
The idea of implementing reinforcement learning (RL)
in a computer was one of the earliest ideas about the
possibility of AI. In a 1948 report, Alan Turing described

a design for a pleasure-pain system:
When a configuration is reached for which the action is unde-
termined, a random choice for the missing data is made and
the appropriate entry is made in the description, tentatively,
and is applied. When a pain stimulus occurs all tentative
entries are cancelled, and when a pleasure stimulus occurs they
are all made permanent. (Turing [1948] 2004, 425)

Turing did little to develop this idea, and it was not until the
year of his death, 1954, that Wesley Clark and Belmont Far-
ley simulated RL in a neural net on a digital computer (Far-
ley and Clark 1954). In the same year, Marvin Minsky
described an analog RL neural net in his Princeton PhD dis-
sertation (Minsky 1954). There were earlier ingenious RL
devices, though electromechanical rather than computer
implementations, including Claude Shannon’s maze-run-

Articles

SPRING 2019 3Copyright © 2019, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Reinforcement Learning:
Connections, Surprises,

Challenges

Andrew G. Barto

n The idea of implementing reinforce-
ment learning in a computer was one of
the earliest ideas about the possibility of
AI, but reinforcement learning remained
on the margin of AI until relatively
recently. Today we see reinforcement
learning playing essential roles in some
of the most impressive AI applications.
This article presents observations from
the author’s personal experience with
reinforcement learning over the most
recent 40 years of its history in AI,
focusing on striking connections that
emerged between largely separate disci-
plines and on some of the findings that
surprised him along the way. These con-
nections and surprises place reinforce-
ment learning in a historical context,
and they help explain the success it is
finding in modern AI. The article con-
cludes by discussing some of the chal-
lenges that need to be faced as rein-
forcement learning moves out into real
world.

ning mouse, Theseus, that used a kind of RL to find
its way through a maze (Shannon 1951). In the 70
years since Turing’s report, mathematical formula-
tions of RL have appeared in fields such as psycholo-
gy, economics, and control engineering. RL algo-
rithms known as learning automata date back to the
early 1960s and the work of the Russian mathemati-
cian and physicist M. L. Tsetlin (published posthu-
mously in Tsetlin [1973]; surveyed by Narendra and
Thathachar [1989]).

Despite featuring prominently in Minsky’s famous
“Steps” paper (Minsky 1961), and despite the exten-
sive mathematical study of algorithms like learning
automata, RL largely remained on the margin of AI
until relatively recently. Today we see RL playing
essential roles in some of the most impressive appli-
cations of machine learning (ML), including Deep-
Mind’s Go-playing programs (Silver, Huang, et al.
2016; Silver, Schrittwieser, et al. 2017).

Instead of recounting this history, my aim here is
to focus on observations from my personal experi-
ence with RL over the most recent 40 years of this
history. Though personal, these observations will be
of general interest, I believe, because they are instruc-
tive about RL’s place in AI and its promise for future
developments. RL has continued to fascinate me for
this long — even in the face of skeptics and naysay-
ers — for two major reasons. First, the study of RL has
exposed deep connections between largely separate
disciplines, ranging from computer science and engi-
neering to psychology and neuroscience. More than
any one discovery, or collection of discoveries, this
rich fabric of interconnected facts and ideas has
improved our understanding of both the human-
made and the natural worlds. The second reason I
have stuck with RL for so long is that studying it has
surprised me in several interesting and instructive
ways. I have had to revise preconceptions in some
instances; in others, unexpected new insights — at
least new to me — emerged from the results of com-
putational explorations. Here, I attempt to convey a
sense of the richness of this fabric by describing the
most striking connections and surprises. Finally, I
discuss some of the challenges that need to be faced
in the future.

First, a bit of background. In the late 1970s I had
the opportunity to work as a postdoc on a project
aimed at assessing the scientific merit of a hypothe-
sis proposed by physiologist A. Harry Klopf, a senior
scientist with the Avionics Directorate of the Air
Force Office of Scientific Research. Klopf hypothe-
sized that neurons, the major components of our
brains, are individually hedonists that work to max-
imize a local analog of pleasure while minimizing a
local analog of pain (Klopf 1972, 1982). Under the
direction of Michael Arbib, William Kilmer, and Nico
Spinelli, professors at the University of Massachu-
setts, Amherst, and founders of the Cybernetics Cen-
ter for Systems Neuroscience, a farsighted center

focusing on the intersection of neuroscience and AI,
and later joined by graduate student Richard Sutton,
we explored the early history of learning in AI,
including connections to theories of animal learning
from psychology and theories about the neural
machinery underlying learning. Were Klopf’s ideas
novel, and were they worth pursuing?

Klopf’s hypothesis is basically that the synaptic
weights of neurons change with experience accord-
ing to a neuron-local version of what is known in
psychology as the law of effect, proposed by the psy-
chologist Edward Thorndike, who stated it as follows:

Of several responses made to the same situation, those
which are accompanied or closely followed by satis-
faction to the animal will, other things being equal,
be more firmly connected with the situation, so that,
when it recurs, they will be more likely to recur; those
which are accompanied or closely followed by dis-
comfort to the animal will, other things being equal,
have their connections with that situation weakened,
so that, when it recurs, they will be less likely to occur.
The greater the satisfaction or discomfort, the greater
the strengthening or weakening of the bond.
(Thorndike 1911, 244)

This law is controversial in animal learning theory
and has been modified in various ways to better
account for data (such as differences between the
effects of reward and the effects of punishment), but
it is widely regarded as a basic principle underlying a
lot of behavior. It describes the commonsense learn-
ing mechanism widely known as learning by trial
and error. This is the basic principle of RL.

RL Is Neither Supervised
nor Unsupervised Learning

Our first surprise in exploring Klopf’s idea was dis-
covering that ML researchers did not capture key
properties of trial-and-error learning, despite their
clear intent to implement this form of learning in a
computer. With the exception of the early work men-
tioned in the preceding section and that of a few oth-
ers, genuine trial-and-error learning largely disap-
peared from ML research until modern RL came on
the scene. How can this be? Is not trial-and-error
learning at the root of most of today’s ML, including
the current deep learning algorithms, which learn by
correcting errors? The answer is that trial-and-error
learning is not the same as error-correction learning.
The differences are subtle and important. This dis-
tinction is now understood by most ML researchers,
but it is worth going into a bit of detail because it is
still a source of confusion.

An error, as we use the term in ML, is a measure of
the mismatch between a learning system’s output
and what that output should have been as given by
the label in a labeled training example. If the actual
and desired outputs are numbers, this measure is usu-
ally the numerical difference between them. If the

Articles

4 AI MAGAZINE

Articles

SPRING 2019 5

system’s outputs are class labels in a classification
problem, the measure might be just a binary indica-
tion of whether the output was correct or not. (Errors
can also be lists, technically vectors, of numbers or
binary indicators when the actual and desired out-
puts have many components, as in a neural network
with many output units.) In either case, the error
computation uses knowledge of both the actual and
desired outputs of the learning system. This is the
basic supervised learning paradigm.

On the other hand, an error in trial-and-error
learning as expressed by the law of effect indicates a
degree of satisfaction or discomfort. In RL, it is usu-
ally a number, which we call the reward signal, and
we think of it as being generated by a critic. A reward
signal might have a sign (though it does not always
need one), with a plus or minus respectively indicat-
ing a degree of satisfaction or discomfort. Where an
error is a measure of a mismatch between a desired
and an actual output, a reward signal is an evaluation
of the RL system’s output, or action. The difference is
important. An evaluation might be the result of com-
paring the system’s action with a given desired
action, in which case the reward signal is derived
from the mismatch. However, in general, the reward
signal need not be based on any knowledge of what
the correct action should be. This is a key strength of
RL.

To draw an analogy with a movie critic’s evalua-
tion of a movie, how many tomatoes, fresh or rotten,
the critic bestows upon a movie could well be based
on the critic’s comparison of the movie with their
idea of a better one, but this is not necessary. The crit-
ic might be responding to a general sense of satisfac-
tion or dissatisfaction, without having a concrete
idea of what the movie should have been or how it
could have been better.

In fact, the critic does not even need to know the
actions of the RL system in order to evaluate them. A
reward signal can be determined from the conse-
quences of the system’s actions on some other sys-
tem whose details are completely unknown to the
critic. This other system is interposed between the RL
system and the critic, translating the RL system’s
actions into patterns of behavior that the critic eval-
uates. Continuing the movie example, the critic
might base their evaluation on the effect a movie had
on another person, or on the consensus of a group of
viewers, without the ever having seen the movie
themselves. Admittedly not a desirable practice for a
movie critic, but it is analogous to situations in
which RL might be indispensable, an example being
where the brain’s neural firing patterns influence a
complex system of joints and muscles. Movements
can be evaluated in the complete absence of knowl-
edge about the neural activity that produced them.
This is likely one reason that RL is so important in
the nervous system, a topic I take up below.

Another key feature of RL is that, unlike supervised

learning (at least in its basic form), RL is selectional.
Being selectional means that RL is like evolution by
natural selection in requiring the generation of a
variety of alternatives and then selecting among
them by trying them out and evaluating their conse-
quences. In supervised learning, by contrast, the
labels of labeled training examples directly tell the
learning system what the outputs should be: super-
vised learning (at least in its basic form) is instruc-
tional rather than selectional. It is worth pointing
out here that RL’s process of generating alternatives
to be tried out does not have to be uninformed or
random. It can be very sophisticated, the only
requirement being that it is blind in the sense that
the outcome of a trial should not be completely
known beforehand; otherwise, RL’s capacity for dis-
covery is lost.

Then is not RL simply search, which of course has
long been a centerpiece of AI? Generate and test is a
hallowed principle of problem-solving, and simple
hill-climbing is a prototype of a selectional process.
Trial-and-error learning is indeed search (usually
optimization search rather than search for a recog-
nizable goal), but it is also learning. Unlike basic
search, trial-and-error learning is associative, mean-
ing that the good alternatives found by selection
become associated with particular situations, or
states, so that search becomes easier, perhaps even-
tually becoming unnecessary, with accumulating
experience. Like learning described by the law of
effect, RL is not just the process of finding actions
that produce satisfaction, but also of connecting
those actions to situations, or states. Thorndike used
the phrase “learning by selecting and connecting.”
The law of effect describes an elementary way of
combining search and memory: search in the form of
trying and selecting among many actions in each sit-
uation, and memory in the form of associations link-
ing situations with the actions found — so far — to
work best in those situations. Search and memory are
essential components of RL algorithms.

This use of memory is also at the base of the close-
ly related process called memoization (Popplestone
1967; Michie 1967). This process saves results of a
calculation in memory so that results that have been
calculated previously can be retrieved from memory
instead of being calculated again. Michie was well
aware of the connection between memoization and
trial-and-error learning (Michie 1968). In fact, it is
not misleading to think of trial-and-error learning as
memoized search. Although the original memoiza-
tion idea was to store the results of computations
purely by rote in a lookup table, Popplestone ended
his 1967 report by suggesting that an interpolation
scheme could be used to generalize beyond the indi-
vidual cases, thus anticipating the current use of
function approximation methods, such as deep neu-
ral nets, in RL.

Despite being a selectional process akin to evolu-

tion, RL differs from evolutionary algorithms that
mimic evolution’s natural selection through updat-
ing a population of candidate solutions. Evolution-
ary algorithms do not focus on forming associative
linkages between situations, or states, and actions.
The population maintained by an evolutionary algo-
rithm is a kind of memory, and one can evolve situ-
ation-action linkages, but evolutionary algorithms
typically do not form associative linkages in the way
that an RL algorithm does.

Sometimes RL is considered to be a version of
unsupervised learning, which is about finding struc-
ture hidden in collections of unlabeled data. RL algo-
rithms do not use labeled data as supervised learning
algorithms do, but they do receive training informa-
tion in the form of reward signals. Uncovering struc-
ture in an agent’s experience can certainly be useful
in RL, but by itself does not address the problem of
improving behavior as evaluated by a reward signal.
RL is therefore a third ML paradigm, alongside super-
vised learning and unsupervised learning, and per-
haps alongside other paradigms as well.

For the reasons just outlined, we concluded from
our study of early ML that law-of-effect-type learn-
ing, or trial-and-error learning, was in fact mostly
neglected by AI researchers, and we concluded that
Klopf’s ideas were indeed worth pursuing. This early
exploration also gave us an idea about why compu-
tational research with such a simple commonsense
form of learning did not flourish in AI. One reason is
that researchers apparently thought they were study-
ing trial-and-error learning when they were actually
studying error-correcting supervised learning. We
saw this in the work of Farley and Clarke, mentioned
earlier. In their 1954 paper, Farley and Clark describe
a neural network that learned via RL, with the neu-
ron-like units behaving very much like Klopf’s hedo-
nistic neurons. But near the end of their paper, Far-
ley and Clark highlighted their interest in pattern
classification and generalization, which can be stud-
ied without RL:

It is to be hoped that, using a more complex modifier
[that is, learning rule], this type of behavior can also
be organized and controlled, leading to systems which
effect classification and generalizations. (1954, 81)

Indeed, their second paper (Clark and Farley 1955)
was entirely devoted to the pattern classification and
generalization properties of their network. Later, but
still early, artificial neural networks such as Rosen-
blatt’s Perceptron (Rosenblatt 1958, 1962) and net-
works of Widrow and Hoff’s ADALINEs (ADAptive
LInear NEurons, and later ADAptive LINear Ele-
ments) (Widrow and Hoff 1960) all implemented
error-correcting supervised learning to focus on pat-
tern classification and generalization.

Confusing trial-and-error learning with error-cor-
rection learning is understandable because the word
“error” of trial-and-error learning is not the right
word: it should be evaluation or perhaps test, as I

explained earlier, but history dictates otherwise. We
can see this confusion in remarks by illustrious ML
pioneers. For example, in describing their ADALINE
supervised learning algorithm — now usually called
the least mean square (LMS) algorithm, or sometimes
the delta rule — Widrow and Hoff offered this anal-
ogy:

The boss continually seeks a better worker by trial and
error experimentation with the structure of the work-
er. Adaptation is a multidimensional performance feed-
back process. The “error” signal in the feedback con-
trol sense is the gradient of the mean square error with
respect to the adjustment. ([1960] 1988)

Widrow and Hoff were clearly describing error cor-
rection but calling it trial and error. Similar confusion
can still be found today. More than a decade after this
1960 remark, Widrow and colleagues did study gen-
uine trial-and-error learning, which they called
“learning with a critic” as opposed to “learning with
a teacher,” as supervised learning is sometimes called
(Widrow, Gupta, and Maitra 1973). But this was an
isolated foray into this more difficult type of learn-
ing. There were other early explorations of genuine
trial-and-error learning in AI, but trial-and-error
learning was largely viewed as a prototypical “weak
method,” as most research turned toward symbolic
AI and away from learning.

Playing Checkers, TD Learning,
and Dynamic Programming

A notable exception to the general neglect of trial-
and-error learning was Arthur Samuel’s checkers
player. This program (in its several versions) was —
and still is — recognized as a significant achievement
in AI and ML. Trials were moves in simulated games
of self-play, the results of which were used to adjust
the program’s rule for selecting moves. The goal was
to improve the quality of play as measured by piece
advantage, which is highly correlated with winning.
Moves were selected by performing lookahead search
from each current board position, with the board
positions visited in each search evaluated by a “scor-
ing polynomial,” a function of features extracted
from the board positions. Moves leading to the board
positions with the largest scores were selected for
play.

With its use of a scoring polynomial and looka-
head search, Samuel’s program moved beyond the
simple law of effect, but it still learned by trial and
error, that is, by RL. These enhancements to the sim-
ple law of effect are at the heart of some of the most
important connections to emerge from the study of
RL. In particular, Samuel’s method for learning the
scoring polynomial connects to modern RL’s tempo-
ral difference (TD) algorithms. (Though much sim-
pler, Samuel’s inclusion of lookahead search is a pre-
cursor to the use of Monte Carlo tree search in
modern systems using RL such as AlphaGo and

Articles

6 AI MAGAZINE

AlphaGo Zero [Silver, Huang, et al. 2016; Silver,
Schrittwieser, et al. 2017].)

The idea of the scoring polynomial was to predict
the reward (or penalty) expected to be received after
each trial game. It was learned by working backward
through the search tree from the scored terminal
board positions, giving each position the score of the
position that would result from the best move,
assuming that the machine would always try to max-
imize the score, while its opponent would always try
to minimize it. Samuel called this the “backed-up
score” of the board position. When the minimax pro-
cedure reached the search tree’s root — the current
board position — it yielded the best move under the
assumption that the opponent would be using the
same evaluation criterion, shifted to its point of view:

… we are attempting to make the score, calculated for
the current board position, look like that calculated
for the terminal board positions of the chain of moves
which most probably occur during actual play.
(Samuel 1959, 543)

By adding a predictor to trial-and-error learning,
Samuel was addressing what Minsky called the “cred-
it assignment problem” (Minsky 1961), which
includes the problem of assigning credit (or blame) to
actions within a sequence of actions when the
reward (or penalty) for the whole sequence is not
available until later in the sequence, or at its end as
is the case in a game like checkers.

This backing-up process is a key feature of TD algo-
rithms developed by Richard Sutton, the first PhD
student I supervised (now a professor of computing
science at the University of Alberta and a distin-
guished research scientist at DeepMind). TD algo-
rithms are for learning to predict future values of
some quantity, usually (though not necessarily) the
amount of future reward (Sutton 1984, 1988). The
simplest TD algorithms are unusual forms of super-
vised learning algorithms. Instead of the target out-
puts being labels of training examples, as in usual
supervised learning, the targets are later observations
of the quantity being predicted. But this aspect of the
target is no different from what we see with conven-
tional adaptive prediction algorithms. What makes
TD algorithms unique is that in addition to later
observations of the signal being predicted, their tar-
gets also include the predictor’s own later predic-
tions. This approach is like Samuel’s method
described in the quotation earlier that makes the
score of a board position “look like” the score of a lat-
er position as given by the same scoring polynomial
that is being updated.

TD algorithms are error correcting, where errors,
called TD errors, are differences between predictions
made at different times (hence the moniker “tempo-
ral difference”). The connection to Samuel’s work
was not fully appreciated at first, but it turned out
that TD algorithms refined and improved upon
Samuel’s method for learning a scoring polynomial.

Articles

SPRING 2019 7

I was surprised that Sutton had actually improved
upon a central ingredient of Samuel’s venerable
checkers player. Before Sutton had finished his dis-
sertation, he and I, along with Charles Anderson, my
second graduate student (now Professor of Comput-
er Science at Colorado State University), followed the
earlier RL pole-balancing BOXES system of Michie
and Chambers (1968) in experimenting with what is
now called the actor-critic architecture (Barto, Sutton,
and Anderson 1983). This architecture combined a
trial-and-error learning component (the actor) with
an adaptive critic implementing a TD algorithm to
predict a delayed reward signal (which for this appli-
cation was a penalty for the pole falling). The adap-
tive critic learned in much the same way that the
scoring polynomial was learned in Samuel’s checkers
player, and changes in the critic’s predictions pro-
vided immediate evaluations of the actions per-
formed by the actor.

This connection between TD learning and
Samuel’s method for learning a scoring polynomial
was a gratifying sign that we were not straying too far
from hallowed ideas in AI. But the most interesting
connection, and to me the most surprising at the
time, is that both Samuel’s method and TD algo-
rithms are closely related to dynamic programming
(DP), the term introduced in 1953 by Richard Bell-
man (Bellman 1953), an applied mathematician
working in control theory and operations research.
The idea of updating a prediction by moving it clos-
er to a later prediction — the backing-up process —
which is at the core of both TD and Samuel’s method,
is an instance of an operation that is basic to DP algo-
rithms.

DP can be applied to different types of problems,
but most relevant here is its application to sequential
decision problems. These problems require finding
optimal decisions for each stage in a sequence of
stages when the best decision at each stage can
depend on all the decisions that will be made at lat-
er stages of the sequence. The most common DP
algorithm for problems like this is an iterative com-
putation that proceeds backward from the end of the
sequence, updating decisions based on predictions
about decisions at later stages that have already been
computed earlier in the backward iteration. This
algorithm is often expressed in its recursive form.
When the stages correspond to successive moves in a
game like checkers, DP can find — at least in princi-
ple — winning moves.

Because this DP algorithm proceeds backward
through time (assuming sequences unfold over time,
with later stages occurring later in time than preced-
ing stages), it would seem to be irrelevant for learn-
ing because an agent’s experience unfolds forward in
time. However, the same effect of this backward iter-
ation can be achieved in the forward direction by
means of backing-up operations, as in Samuel’s
method and TD algorithms. The same effect of the

backward-in-time DP algorithm can be produced by
making multiple forward passes through sequences,
backing up predictions at each step. Because DP has
long been identified with this backward-in-time algo-
rithm, its relevance to learning has been underap-
preciated. In fact, within AI, DP had long been large-
ly dismissed as merely a recursive formulation of
simple breadth-first search (Nilsson 1971). (Though
outside of AI, Paul Werbos’s [1977] work recognized
connections between DP, prediction, and learning,
leading to his development of a thread of RL parallel
to what was developing in AI.) Missing from the view
of DP as breadth-first search is that DP is actually
memoized search. Results of each portion of the
search are saved — memoized — to be accessed
repeatedly as the search proceeds. This strategy is
essential for the forward-going version of DP and
underlies its relevance to learning.

The most surprising thing for me in all of this was
that Samuel and Bellman, though both having made
key contributions in the 1950s, apparently were
unaware of each other’s work. We have not found
any reference to the other’s work in any publication
by either Samuel or Bellman. Maybe the connections
were too obscure at the time in the absence of later
developments, but a more plausible explanation is
that there was just too little interaction between ear-
ly AI and control engineering and operations
research. Checkers was far removed from the kinds of
problems in which Bellman was interested, and DP
was not thought of as relevant to learning. Fortu-
nately, this situation has changed by now.

It is fair to say that modern RL research has been a
major contributor to bringing these fields closer
together. RL is now regarded as a collection of algo-
rithms for approximating solutions to stochastic
optimal control problems. Most current RL theory
has been developed using the mathematical frame-
work of Markov decision processes (MDPs), one of
the simplest stochastic optimal control formulations.
This link from RL, with its roots in AI and psycholo-
gy, to the highly developed field of stochastic opti-
mal control is one of the most important outcomes
of modern RL research.

The Power of Monte Carlo

Another surprise for me — and I think also for many
others working with RL at the time — was the success
of Gerald Tesauro’s backgammon-playing program
TD-Gammon (Tesauro 1992, 1994). TD-Gammon
required little backgammon knowledge, yet learned
to play extremely well, near the level of the world’s
strongest grandmasters. (Several versions of TD-Gam-
mon differed in various ways and achieved different
levels of success against human experts.) The learn-
ing algorithm in TD-Gammon was a combination of
a TD algorithm and nonlinear function approxima-
tion using a multilayer neural network trained by the

backpropagation algorithm (Rumelhart, Hinton, and
Williams 1986). Like Samuel’s checkers player, TD-
Gammon learned over many games of self-play.

TD-Gammon was actually the source of two sur-
prises. The first was simply its demonstration that an
RL system was able to learn a complex skill rivaling
that of human experts. (Samuel’s checkers player
learned to play better than Samuel could, but it did
not learn to play at the level of expert human check-
ers players.) The second surprise was more subtle.
Over the years, RL had received the reputation of
being very slow. This reputation was well deserved
since compared to supervised learning, an RL system
does learn slowly. Learning from a scalar reward sig-
nal is more difficult than supervised learning, where
gradient information is more directly accessible.

But Tesauro’s results invited a different compari-
son: that between RL and conventional DP algo-
rithms, which could — at least in principle — find an
optimal backgammon-playing strategy. Applying DP
to backgammon, however, immediately encounters
what Bellman called the “curse of dimensionality”:
the size of a problem’s state space grows exponen-
tially with the number of the space’s dimensions. In
the case of backgammon, given the dimensions
Tesauro chose to represent the game’s states, there are
approximately 1020 distinct states — a very large
number! Since conventional DP algorithms require
multiple exhaustive sweeps through the state space,
a rough calculation based on the speed of the fastest
computers of the day told us that it would take over
1,000 years to perform even a single sweep. Faster
computers would help, but not enough to make con-
ventional DP feasible for a problem with a state space
this large. Compared to conventional DP, then, RL
was not slow at all, merely taking upwards of a mil-
lion games of self-play!

Of course, TD-Gammon only approximated an
optimal playing strategy (and one focused on play-
ing against itself), however it vividly demonstrated
that RL can produce adequate approximations to
optimal decision rules for problems with very large
state spaces. One important component of TD-Gam-
mon was its multilayer neural net trained by back-
propagation to approximate its version of Samuel’s
scoring polynomial. The revelation for me, however,
was that TD-Gammon avoided exhaustive sweeps of
that very large state space by focusing its computa-
tional effort on the states visited in many simulated
games, that is, on the states in sample trajectories
through backgammon’s state space. This is an exam-
ple of a Monte Carlo method, a method that uses
repeated random sampling to obtain results in prob-
lems where other approaches are difficult or impossi-
ble to apply. The power of Monte Carlo simulation
has long been appreciated in other fields, such as
physics and economic forecasting, but TD-Gammon
first illustrated the utility of this approach for tack-
ling challenging problems with RL.

Articles

8 AI MAGAZINE

To understand one of the advantages of Monte
Carlo simulation compared to other methods, con-
sider the problem of computing the expectation of
the score that a given playing strategy will achieve
over any complete backgammon game against a giv-
en opponent strategy. This prediction problem is not
the entire optimization problem addressed by TD-
Gammon, but it is a component of the full problem
and simpler to analyze. To estimate this expectation
via Monte Carlo simulation, one simply simulates
many complete games between the given strategies
by drawing (pseudo) random numbers to simulate
the board state transitions that would be produced
by rolling the dice in actual play. The desired esti-
mate of the expected score is then simply the average
of the scores achieved over the simulated games.
(This is essentially an instance of the algorithm TD(1)
[Sutton and Barto 1998, 2018].)

Alternatively, it is possible to compute the exact
expectation by finding one component of the solu-
tion to a system of n simultaneous linear equations,
where n is the number of game states. The compo-
nent of interest corresponds to the initial game state,
which is the state from which all of the simulations
begin in the Monte Carlo method. To construct these
equations, it is necessary to know all the n × n state-
transition probabilities, which requires complete
knowledge of the opponent’s strategy, as well as the
rules of the game and the reward associated with
each state. One way to solve this system is an itera-
tive method that conducts multiple exhaustive
sweeps over the n states, updating expected scores for
games that would begin in, or include, each state.
Even though we are interested in the prediction for
only one state, the initial state of the game, the pre-
dictions for all the other states are updated on each
sweep because an exact solution requires considera-
tion of all possible games and their probabilities of
occurring. This iterative method is a simplified ver-
sion of a conventional DP algorithm that does not
involve the optimization steps. The memoizing
nature of DP makes it an efficient way to perform this
computation. Another method is the standard Gauss-
ian elimination method for inverting the n × n
matrix corresponding to this system of equations.

The left panel of figure 1 shows plots of the work
(number of multiplications) versus the number of
states, n, required by the iterative, Monte Carlo, and
Gauss methods for reducing the initial prediction
error by a factor of ξ = .01 (with a 95 percent confi-
dence level, and all sample games assumed to have
the same expected number of moves). First note that
the work for the Monte Carlo method is independent
of n. In contrast, the work for the iterative and Gauss-
ian methods increases rapidly (though polynomial-
ly) with increasing n. The advantage of the Monte
Carlo method over the iterative and Gauss methods
grows rapidly beyond a rather small number of states.
This advantage depends on the desired error reduc-

tion factor, ξ. Plotting ξ versus work, as shown in the
right panel of figure 1 for the iterative and Monte
Carlo methods, shows that the Monte Carlo method
does not require a lot of work unless one demands
high accuracy (very small ξ), a property clearly not
enjoyed by the iterative (or the Gauss) method.

The prediction problem just analyzed is not the
optimization problem addressed by TD-Gammon,
and it is not the optimization problem that can be
solved by the full version of DP: it is the problem of
evaluating a given playing strategy, not the problem
of finding, or approximating, the best strategy. Nev-
ertheless, TD-Gammon’s algorithm shares key fea-
tures with the Monte Carlo prediction method and
enjoys the same kinds of advantages over optimiza-
tion by conventional sweep-based DP.

In a game like backgammon, as well as in many
other problems with large state spaces, many states
have a very low probability of being visited in any
trajectory that might actually occur. Such states are
essentially irrelevant, so it is not important to devote
computational effort to finding good actions to take
from them. Monte Carlo stochastic estimation auto-
matically allocates computational effort to states
according to their probabilities of occurring in actu-
al trajectories. Computation is rarely devoted to find-
ing good actions for states that would occur only
rarely. The favorable scaling properties of Monte Car-
lo methods suggest why RL, though perceived to be
slow, can actually be advantageous for problems with
large numbers of states.

Two Kinds of Models

Models of the world with which an RL agent inter-
acts, that is, models of the agent’s environment, can
play a variety of roles in acting and learning. Models
can support planning, which enables agents to eval-
uate possible courses of action without actually per-
forming them in their real environments. Conven-
tional DP algorithms need models to compute all the
expected values needed to find optimal decision poli-
cies. Simulation-based Monte Carlo methods need
environment models to run the many simulations
they require. For much of my experience with vari-
ous kinds of RL algorithms, I did not distinguish
between different kinds of models: models could be
used in different ways, but models were models, sim-
ply structures that could act as surrogates for an
agent’s actual environment.

My casual view lasted until the late 1990s when
my graduate student Robert Crites applied RL to the
problem of elevator dispatching. The elevator dis-
patching problem is the problem of deciding how
elevators should respond to passenger requests so
that, for example, the amount of time any passenger
is expected to wait until they get to their destination
is minimized. Crites studied the application of RL to
the four-elevator, ten-floor system shown in figure 2

Articles

SPRING 2019 9

(Crites 1996; Sutton and Barto 1998). Along the
right-hand side are pickup request buttons and an
indication of how long since each button was
pressed. Each car has a position, direction, and speed,
plus a set of buttons to indicate where passengers
want to get off. Each car has a small set of primitive
actions: if it is stopped at a floor, it must either move
up or move down; if it is in motion between floors, it
must either stop at the next floor or continue past the
next floor. Roughly quantizing the continuous vari-
ables, Crites estimated that this elevator system has
over 1022 states, making conventional sweep-based
DP completely infeasible, but making the problem a
good candidate for RL.

Inspired by TD-Gammon, Crites obtained a pro-
gram that simulated the elevator system. (A research
group studying more conventional methods was
kind enough to give Crites its simulation code.) Peri-
ods of elevator operation were analogous to the sim-
ulated self-play games from which TD-Gammon
learned. Each of several RL controllers were trained
on 60,000 hours of simulated elevator time, which
took four days on a workstation of the day. Crites’s
results showed that the dispatching policy learned by
RL surpassed in simulation the best of the heuristic
elevator control algorithms of which we were aware.
(We never got so far as to work with an elevator com-
pany toward actually deploying a dispatching policy
learned by RL in a real elevator installation because
immediately upon receiving the PhD, Crites landed a

job doing something completely different.)
My revelation came when I tried to write down the

state-transition and reward probabilities that were
the stock-in-trade of the MDP framework that had
become standard for RL research. In the first place,
the large number of states made it impossible to list
all of these probabilities, but I was hoping to make
the job simpler by considering aggregations of states
that shared transition probabilities and/or rewards.
But this was formidable too because the state transi-
tions and rewards embodied in the simulation were
the result of the interaction of many parts of the
model. While not exactly an agent-based simulation
in the modern sense (for example, Waldrop [2018]),
the simulation shared with agent-based simulations
the property that the state-transition probabilities
emerged from many interacting components: pas-
sengers arriving, passengers making pickup and
dropoff requests at various floors, elevators stopped
or moving up or down at various locations, and the
timing of all these events. The simulation generated
behavior of the elevator system according to state-
transition probabilities, but these probabilities were
not explicit, and, in fact, were not needed at all for
applying RL.

Now it is common in RL to distinguish between
what are sometimes called distribution models and
sample models. Distribution models consist of the
probability distributions, either in tabular form or
specified by sets of equations, that are needed by con-

Articles

10 AI MAGAZINE

Figure 1. Comparison of Three Prediction Methods.

Left: Work versus number of states, n, for reducing the initial error by a factor of ξ = .01 Right: Error reduction versus work for n = 100. From
Barto and Duff (1994).

Iterative
Monte Carlo

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

ξ

10000 20000 30000 40000 50000

Iterative
Monte Carlo

Gauss

50000

0 10 20 30 40 50 60 70 80 90 100

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

W
o
rk

n Work

ventional DP algorithms. Sample models, on the oth-
er hand, produce state transitions and rewards that
are sampled from these distributions. Clearly, if one
has a distribution model, one can sample as needed
from the distributions. But as the elevator task made
clear, it is possible to generate samples by a simula-
tion program that does not contain explicit repre-
sentations of the underlying probability distribu-
tions. While theoretically possible to make these
distributions explicit, it is not necessary. For this rea-
son, a sample model is often much easier to create
than the corresponding distribution model.

I realized, then, that another advantage of RL over
optimization methods that depend on distribution
models, such as conventional DP, is that RL can
approximate optimal solutions through Monte Car-
lo optimization using only sample models. This
advantage would not have been news to those in oth-
er disciplines who already understood the advantages
of simulation-based optimization, but for me it was
an important realization.

Dopamine

One of the most exciting connections between RL
and another discipline is the result of what neurosci-
entists are learning about the brain’s reward system.
There is mounting evidence from neuroscience that
the nervous systems of humans and many other ani-
mals implement algorithms that correspond in strik-
ing ways to RL algorithms. The most remarkable
point of contact involves dopamine, a chemical fun-
damentally involved in reward processing in the
brains of mammals.

Experiments conducted in the late 1980s and the
1990s in the laboratory of neuroscientist Wolfram
Schultz (reviewed in Schultz [1998]) showed that
neurons that produce dopamine as a neurotransmit-
ter respond to rewarding events with substantial
bursts of activity only if the animal does not expect
those events. This finding suggests that dopamine-
producing neurons are signaling reward prediction
errors instead of reward itself. Further, these experi-

Articles

SPRING 2019 11

Figure 2. Four Elevators in a Ten-Story Building.

From Sutton and Barto (1998).

U
D

D

U
D

U
D

U
D

U
D

U
D

U

U

D

U
D

Hall
Buttons

Pickup
Request
(Down)

Age of
Request

Dropoff
Request

Elevator
Going Up

ments showed that as an animal learns to predict a
rewarding event on the basis of preceding sensory
cues, the bursting activity of dopamine-producing
neurons shifts to earlier predictive cues while
decreasing to later predictive cues.

Researchers familiar with RL quickly recognized
that these results are strikingly similar to how the TD
error behaves as an RL agent learns to predict reward
(for example, Barto [1995]; Schultz, Daylan, and
Montague [1997]). It is not an exaggeration to say
that the results of the experiments of Schultz and col-
leagues, together with their correspondence to RL
algorithms, have revolutionized the neuroscience of
reward processing in the brain. It is now almost uni-
versally accepted that bursts of dopamine neuron
activity convey reward prediction errors to brain
structures where learning and decision-making take
place, and evidence supports the idea that the pre-
diction errors might be TD errors.

RL theory provides a model for understanding the
functional significance of reward prediction errors. In
addition to driving the learning of reward predic-
tions, reward prediction errors are ideal signals
implementing trial-and-error learning. Actions fol-
lowed by greater-than-expected reward (a positive
reward prediction error) are selected for; actions fol-

lowed by less-than-expected reward (a negative
reward prediction error) are selected against. This
observation suggests that the brain might implement
something like an actor-critic algorithm in which TD
errors are both error signals to train the critic’s pre-
dictions and signals for encouraging or discouraging
the actor’s choice of actions.

Figure 3 illustrates a hypothesis about how the
brain might implement an actor-critic algorithm.
Panel (a) shows the actor-critic algorithm as an arti-
ficial neural network. The actor adjusts a policy based
on the TD error δ it receives from the critic; the crit-
ic adjusts reward predictions using the same δ. The
critic produces a TD error from the reward signal, r,
and its current reward predictions. Panel (b) shows a
hypothetical neural implementation of an actor-crit-
ic algorithm. The actor and the critic are respectively
placed in particular parts of the brain. The TD error
is transmitted by dopamine-producing neurons to
modulate changes in synaptic weights of input from
cortical areas.

While these developments do not directly support
Klopf’s hypothesis that individual neurons imple-
ment a kind of law of effect, a recent study by Atha-
lye et al. (2018), entitled “Evidence for a Neural Law
of Effect,” adds to the plausibility of Klopf’s idea.

Articles

12 AI MAGAZINE

Figure 3: Actor-Critic as an Artificial Neural Network and a Hypothetical Neural Implementation.

Adapted from Takahashi, Schoenbaum, and Niv (2008).

A B
Environment

Critic

Actor

Rewards (r)

A
ct

io
n

s
(a

)

St
at

es
/S

ti
m

u
li

(s
)

V

s1

s2

sn

P
er

ce
p

ti
o
n

 (
p

o
st

er
io

r
co

rt
ex

)

Environment

Critic

Actor

PPTN, habenula…

dopamine

ve
n

tr
al

st
ri

at
u
m

fr
o

n
ta

l c
o

rt
ex

fr
o

n
ta

l c
o

rt
ex

d
o
rs

o
la

te
ra

l
st

ri
at

u
m

A
ct

io
n

 (
m

o
to

r
co

rt
ex

)

s1

a1

a2

a3

ak

s2

sn

VTA
SNcTD

These authors devised a way to monitor the activities
of groups of neurons in the brains of mice and direct-
ly trigger dopamine neuron activity when the moni-
tored neurons produced desired target activity pat-
terns. They found that the target activity patterns —
those reinforced by dopamine — occur with increas-
ing frequency over time, and that bursts of dopamine
neuron activity shape the activity patterns to more
closely resemble the target patterns. There are other
ways to explain these results besides locating the law
of effect within individual neurons, but Klopf’s
hypothesis is a leading possibility.

A remarkable aspect of these developments is that
the RL algorithms and theory that connect so well
with properties of the dopamine system were devel-
oped from a computational perspective in total
absence of any knowledge about how dopamine-pro-
ducing neurons behave and the role dopamine plays
in learning. TD learning and its connections to opti-
mal control and DP were developed years before the
key neuroscience experiments were conducted. This
unplanned correspondence suggests that the TD
error/dopamine parallel and other aspects of RL algo-
rithms capture something significant about brain
reward processing. The brain’s reward system is
undoubtedly much more complicated than these
algorithms, and the story is still unfolding as more is
being learned about the brain’s reward system, but
we can surely expect that continued interaction
between neuroscience and RL will lead to fruitful
advances on both sides.

Challenges

Many challenges have to be faced as RL moves out into
the real world. One is the challenge of extending the
capabilities of RL systems so that they can help address
pressing real-world problems, which will mean also
making RL methods more robust and easier to apply.
Another challenge is to develop ways to ensure that RL
applications make positive contributions to our lives
that outweigh any negative consequences.

Many researchers around the world are working to
extend the capabilities of basic RL systems. Some of
the most dramatic results have been achieved by
combining RL with other methods, such as deep neu-
ral networks and Monte Carlo tree search, as in Deep-
Mind’s impressive Go-playing programs. Combining
RL with other methods, such as Bayesian methods,
symbolic methods as seen in developments of rela-
tional RL, and evolutionary methods, also extends
the capabilities of basic RL systems in important
directions. Other extensions are perhaps more cor-
rectly viewed as enhancements of the RL framework
itself, as seen in the development of hierarchical RL,
RL for partially observable MDPs, and ways of han-
dling continuous state and action spaces. Wiering
and van Otterlo (2012) provide good introductions
to research in many of these directions.

Other efforts have been devoted to making RL
methods more robust and easier to apply to real prob-
lems. Many design decisions are involved in applying
RL, including selecting state and action representa-
tions and setting hyperparameters that control such
things as learning rate, exploration, and eligibility
trace characteristics. Some approaches eliminate
hyperparameters altogether, or adapt them during
learning. Of particular interest to me is the problem of
designing the reward function for an application.
This is the function that assigns a numerical reward
amount to states, actions, state-action pairs, and per-
haps other aspects of the RL system: it defines the goal
of the learning agent. The success of an RL applica-
tion strongly depends on how well the reward func-
tion frames the goal of the application’s designer and
how well it assesses progress in reaching that goal.
The reward function is another hyperparameter that
has to be set at the start.

A critical challenge in designing a reward function
is that any method, like RL, that is based on opti-
mization can produce unexpected results. This possi-
bility has long been recognized in literature and engi-
neering. In the ancient myth of King Midas, for
example, joy with his golden touch turned to fear
when his food and even his daughter turned into
gold. Norbert Wiener, the founder of cybernetics,
warned of this problem more than half a century ago
by relating the supernatural story of “The Monkey’s
Paw”: “... it grants what you ask for, not what you
should have asked for or what you intend” (Wiener
1964, 59). The problem is featured as “perverse
instantiation” in Bostrom’s (2014) broadside about
the dangers of AI. RL agents can discover unexpected
ways to make their environments deliver reward,
some of which might be undesirable or even danger-
ous.

This perverse literalness is not so much of a prob-
lem if RL takes place in simulated environments, as is
the case for the most notable applications of RL to
date. But if RL operates online while an agent is inter-
acting with a real physical environment, it is critical
to make sure that what is learned conforms to the
intentions of the application’s designer and that the
agent does no harm to itself or to its environment,
including any people in it, both during and after
learning. It is critical too when what is learned in
simulation is then, after learning, deployed in the
real world. Unless RL is restricted to always operate in
benign environments, like game playing where one
can tolerate the worst that can happen, ensuring the
safety of RL applications is a critical challenge that
needs careful attention.

We can take some solace from the fact that opti-
mization has been used for hundreds of years by
engineers, architects, and others whose designs have
positively impacted the world. Approaches have
been developed to mitigate and manage optimiza-
tion’s risks, and we owe much that is good in our

Articles

SPRING 2019 13

environment to optimization methods. Mitigating
and managing risk for an RL system while it is learn-
ing in the real world is not completely novel or
unique to RL. Control engineers have had to con-
front similar problems from the beginning of using
automatic control in situations where a controller’s
behavior can have unacceptable, possibly cata-
strophic, consequences. As RL moves out into the
real world, developers have an obligation to adapt
and extend best practices that have guided applica-
tions of more established technologies that have
improved the quality, efficiency, and cost-effective-
ness of processes upon which we have come to rely.

Conclusion

I delivered brief opening remarks at the First Multi-
disciplinary Conference on Reinforcement Learning
and Decision Making held at Princeton University in
2013. After recounting my early anxiety that I was
doing nothing but reinventing the wheel, I urged the
mostly young audience to not let this sort of anxiety
inhibit their research. But, I went on to say: if you do
reinvent the wheel, please call it a wheel, or perhaps
an improved wheel, instead of giving it a new name
unconnected from the fabric of history. Effort to do
this by me and others in studying RL — which con-
tains a lot of wheel-like parts — has resulted in the
multidisciplinary fabric that has sustained my inter-
est in the subject.

My intention in this article has been to convey a
sense of this multidisciplinary ground that RL covers
by describing some of the connections, surprises, and
challenges that have impressed me over the years
during which my students and I focused on RL.
Exploration of Klopf’s idea of hedonistic neurons led
to excursions through some of the early history of AI,
to psychology’s theories of learning, to appreciation
of DP and the power of Monte Carlo methods. Then
the striking parallels between TD algorithms and the
brain’s dopamine system revealed strong connec-
tions between RL algorithms and reward processing
in the brain. It is fair to say that the scientific merit
of Klopf’s hypothesis of the hedonistic neuron — the
exploration of which started me out upon this jour-
ney — has been amply demonstrated, and as neuro-
science reveals more about how reward processing
works in the brain, we might see more detailed sup-
port for the idea that individual neurons implement
the law of effect. Finally, witnessing the potency of
deep neural networks coupled with RL and Monte
Carlo tree search in DeepMind’s Go-playing pro-
grams opened a vista onto possibilities for RL to help
improve the quality, fairness, and sustainability of
life on our planet, provided its risks can be success-
fully managed.

Acknowledgments
The author thanks his many talented and creative

students who made the journey described in this arti-
cle possible, and the Air Force Office of Scientific
Research and the National Science Foundation for
their financial support.

References
Athalye, V. R.; Santos, E. J.; Carmena, J. M.; and Costa, R. M.
2018. Evidence for a Neural Law of Effect. Science 359(6379):
1024–29. doi.org/10.1126/science.aao6058.
Barto, A. G. 1995. Adaptive Critics and the Basal Ganglia. In
Models of Information Processing in the Basal Ganglia, edited
by J. C. Houk, J. L. Davis, and D. G. Beiser, 215–32. Cam-
bridge, MA: The MIT Press.
Barto, A. G., and Duff, M. 1994. Monte Carlo Matrix Inver-
sion and Reinforcement Learning. In Advances in Neural
Information Processing Systems: Proceedings of the 1993 Con-
ference, edited by J. D. Cohen, G. Tesauro, and J. Alspector,
687–94. San Francisco, CA: Morgan Kaufmann.
Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983. Neu-
ronlike Elements That Can Solve Difficult Learning Control
Problems. IEEE Transactions on Systems, Man, and Cybernet-
ics 13(5): 835–46. Reprinted in Neurocomputing: Foundations
of Research, 1988, edited by J. A. Anderson and E. Rosenfeld,
535–49. Cambridge, MA: The MIT Press.
Bellman, R. 1953. An Introduction to the Theory of Dynamic
Programming. RAND monograph R-245. Santa Monica, CA:
The Rand Corporation.
Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies.
Oxford, UK: Oxford University Press.
Clark, W. A., and Farley, B. G. 1955. Generalization of Pat-
tern Recognition in a Self-Organizing System. In Proceedings
of the 1955 Western Joint Computer Conference, 86–91.
doi.org/10.1145/1455292.1455309.
Crites, R. H. 1996. Large-Scale Dynamic Optimization Using
Teams of Reinforcement Learning Agents. PhD dissertation,
Department of Computer and Information Science, Univer-
sity of Massachusetts, Amherst, MA.
Farley, B. G., and Clark, W. A. 1954. Simulation of Self-Orga-
nizing Systems by Digital Computer. IRE Transactions on
Information Theory 4(4): 76–84. doi.org/10.1109/TIT.1954.
1057468.
Klopf, A. H. 1972. Brain Function and Adaptive Systems — A
Heterostatic Theory. Technical Report AFCRL-72-0164. Bed-
ford, MA: Air Force Cambridge Research Laboratories. (A
summary appears in Proceedings of the International Confer-
ence on Systems, Man, and Cybernetics. 1974. New York: Insti-
tute of Electrical and Eloectronics Engineers.)
Klopf, A. H. 1982. The Hedonistic Neuron: A Theory of Memo-
ry, Learning, and Intelligence. Washington, DC: Hemisphere.

Michie, D. 1967. Memo Functions: A Language Feature with
“Rote-Learning” Properties. Research Memorandum MIP-R-
29. Edinburgh, UK: University of Edinburgh, Department of
Machine Intelligence and Perception.
Michie, D. 1968. “Memo” Functions and Machine Learning.
Nature 218(5136): 19–22. doi.org/10.1038/218019a0.
Michie, D., and Chambers, R. A. 1968. BOXES: An Experi-
ment in Adaptive Control. In Machine Intelligence 2, edited
by E. Dale and D. Michie, 137–52. Edinburgh, UK: Oliver
and Boyd.
Minsky, M. L. 1954. Theory of Neural-Analog Reinforce-
ment Systems and Its Application to the Brain-Model Prob-

Articles

14 AI MAGAZINE

lem. PhD Dissertation, Princeton University, Princeton, NJ.
Minsky, M. L. 1961 Steps Toward Artificial Intelligence. Pro-
ceedings of the Institute of Radio Engineers 49(1): 8–30.
Reprinted in Computers and Thought, 1963, edited by E. A.
Feigenbaum and J. Feldman, 406–50. New York: McGraw-
Hill.
Narendra, K. S., and Thathachar, M. A. L. 1989. Learning
Automata: An Introduction. Englewood Cliffs, NJ: Prentice
Hall.
Nilsson, N. J. 1971. Problem-Solving Methods in Artificial Intel-
ligence. New York: McGraw-Hill.
Popplestone, R. J. 1967. Memo Functions and the Pop-2 Lan-
guage. Research Memorandum MIP-R-30. Edinburgh, UK:
University of Edinburgh, Department of Machine Intelli-
gence and Perception.
Rosenblatt, F. 1958 The Perceptron: A Probabilistic Model
for Information Storage and Organization in the Brain. Psy-
chological Review 65(6): 386–408. doi.org/10.1037/h004
2519.
Rosenblatt, F. 1962. Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms. Washington, DC: Spar-
tan Books.
Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. 1986. Learn-
ing Internal Representations by Error Propagation. In Paral-
lel Distributed Processing: Explorations in the Microstructure of
Cognition, edited by D. E. Rumelhart and J. L. McClelland,
Vol. I, Foundations. Cambridge, MA: The MIT Press.
Samuel, A. L. 1959. Some Studies in Machine Learning
Using the Game of Checkers. IBM Journal on Research and
Development 3(3): 211–29. Reprinted in Computers and
Thought, 1963, edited by E. A. Feigenbaum and J. Feldman,
71–105. New York: McGraw-Hill.
Samuel, A. L. 1959. Some Studies in Machine Learning
Using the Game of Checkers. IBM Journal on Research and
Development 3(3), 210–229.
Schultz, W.; Dayan, P.; and Montague, P. R. 1997. A Neural
Substrate of Prediction and Reward. Science 275(5306):
1593–98. doi.org/10.1126/science.275.5306.1593.
Schultz, W. 1998. Predictive Reward Signal of Dopamine
Neurons. Journal of Neurophysiology 80(1): 1–27.
doi.org/10.1152/jn.1998.80.1.1.
Shannon, C. E. 1951. Presentation of a Maze-Solving
Machine. In Cybernetics. Transactions of the Eighth Confer-
ence, edited by H. V. Forester, 173–180. New York: Josiah
Macy Jr. Foundation.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
Game of Go with Deep Neural Networks and Tree Search.
Nature 529(7587): 484–89. doi.org/10.1038/nature16961.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.;
et al. 2017. Mastering the Game of Go without Human
Knowledge. Nature 550(7676): 354–59. doi.org/10.1038/
nature24270.
Sutton, R. S. 1984. Temporal Credit Assignment in Rein-
forcement Learning. PhD dissertation, Department of Com-
puter and Information Science, University of Massachu-
setts, Amherst, MA.
Sutton, R. S. 1988. Learning to Predict by the Method of
Temporal Differences. Machine Learning 3(1): 9–44. doi.org/
0.1007/BF00115009.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: The MIT Press.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning:
An Introduction, 2nd ed. Cambridge, MA: The MIT Press.
Takahashi, Y.; Schoenbaum, G.; and Niv, Y. 2008. Silencing
the Critics: Understanding the Effects of Cocaine Sensitiza-
tion on Dorsolateral and Ventral Striatum in the Context of
an Actor/Critic Model. Frontiers in Neuroscience 2(1): 86–99.
doi.org/10.3389/neuro.01.014.2008.
Tesauro, G. J. 1992. Practical Issues in Temporal Difference
Learning. Machine Learning 8(3–4): 257–77. doi.org/10.
1007/BF00992697.
Tesauro, G. J. 1994. TD–Gammon, a Self-Teaching Backgam-
mon Program, Achieves Master-Level Play. Neural Computa-
tion 6(2): 215–19. doi.org/10.1162/neco.1994.6.2.215.
Thorndike, E. L. 1911. Animal Intelligence. Darien, CT: Hafn-
er Publishing.
Tsetlin, M. L. 1973. Automaton Theory and Modeling of Bio-
logical Systems. New York: Academic Press.
Turing, A. M. 1948. Intelligent Machinery. In The Essential
Turing, 2004, edited by B. J. Copeland, 410–32. Oxford: Ox -
ford University Press. Citations refer to the reprinted text.
Waldrop, M. M. 2018. Free Agents: Monumentally Complex
Models Are Gaming Out Disaster Scenarios with Millions of
Simulated People. Science 360(6385): 144–47. doi.org/10.
1126/science.360.6385.144.
Werbos, P. J. 1977. Advanced Forecasting Methods for Glob-
al Crisis Warning and Models of Intelligence. General Sys-
tems Yearbook 22(1): 25–38.
Widrow, B., and Hoff, M. E. 1960. Adaptive Switching Cir-
cuits. In 1960 WESCON Convention Record Part IV, 96–104.
New York: Institute of Radio Engineers. Reprinted in Neuro-
computing: Foundations of Research, 1988, edited by J. A.
Anderson and E. Rosenfeld, 126–34. Cambridge, MA: The
MIT Press.
Widrow, B.; Gupta, N. K.; and Maitra, S. 1973. Punish /
Reward: Learning with a Critic in Adaptive Threshold Sys-
tems. IEEE Transactions on Systems, Man, and Cybernetics
3(5): 455–65. doi.org/10.1109/TSMC.1973.4309272.
Wiener, N. 1964. God and Golem, Inc. Cambridge, MA: The
MIT Press.
Wiering, M., and Otterlo, M. V, eds. 2012. Reinforcement
Learning: State-of-the-Art. Adaptation, Learning, and Opti-
mization 12. Berlin: Springer-Verlag. doi.org/10.1007/978-
3-642-27645-3.

Andrew Barto is a professor emeritus in the College of
Information and Computer Sciences at the University of
Massachusetts Amherst. He received a BS in mathematics
with distinction in 1970 and a PhD in computer science in
1975, both from the University of Michigan. He is recipient
of the 2004 IEEE Neural Network Society Pioneer Award and
the IJCAI-17 Award for Research Excellence. He is coauthor
of the book Reinforcement Learning: An Introduction, MIT
Press 1998, the second edition of which was recently pub-
lished.

Articles

SPRING 2019 15

