) and 
the successes (expected and received are the same). 

But what can we make of Test 7? For the moment, 
nothing. Test 8 is once again consistent with our hypothesis. 
Can we come up with an hypothesis that accounts for all 
the data? Yes, if we invoke one reasonable heuristic: each 
diagnostic in a sequence is strongly dependent on the success 
of the previous tests. Like the syntax checks in a compiler: if 
one test fails, the results of successive ones can be misleading 
or nonsensical. So our overall guess is that we are dropping 
Bit #l and that the results of Test 7 can be chalked up to 
the vagaries of diagnostic interdependence.3 

To summarize our progress thus far: the initial set of 
symptoms suggested a problem in the communication path 
from the user terminals to the CPU. The fact that the sys- 
tem ran from the console teletype suggested that the CPU, 
memory, and the bus connecting them was functional. A 
prepackaged set of diagnostics was used to test part of the 
path from user terminals to CPU; the diagnostics indicated 
that the bug was a dropped bit. 

So we have a hard error that’s been found and charac- 
terized by the diagnostics. It’s often suggested that a prob- 
lem that well identified is effectively solved. But let’s con- 
tinue on, because I think it will become clear that there is 
much non-trivial reasoning left to do. 

Take another look at Figure 15. At the moment we 
know only that we’re dropping a bit somewhere on the path 
between the cpu and the data register of the terminator on 
bus 2. But there’s a fair amount of hardware along that 
path, so we have to do some signal tracing to find the source 
of the problem. 

Before we go to the trouble of probing, there are some 
easy inferences we can make The diagnostic gives the same 
results for all three of the registers in the terminator. As 
with the user terminals, either all three are broken in an 
identical fashion, or the problem lies further back along the 
data path. Occam’s razor once again suggests the latter. 

From that we get the view of Figure 19, with the region 
of suspected hardware narrowed down a little. We no longer 
suspect the terminator and we’ve focused in on one bit of 
the data path. 

In keeping with that narrower focus, we need a more 
precisely focused test. The diagnostics are effective as broad 
tests of large parts of the machine, but now we need a finer 
probe capable of testing just that part of the machine that 
we suspect is malfunctioning. 

We want to test one bit of the datapath, but there are 
really two routes-one heading out to the terminator and 
one heading back. They overlap substantially, but do differ 
in places. We can test the outbound path by writing to the 
terminator, the inbound path by reading from it. Which 
shall we do? The choice seems clear-we ought to write 
from the cpu to the terminator-but the reasoning is slightly 
subtle. We want to put a 1 on Bit #l of the datapath. Since 

3As we’ll see, this is wrong. 

Figure 19 

we never successfully wrote and read back a 1 along that 
bit, we don’t know what’s in the terminator register, hence 
reading from it is not a predictable test. 

We might capture some of this reasoning in a general 
principle like “when faced with a choice use hardware known 
to be functional.” But a more satisfying answer would tell 
us how to generate appropriate tests based on the sort of 
reasoning about structure and function at issue here. 

Having decided to test the outbound path, we put the 
cpu in a loop that continually writes a 2 to the data register 
and proceed to trace the signal. Figure 20 presents an ex- 
panded view of the path, running from the point where bus 1 
meets the bus interface, through the interface, along the 
backplane, and out to the data register. We’ve moved down 
one level of detail and have focused on one bit slice, but we’re 
still dealing with an abstracted view of the hardware. 

The hexagons are backplane pins; they’re notable pri- 
marily because they’re easily accessible test points. That’s 
a standard piece of diagnostic reasoning of course-use the 
easy, “non-invasive” tests first, since the more complex tests 
often have the risk of serious side effects 

Just to make sure we’re on the right track, we probe 
first at B7, and find the 1 is indeed making it this far (more 
evidence that we were correct in assuming that the CPU, 
memory, and bus 1 are functional). We probe AF2 and find 
that the bit is missing; probing Cl2 shows the same thing. 
We’ve managed to narrow the focus still further-the signal 
is getting lost somewhere between bus 1 (pin B7) and bus 2 
(pin Cl2). 

Comparison with the Accepted Wisdom. One of 
the central points of this talk is that the Accepted Wisdom 
would have a difficult time supporting some of the reasoning 
we need to do. Let’s pause for a moment and to explore that 
point. 

Consider the signal tracing we’ve just done and imagine 
trying to do it with the Accepted Wisdom. One plausible 
way would be to write a set of If-Then rules, that might say 
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Figure 20 

something like of hardware. We would have to write out a new set of rules; 

If the signal is OK at B7 and none of the existing rules would be useful. Yet the underlying 

the signal is blocked at AF2 skill would be entirely the same. 
then the signal is being lost somewhere between B7 and AF2. 

If the signal is OK at B7 and 
the signal is blocked at Cl2 

then the signal is being lost somewhere between B7 and C12. 

Finally, the rules miss the sense of what signal-tracing 
is all about. It’s a process of examining structure, but it is 
distinct from that structure in much the same sense t’hat’ an 
interpreter stands apart from the program it interprets 

That would work and it certainly captures the effect of 
the signal-tracing logic we used earlier, so we can hardly 
argue that the Accepted Wisdom is incapable of such reason- 
ing. But it does have a number of problems. In order to do 
signal-tracing, we need to know about the structure of the 
hardware. The rules above contain such knowledge, but it’s 
bound up with the art of signal-tracing and therein lies the 
source of many problems. 

Well, you say, no one would have suggested trying to 
encode that in rules anyway. What would they have done? 
Presumably they would have written a set of rules t’hat t’ried 
to capture just the signal tracing skill, and had a separate 
description of structure. Yes, that’s just the point. And if 
we go to the trouble of building a separate structure descrip- 
tion, then we ought to do it right, which means a hierarchy 
of multiple levels of detail, information about connectivit’y, 
substructure, etc. 

In particular, the knowledge about structure is repre- 
sented only implzcitly, it is inaccessible for all purposes other 
than signal-tracing, it is hard-wired into the system and 
inflexible as a result, and it fails to recognize signal-tracing 
as a distinct skill. 

To see that the knowledge of structure is implicit, con- 
sider the rules above when viewed in isolation. The rationale 
behind them is completely mysterious until we refer to some- 
thing like Figure 20. 

The point is simply that the Accepted Wisdom focuses 
on the use of rules embodying empzracal associations. It does 
not offer us any tools for constructing structural descriptions 
of the sort we need, it does not offer us any techniques for 
using those descriptions to guide diagnosis, and perhaps even 
more important, at does not even lead us to think an such 
terms. 

To see that the knowledge about structure is inaccessible, 
consider trying to use it to do simulation. We ought to be 
able to predict the path of a signal inserted at B7, yet we 
can’t do that without “unraveling” the information about 
structure embedded in the rules. 

To see that the knowledge is inflexible, consider using 
exactly the same signal-tracing technique on another piece 

The example continued. Let’s return to the example 
We’ve determined that the problem lies somewhere between 
B7 and C12, so let’s look at that in more detail (Fig. 21). 
Bit #l comes in at B7 on the left, passes through the gate 
array, into the transceiver in chip E4, and out again to pin 
C12. We’re losing it somewhere between those two points. 

How can we locate the source of the problem? There’s 
more signal tracing to be done, but once again let’s try to be 
as clever as we can before we go probing. 

E4 
I - - - - -  __-_____-__----------- 

EN 2 
1 7 

GATE 4 ” 1 

Figure 21 
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Figure 22 

Experience tells us that gate arrays have a long time to 
failure, so we expect that the signal will make it through 
to the transceiver. Let’s also assume that, unless we have 
evidence otherwise, wires are functional; if a signal appears 
at one end, then it will appear at the other end. 

If the signal makes it to the transceiver, what might 
prevent it from emerging? If the ENable or XMit signals on 
the Nand gate were missing, then the bit would be blocked. 
But it turns out that both the ENable and XMit signals are 
shared across four bits of this data path. Hence if either one 
of them were bad, we would have noticed four bits dropped, 
not simply one. 

Note the hypothetical reasoning we used. We postulated 
a fault and then asked whether that was consistent with 
the symptoms noted. That’s a useful and common enough 
form of reasoning, but is more subtle than it might appear. 
We can’t, for instance, simply insert a fault and then ask 
“How does the machine behave?” There’s too much hardware 
there and too wide a variety of behavior to ask such a broad 
question. We need instead a very directed and constrained 
form of simulation that asks how a fault would effect the 
particular piece of behavior under study. In this case that 
tells us that the ENable and mit lines are likely to be 
functional. 

So it seems that the signal probably made it from B7 
through the gate array and through the Nand gate of the 
transceiver. By checking pin 6 of chip E4 we can easily verify 
all of this, and indeed the signal is good there. 

Well then, what’s going on? We said earlier that we will 
assume wires are functional and propagate signals From 
the diagram we have nothing more than a wire between 
chip E4 pin 6 and backplane pin C12, so we had better 
check our assumption about it being good. To do that, 
we need to shift representations, and consider the physical 
structure underlying the path between pin 6 and pin C12. 
That structure is suggested in Figure 22-there is an etch 
on the board than runs from pin 6 out to the pad at the 
edge We can easily check that with an ohmmeter and it 
proves to be good. 

Going back to Figure 21, then, we seem to have a bit 
of a contradiction on our hands. We have the signal getting 
to Cl2 on the diagram and yet it doesn’t get to the “real” 
Cl2 pin on the backplane. To unravel the problem we once 
again have to shift from the predominantly electrical view of 
Figure 21 to a physical view (Fig. 23). That figure makes it 

E4 
rr n 

Figure 23 

clear that the board fits into a slot of the backplane. The 
“physics” which underlies the electronic structure makes it 
clear that between the board and the backplane pin there is 
a set of spring-loaded connectors. And in this case one of 
them is bent and not making contact. There’s our dropped 
bit.4 

The example: Summary. The example, even as 
simple as it is, helps to illustrate a number of points about 
this undertaking (Fig. 24). First, the central thrust of this 
work is to do diagnosis based on an understanding of struc- 
ture and function. From the outset, knowledge of function 
(loading the operating system, typing on a terminal) and 
structure (system configuration) interacted to allow us to in- 
fer the likely health of various components of the system. We 
were able to focus our efforts because we knew how devices 
were interconnected, knew how they were supposed to be- 
have, and knew something about how they were likely to 
fail 

This understanding also led to a more precise diagnosis 
than might have resulted from the traditional approach of 
module swapping. Early in the diagnosis it became clear that 
the bus interface was dropping a bit. Had we replaced the ex- 
isting board with a new one, at best that would have failed to 
solve the problem. At worst, the act of removing and replac- 
ing a board might have jiggled the connector sufficiently that 
we got a temporary contact. The same problem might then 
reoccur, while in the meantime a perfectly good board was 
sent to be repaired. 

Second, we illustrated how even very simple causal 
models might be used as a way of “understanding” behavior. 
A model of the function of a RAM cell, for example, made it 
possible to reason about the likely cause of malfunction. 

41n truth, it was actually a piece of tape that had been inserted to 
simulate the fault But these connectors do, in fact, get broken or bent 
out of shape by people who are a little too rough in removing and rein- 
serting boards (as we occasionally have been). 
And Test 7, whose error message didn’t fit into the dropped bit 
hypothesis? As it turns out, there is a bug in that diagnostic (someone 
wrote a multiply where they meant a left-shift) This is yet another 
reason why it’s important to be able to interpret test results in context, 
not just accept them 
With the bug flxed, results of Test 7 are consistent with the others 
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ISSUES 

Diagnosis based on structure and function 

Utility of causal models 

Need for multiple, specialized representations 
physical 
electrical 
abstract function 

Shortcomings of the Accepted Wisdom 

The strong focusing effect 
structure 
experience [the Accepted Wisdom] 

Figure 24 

Third, we saw how a multiplicity of specialized repre- 
sentations aided the reasoning process. We used several 
different views of the machine, including an electrical (the 
schematics), physical (the board in its slot), and a more 
abstract functional view (boxes labeled “transceiver,” etc.). 
Each in turn was useful in understanding how the system 
worked. 

Fourth, we have illustrated how the Accepted Wisdom, 
with its focus on collecting large numbers of empirical as- 
sociations, fails to provide some of the intellectual framework 
and tools required for solving this problem. In particular, it 
fails to supply a mechanism appropriate for describing and 
reasoning about structure. 

Fifth, the example demonstrates the interesting pheno- 
menon illustrated in Figure 25. Consider the enormous 
focusing that occurred as our analysis proceeded. We 
went from “there’s something wrong with the machine,” to 
“there’s one broken connector in the backplane that’s caus- 
ing one bit to be dropped.” How did we manage to focus 
in so sharply in relatively few steps? Clearly the structure 

- 

FROM 

1 - 
ri n 

TO i 

Figure 25 
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of the machine itself was in part responsible: Computers 
are traditionally conceived of in terms of successive levels of 
structural and functional organization, and we put that to 
good use. 

But part of the responsibility lies in a contribution made 
by the Accepted Wisdom, in the form of empirical associa- 
tions and “compiled experience” about where to go looking. 
It’s clear, for example, that a troubleshooter doesn’t respond 
to a problem by writing down Ohm’s law for the entire 
machine and trying to account for the malfunction in those 
terms. Instead what he appears to do is to ask “Where have 
I seen this before and what was the problem last time?” And 
when we had some guess about where the problem might be, 
we retrieved a set of diagnostics simply because we “knew” 
they were appropriate for the part of the system under ex- 
amination. No deeper reasoning was involved, nor was it 
necessary. The Accepted Wisdom may thus have a role to 
play in this problem, functioning as a focusing mechanism. 
It helped us to zero in on components of the machine that 
were appropriate for more detailed examination. 

Challenges. Since this work is still in its early stages, 
we have only begun to construct the basic foundations of 
the mechanisms needed to produce the required reasoning 
behavior. Let me comment on a few of the more important 
challenges we face. 

Representing structure and function is an interesting 
task, in part because of the range of levels of detail we 
encounter. We would like to describe both of them at 
levels ranging from the basic system configuration-where 
“CPU” or “memory” are basic elements-on down to the most 
detailed levels like the logic diagram, where individual gates, 
wires, and pins are the basic elements. 

A number of structure description languages have been 
written and that accumulated experience may provide a 
good starting place on the problem. Behavior is a bit more 
difficult. Several fundamentally different approaches have 
been tried, ranging from state transition diagrams, to petri 
nets, to input/output specifications, and chunks of code. No 
clear winner emerges and indeed the appropriate language 
will likely depend on the purpose at hand. 

It’s easy to suggest that we’ll have to use multiple, spe- 
cialized representations. It’s somewhat harder to determine 
the appropriate representation for each and to know which 
one to use when. We used a simple strategy in the problem 
above of starting with the functional organization, using the 
electrical organization next, and employing the physical rep- 
resentation last,. This seems to be a reasonable default, since 
it reflects, to first order, at least, the levels of abstraction in 
the design of the machine. Functional organization provides 
the framework within which an elect’ronic implementation is 
designed, and the electronics provide a framework for the 
physical organization. But this is at best a first order ap- 
proximation. Life is rarely that well organized in design; we 
have no reason to expect it will be that easy in diagnosis 
either. 
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Figure 26. VLSI memory cell. 

One of the longer term challenges we face is reconciling 
increased complexity of these systems with the desire, well- 
articulated by the Accepted Wisdom, of maintaining trans- 
parency and flexibilit) Structural and functional models 
may increase the power and depth of understanding dis- 
played by the system, but they will inevitably increase the 
complexity as well. How then can such systems continue t,o 
be transparent to the user and easily modified? Without 
transparency, they are unlikely to be widely accepted and 
our efforts may be in vain. Without the flexibility, they are 
likely to ossify long before they are fully developed, and we 
run the risk of never being able to finish. 

One of the convenient bits of handwaving I did in the 
example was to dip occasionally into reasoning via empirical 
associations, rather than the reasoning from structure and 
function on which most of the example was based. As noted, 
both can be useful, but the obvious question is, how are we to 
determine which to use when? The empirical associations can 
supply a quick and crude guide about where to go looking, 
but how do we know when to shift over to more detailed 
mechanistic models? 

Finally, there is an interesting and difficult problem of 
selecting the appropriate level of abstraction. In the ex- 
ample above I selected just the right level for each step 
of the reasoning, providing a powerful way of simplify- 
ing the reasoning. Consider, for example, the enormous 
amount of detail that is suppressed in our initial view of 
the system (Fig. 14). But it isn’t obvious how this selection 
process could be automated. How do we know what level of 
detail is sufficiently simple that it makes reasoning easy, yet 
sufficiently detailed that it isn’t misleading? 

To illustrate just how challenging this problem can be, 
let me show you another example. To do that I’m going 
to shift domains for a moment and take a problem from 
design rather than diagnosis, but I think it illustrates the 
issue nicely. 

Figure 26 shows a VLSI design for a single bit of ran- 
dom access memory. To see how this works, consider the 
simplified diagram on the right. To store a bit, put the ap- 
propriate logic level on the wire at the top and close the 

switch labeled rr~” ( ‘(write”). If the logic level is high, that 
will close the switch at the bottom labeled “b” ; if the logic 
level is low, that will open the switch. The bit is thus stored 
as the state of the switch at the bottom 

To read the information out, we have to charge up the 
wire at the top and then close the “read” switch (labeled “r” 
in Fig. 26) If the charge drains away to ground then the 
switch at the bottom must be closed, hence we must have 
stored a 1 there. If the charge stays around, then the switch 
must be open, so we must have written a 0 there. 

The design sounds perfectly plausible at that level of 
description, but’ will it work? Transistors are considerably 
more sophisticated than the simple switch we’ve been us- 
ing to model then. A number of more complex models are 
available, so one approach would be to try simulating the 
design with successively more complex models. We can model 
it as a switch with some inherent resistance, we can add 
capacitances, we can view it as a voltage-controlled current 
source, and all of these more complex models will still suggest 
that the design is sound. 

But the device doesn’t work; the design is indeed faulty. 
It doesn’t work because the transistor, in addition to all the 
other things it is, is also a leaky switch. It never quite turns 
off completely. 

When we write a 1, we charge up the base of transistor b, 
then let the write line go low, turning off the write transistor 
But it doesn’t turn off completely, and eventually enough 
charge leaks off the base of b that it is no longer “on.” The 
bit has decayed away. 

The leak of charge through the write transistor is, for 
almost all purposes, too small ever to worry about. Typi- 
cally we deal with time scales on the order of nano- and 
microseconds, and on that time scale the leak doesn’t amount 
to much. But remember, this device is a memory. And we’d 
prefer it retain what we told it, not just over the course of 
microseconds but over seconds, hours, and days. And on 
that time scale, the leak is big enough that it can result in 
loss of information. 

What does all that illustrate? It, shows that even in a 
very simple design, it may not be easy to determine what 
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level of model to use. It isn’t simply complexity that makes 
necessary the more elaborate models; it is instead something 
more like sensitivity. We have to ask what the device is most 
sensitive to And in this case, it turns out to be enormously 
sensitive to an effect which is, in almost all other situations, 
so small as to be negligible. 

Summary 

And it is here, at the Frontiers of Knowledge, that we 
come at last to the end of our journey. What have we seen? 
We started out in the Land of Accepted Wisdom, where we 
explored the nature of expertise, finding it to be a whole 
collection of interesting behaviors, of which only a very few 
have begun to be automated. We surveyed the extent of 
the Accepted Wisdom, finding it effective where expertise 
consists of large numbers of empirical associations, “compiled 
experience.” 

We then stepped back to evaluate the state of the art. 
Two important calibration points were 

1. the magnitude of manpower investment necessary to 
build a robust expert system, and 

2 the stage of development typically reached by most 
current expert systems. 

Data from existing efforts, though meager, seems to suggest 
that, even in the best of cases, at least five man years’ worth 
of effort is necessary before an expert system even begins 
to perform reliably. It is also revealing to note that most 
expert systems to date have been developed only through 
the stage of construction of the basic knowledge base. Few 
have proceeded to the extended testing, further development, 
documentation, etc., that must occur before these systems 
are ready for distribution to a user community. 

In approaching the Frontiers, we uncovered some of the 
shortcomings of the Accepted Wisdom, finding that some 
of the accepted architectural principles may not in fact be 
as feasible or desirable as first expected. It proves difficult, 
for example, to separate the inference engine and knowledge 
base when knowledge in the domain is inherently sequential 
or where the chunks of knowledge are large. Uniformity 
of representation can exact a considerable price, while the 
efficiencies of specialization can often more than offset the 
cost of translating between representations. 

In journeying across the Frontiers, we explored a prob- 
lem from the domain of hardware troubleshooting to il- 
lustrate the kinds of challenges that we face in construct- 
ing the next generation of expert systems. We found that 
the Accepted Wisdom was capable of encoding some of 
the knowledge we needed, but discovered that using simple 
rules can render the underlying knowledge inaccessible, hard- 
wired, and inflexible. This illustrated the utility of being able 
to represent and reason about structure and function. We 
saw that even simple causal models can provide a mechanism 
for “understanding” behavior of devices. We used a number 
of different, specialized representations that included physi- 

cal, electrical, and abstract functional views of the device. 
And finally, we saw that while all these ideas can be an 
effective foundation for diagnostic reasoning, there is a whole 
range of difficult and interesting problems to be solved before 
we travel very far across the Frontier. 

And with that, my young friena and I will remove our 
official Tourguide hats, take our bows, and depart. . 
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