
The idea of implementing reinforcement learning (RL) 
in a computer was one of the earliest ideas about the 
possibility of AI. In a 1948 report, Alan Turing described 

a design for a pleasure-pain system: 
When a configuration is reached for which the action is unde-
termined, a random choice for the missing data is made and 
the appropriate entry is made in the description, tentatively, 
and is applied. When a pain stimulus occurs all tentative 
entries are cancelled, and when a pleasure stimulus occurs they 
are all made permanent. (Turing [1948] 2004, 425) 

Turing did little to develop this idea, and it was not until the 
year of his death, 1954, that Wesley Clark and Belmont Far-
ley simulated RL in a neural net on a digital computer (Far-
ley and Clark 1954). In the same year, Marvin Minsky 
described an analog RL neural net in his Princeton PhD dis-
sertation (Minsky 1954). There were earlier ingenious RL 
devices, though electromechanical rather than computer 
implementations, including Claude Shannon’s maze-run-
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n The idea of implementing reinforce-
ment learning in a computer was one of 
the earliest ideas about the possibility of 
AI, but reinforcement learning remained 
on the margin of AI until relatively 
recently. Today we see reinforcement 
learning playing essential roles in some 
of the most impressive AI applications. 
This article presents observations from 
the author’s personal experience with 
reinforcement learning over the most 
recent 40 years of its history in AI, 
focusing on striking connections that 
emerged between largely separate disci-
plines and on some of the findings that 
surprised him along the way. These con-
nections and surprises place reinforce-
ment learning in a historical context, 
and they help explain the success it is 
finding in modern AI. The article con-
cludes by discussing some of the chal-
lenges that need to be faced as rein-
forcement learning moves out into real 
world. 
 



ning mouse, Theseus, that used a kind of RL to find 
its way through a maze (Shannon 1951). In the 70 
years since Turing’s report, mathematical formula-
tions of RL have appeared in fields such as psycholo-
gy, economics, and control engineering. RL algo-
rithms known as learning automata date back to the 
early 1960s and the work of the Russian mathemati-
cian and physicist M. L. Tsetlin (published posthu-
mously in Tsetlin [1973]; surveyed by Narendra and 
Thathachar [1989]). 

Despite featuring prominently in Minsky’s famous 
“Steps” paper (Minsky 1961), and despite the exten-
sive mathematical study of algorithms like learning 
automata, RL largely remained on the margin of AI 
until relatively recently. Today we see RL playing 
essential roles in some of the most impressive appli-
cations of machine learning (ML), including Deep-
Mind’s Go-playing programs (Silver, Huang, et al. 
2016; Silver, Schrittwieser, et al. 2017). 

Instead of recounting this history, my aim here is 
to focus on observations from my personal experi-
ence with RL over the most recent 40 years of this 
history. Though personal, these observations will be 
of general interest, I believe, because they are instruc-
tive about RL’s place in AI and its promise for future 
developments. RL has continued to fascinate me for 
this long — even in the face of skeptics and naysay-
ers — for two major reasons. First, the study of RL has 
exposed deep connections between largely separate 
disciplines, ranging from computer science and engi-
neering to psychology and neuroscience. More than 
any one discovery, or collection of discoveries, this 
rich fabric of interconnected facts and ideas has 
improved our understanding of both the human-
made and the natural worlds. The second reason I 
have stuck with RL for so long is that studying it has 
surprised me in several interesting and instructive 
ways. I have had to revise preconceptions in some 
instances; in others, unexpected new insights — at 
least new to me — emerged from the results of com-
putational explorations. Here, I attempt to convey a 
sense of the richness of this fabric by describing the 
most striking connections and surprises. Finally, I 
discuss some of the challenges that need to be faced 
in the future. 

First, a bit of background. In the late 1970s I had 
the opportunity to work as a postdoc on a project 
aimed at assessing the scientific merit of a hypothe-
sis proposed by physiologist A. Harry Klopf, a senior 
scientist with the Avionics Directorate of the Air 
Force Office of Scientific Research. Klopf hypothe-
sized that neurons, the major components of our 
brains, are individually hedonists that work to max-
imize a local analog of pleasure while minimizing a 
local analog of pain (Klopf 1972, 1982). Under the 
direction of Michael Arbib, William Kilmer, and Nico 
Spinelli, professors at the University of Massachu-
setts, Amherst, and founders of the Cybernetics Cen-
ter for Systems Neuroscience, a farsighted center 

focusing on the intersection of neuroscience and AI, 
and later joined by graduate student Richard Sutton, 
we explored the early history of learning in AI, 
including connections to theories of animal learning 
from psychology and theories about the neural 
machinery underlying learning. Were Klopf’s ideas 
novel, and were they worth pursuing? 

Klopf’s hypothesis is basically that the synaptic 
weights of neurons change with experience accord-
ing to a neuron-local version of what is known in 
psychology as the law of effect, proposed by the psy-
chologist Edward Thorndike, who stated it as follows: 

Of several responses made to the same situation, those 
which are accompanied or closely followed by satis-
faction to the animal will, other things being equal, 
be more firmly connected with the situation, so that, 
when it recurs, they will be more likely to recur; those 
which are accompanied or closely followed by dis-
comfort to the animal will, other things being equal, 
have their connections with that situation weakened, 
so that, when it recurs, they will be less likely to occur. 
The greater the satisfaction or discomfort, the greater 
the strengthening or weakening of the bond. 
(Thorndike 1911, 244) 

This law is controversial in animal learning theory 
and has been modified in various ways to better 
account for data (such as differences between the 
effects of reward and the effects of punishment), but 
it is widely regarded as a basic principle underlying a 
lot of behavior. It describes the commonsense learn-
ing mechanism widely known as learning by trial 
and error. This is the basic principle of RL. 

RL Is Neither Supervised  
nor Unsupervised Learning 

Our first surprise in exploring Klopf’s idea was dis-
covering that ML researchers did not capture key 
properties of trial-and-error learning, despite their 
clear intent to implement this form of learning in a 
computer. With the exception of the early work men-
tioned in the preceding section and that of a few oth-
ers, genuine trial-and-error learning largely disap-
peared from ML research until modern RL came on 
the scene. How can this be? Is not trial-and-error 
learning at the root of most of today’s ML, including 
the current deep learning algorithms, which learn by 
correcting errors? The answer is that trial-and-error 
learning is not the same as error-correction learning. 
The differences are subtle and important. This dis-
tinction is now understood by most ML researchers, 
but it is worth going into a bit of detail because it is 
still a source of confusion. 

An error, as we use the term in ML, is a measure of 
the mismatch between a learning system’s output 
and what that output should have been as given by 
the label in a labeled training example. If the actual 
and desired outputs are numbers, this measure is usu-
ally the numerical difference between them. If the 
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system’s outputs are class labels in a classification 
problem, the measure might be just a binary indica-
tion of whether the output was correct or not. (Errors 
can also be lists, technically vectors, of numbers or 
binary indicators when the actual and desired out-
puts have many components, as in a neural network 
with many output units.) In either case, the error 
computation uses knowledge of both the actual and 
desired outputs of the learning system. This is the 
basic supervised learning paradigm. 

On the other hand, an error in trial-and-error 
learning as expressed by the law of effect indicates a 
degree of satisfaction or discomfort. In RL, it is usu-
ally a number, which we call the reward signal, and 
we think of it as being generated by a critic. A reward 
signal might have a sign (though it does not always 
need one), with a plus or minus respectively indicat-
ing a degree of satisfaction or discomfort. Where an 
error is a measure of a mismatch between a desired 
and an actual output, a reward signal is an evaluation 
of the RL system’s output, or action. The difference is 
important. An evaluation might be the result of com-
paring the system’s action with a given desired 
action, in which case the reward signal is derived 
from the mismatch. However, in general, the reward 
signal need not be based on any knowledge of what 
the correct action should be. This is a key strength of 
RL. 

To draw an analogy with a movie critic’s evalua-
tion of a movie, how many tomatoes, fresh or rotten, 
the critic bestows upon a movie could well be based 
on the critic’s comparison of the movie with their 
idea of a better one, but this is not necessary. The crit-
ic might be responding to a general sense of satisfac-
tion or dissatisfaction, without having a concrete 
idea of what the movie should have been or how it 
could have been better. 

In fact, the critic does not even need to know the 
actions of the RL system in order to evaluate them. A 
reward signal can be determined from the conse-
quences of the system’s actions on some other sys-
tem whose details are completely unknown to the 
critic. This other system is interposed between the RL 
system and the critic, translating the RL system’s 
actions into patterns of behavior that the critic eval-
uates. Continuing the movie example, the critic 
might base their evaluation on the effect a movie had 
on another person, or on the consensus of a group of 
viewers, without the ever having seen the movie 
themselves. Admittedly not a desirable practice for a 
movie critic, but it is analogous to situations in 
which RL might be indispensable, an example being 
where the brain’s neural firing patterns influence a 
complex system of joints and muscles. Movements 
can be evaluated in the complete absence of knowl-
edge about the neural activity that produced them. 
This is likely one reason that RL is so important in 
the nervous system, a topic I take up below. 

Another key feature of RL is that, unlike supervised 

learning (at least in its basic form), RL is selectional. 
Being selectional means that RL is like evolution by 
natural selection in requiring the generation of a 
variety of alternatives and then selecting among 
them by trying them out and evaluating their conse-
quences. In supervised learning, by contrast, the 
labels of labeled training examples directly tell the 
learning system what the outputs should be: super-
vised learning (at least in its basic form) is instruc-
tional rather than selectional. It is worth pointing 
out here that RL’s process of generating alternatives 
to be tried out does not have to be uninformed or 
random. It can be very sophisticated, the only 
requirement being that it is blind in the sense that 
the outcome of a trial should not be completely 
known beforehand; otherwise, RL’s capacity for dis-
covery is lost. 

Then is not RL simply search, which of course has 
long been a centerpiece of AI? Generate and test is a 
hallowed principle of problem-solving, and simple 
hill-climbing is a prototype of a selectional process. 
Trial-and-error learning is indeed search (usually 
optimization search rather than search for a recog-
nizable goal), but it is also learning. Unlike basic 
search, trial-and-error learning is associative, mean-
ing that the good alternatives found by selection 
become associated with particular situations, or 
states, so that search becomes easier, perhaps even-
tually becoming unnecessary, with accumulating 
experience. Like learning described by the law of 
effect, RL is not just the process of finding actions 
that produce satisfaction, but also of connecting 
those actions to situations, or states. Thorndike used 
the phrase “learning by selecting and connecting.” 
The law of effect describes an elementary way of 
combining search and memory: search in the form of 
trying and selecting among many actions in each sit-
uation, and memory in the form of associations link-
ing situations with the actions found — so far — to 
work best in those situations. Search and memory are 
essential components of RL algorithms. 

This use of memory is also at the base of the close-
ly related process called memoization (Popplestone 
1967; Michie 1967). This process saves results of a 
calculation in memory so that results that have been 
calculated previously can be retrieved from memory 
instead of being calculated again. Michie was well 
aware of the connection between memoization and 
trial-and-error learning (Michie 1968). In fact, it is 
not misleading to think of trial-and-error learning as 
memoized search. Although the original memoiza-
tion idea was to store the results of computations 
purely by rote in a lookup table, Popplestone ended 
his 1967 report by suggesting that an interpolation 
scheme could be used to generalize beyond the indi-
vidual cases, thus anticipating the current use of 
function approximation methods, such as deep neu-
ral nets, in RL. 

Despite being a selectional process akin to evolu-



tion, RL differs from evolutionary algorithms that 
mimic evolution’s natural selection through updat-
ing a population of candidate solutions. Evolution-
ary algorithms do not focus on forming associative 
linkages between situations, or states, and actions. 
The population maintained by an evolutionary algo-
rithm is a kind of memory, and one can evolve situ-
ation-action linkages, but evolutionary algorithms 
typically do not form associative linkages in the way 
that an RL algorithm does. 

Sometimes RL is considered to be a version of 
unsupervised learning, which is about finding struc-
ture hidden in collections of unlabeled data. RL algo-
rithms do not use labeled data as supervised learning 
algorithms do, but they do receive training informa-
tion in the form of reward signals. Uncovering struc-
ture in an agent’s experience can certainly be useful 
in RL, but by itself does not address the problem of 
improving behavior as evaluated by a reward signal. 
RL is therefore a third ML paradigm, alongside super-
vised learning and unsupervised learning, and per-
haps alongside other paradigms as well. 

For the reasons just outlined, we concluded from 
our study of early ML that law-of-effect-type learn-
ing, or trial-and-error learning, was in fact mostly 
neglected by AI researchers, and we concluded that 
Klopf’s ideas were indeed worth pursuing. This early 
exploration also gave us an idea about why compu-
tational research with such a simple commonsense 
form of learning did not flourish in AI. One reason is 
that researchers apparently thought they were study-
ing trial-and-error learning when they were actually 
studying error-correcting supervised learning. We 
saw this in the work of Farley and Clarke, mentioned 
earlier. In their 1954 paper, Farley and Clark describe 
a neural network that learned via RL, with the neu-
ron-like units behaving very much like Klopf’s hedo-
nistic neurons. But near the end of their paper, Far-
ley and Clark highlighted their interest in pattern 
classification and generalization, which can be stud-
ied without RL: 

It is to be hoped that, using a more complex modifier 
[that is, learning rule], this type of behavior can also 
be organized and controlled, leading to systems which 
effect classification and generalizations. (1954, 81) 

Indeed, their second paper (Clark and Farley 1955) 
was entirely devoted to the pattern classification and 
generalization properties of their network. Later, but 
still early, artificial neural networks such as Rosen-
blatt’s Perceptron (Rosenblatt 1958, 1962) and net-
works of Widrow and Hoff’s ADALINEs (ADAptive 
LInear NEurons, and later ADAptive LINear Ele-
ments) (Widrow and Hoff 1960) all implemented 
error-correcting supervised learning to focus on pat-
tern classification and generalization. 

Confusing trial-and-error learning with error-cor-
rection learning is understandable because the word 
“error” of trial-and-error learning is not the right 
word: it should be evaluation or perhaps test, as I 

explained earlier, but history dictates otherwise. We 
can see this confusion in remarks by illustrious ML 
pioneers. For example, in describing their ADALINE 
supervised learning algorithm — now usually called 
the least mean square (LMS) algorithm, or sometimes 
the delta rule — Widrow and Hoff offered this anal-
ogy: 

The boss continually seeks a better worker by trial and 
error experimentation with the structure of the work-
er. Adaptation is a multidimensional performance feed-
back process. The “error” signal in the feedback con-
trol sense is the gradient of the mean square error with 
respect to the adjustment. ([1960] 1988) 

Widrow and Hoff were clearly describing error cor-
rection but calling it trial and error. Similar confusion 
can still be found today. More than a decade after this 
1960 remark, Widrow and colleagues did study gen-
uine trial-and-error learning, which they called 
“learning with a critic” as opposed to “learning with 
a teacher,” as supervised learning is sometimes called 
(Widrow, Gupta, and Maitra 1973). But this was an 
isolated foray into this more difficult type of learn-
ing. There were other early explorations of genuine 
trial-and-error learning in AI, but trial-and-error 
learning was largely viewed as a prototypical “weak 
method,” as most research turned toward symbolic 
AI and away from learning. 

Playing Checkers, TD Learning,  
and Dynamic Programming 

A notable exception to the general neglect of trial-
and-error learning was Arthur Samuel’s checkers 
player. This program (in its several versions) was — 
and still is — recognized as a significant achievement 
in AI and ML. Trials were moves in simulated games 
of self-play, the results of which were used to adjust 
the program’s rule for selecting moves. The goal was 
to improve the quality of play as measured by piece 
advantage, which is highly correlated with winning. 
Moves were selected by performing lookahead search 
from each current board position, with the board 
positions visited in each search evaluated by a “scor-
ing polynomial,” a function of features extracted 
from the board positions. Moves leading to the board 
positions with the largest scores were selected for 
play. 

With its use of a scoring polynomial and looka-
head search, Samuel’s program moved beyond the 
simple law of effect, but it still learned by trial and 
error, that is, by RL. These enhancements to the sim-
ple law of effect are at the heart of some of the most 
important connections to emerge from the study of 
RL. In particular, Samuel’s method for learning the 
scoring polynomial connects to modern RL’s tempo-
ral difference (TD) algorithms. (Though much sim-
pler, Samuel’s inclusion of lookahead search is a pre-
cursor to the use of Monte Carlo tree search in 
modern systems using RL such as AlphaGo and 
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AlphaGo Zero [Silver, Huang, et al. 2016; Silver, 
Schrittwieser, et al. 2017].) 

The idea of the scoring polynomial was to predict 
the reward (or penalty) expected to be received after 
each trial game. It was learned by working backward 
through the search tree from the scored terminal 
board positions, giving each position the score of the 
position that would result from the best move, 
assuming that the machine would always try to max-
imize the score, while its opponent would always try 
to minimize it. Samuel called this the “backed-up 
score” of the board position. When the minimax pro-
cedure reached the search tree’s root — the current 
board position — it yielded the best move under the 
assumption that the opponent would be using the 
same evaluation criterion, shifted to its point of view: 

… we are attempting to make the score, calculated for 
the current board position, look like that calculated 
for the terminal board positions of the chain of moves 
which most probably occur during actual play. 
(Samuel 1959, 543) 

By adding a predictor to trial-and-error learning, 
Samuel was addressing what Minsky called the “cred-
it assignment problem” (Minsky 1961), which 
includes the problem of assigning credit (or blame) to 
actions within a sequence of actions when the 
reward (or penalty) for the whole sequence is not 
available until later in the sequence, or at its end as 
is the case in a game like checkers. 

This backing-up process is a key feature of TD algo-
rithms developed by Richard Sutton, the first PhD 
student I supervised (now a professor of computing 
science at the University of Alberta and a distin-
guished research scientist at DeepMind). TD algo-
rithms are for learning to predict future values of 
some quantity, usually (though not necessarily) the 
amount of future reward (Sutton 1984, 1988). The 
simplest TD algorithms are unusual forms of super-
vised learning algorithms. Instead of the target out-
puts being labels of training examples, as in usual 
supervised learning, the targets are later observations 
of the quantity being predicted. But this aspect of the 
target is no different from what we see with conven-
tional adaptive prediction algorithms. What makes 
TD algorithms unique is that in addition to later 
observations of the signal being predicted, their tar-
gets also include the predictor’s own later predic-
tions. This approach is like Samuel’s method 
described in the quotation earlier that makes the 
score of a board position “look like” the score of a lat-
er position as given by the same scoring polynomial 
that is being updated. 

TD algorithms are error correcting, where errors, 
called TD errors, are differences between predictions 
made at different times (hence the moniker “tempo-
ral difference”). The connection to Samuel’s work 
was not fully appreciated at first, but it turned out 
that TD algorithms refined and improved upon 
Samuel’s method for learning a scoring polynomial. 
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I was surprised that Sutton had actually improved 
upon a central ingredient of Samuel’s venerable 
checkers player. Before Sutton had finished his dis-
sertation, he and I, along with Charles Anderson, my 
second graduate student (now Professor of Comput-
er Science at Colorado State University), followed the 
earlier RL pole-balancing BOXES system of Michie 
and Chambers (1968) in experimenting with what is 
now called the actor-critic architecture (Barto, Sutton, 
and Anderson 1983). This architecture combined a 
trial-and-error learning component (the actor) with 
an adaptive critic implementing a TD algorithm to 
predict a delayed reward signal (which for this appli-
cation was a penalty for the pole falling). The adap-
tive critic learned in much the same way that the 
scoring polynomial was learned in Samuel’s checkers 
player, and changes in the critic’s predictions pro-
vided immediate evaluations of the actions per-
formed by the actor. 

This connection between TD learning and 
Samuel’s method for learning a scoring polynomial 
was a gratifying sign that we were not straying too far 
from hallowed ideas in AI. But the most interesting 
connection, and to me the most surprising at the 
time, is that both Samuel’s method and TD algo-
rithms are closely related to dynamic programming 
(DP), the term introduced in 1953 by Richard Bell-
man (Bellman 1953), an applied mathematician 
working in control theory and operations research. 
The idea of updating a prediction by moving it clos-
er to a later prediction — the backing-up process — 
which is at the core of both TD and Samuel’s method, 
is an instance of an operation that is basic to DP algo-
rithms. 

DP can be applied to different types of problems, 
but most relevant here is its application to sequential 
decision problems. These problems require finding 
optimal decisions for each stage in a sequence of 
stages when the best decision at each stage can 
depend on all the decisions that will be made at lat-
er stages of the sequence. The most common DP 
algorithm for problems like this is an iterative com-
putation that proceeds backward from the end of the 
sequence, updating decisions based on predictions 
about decisions at later stages that have already been 
computed earlier in the backward iteration. This 
algorithm is often expressed in its recursive form. 
When the stages correspond to successive moves in a 
game like checkers, DP can find — at least in princi-
ple — winning moves. 

Because this DP algorithm proceeds backward 
through time (assuming sequences unfold over time, 
with later stages occurring later in time than preced-
ing stages), it would seem to be irrelevant for learn-
ing because an agent’s experience unfolds forward in 
time. However, the same effect of this backward iter-
ation can be achieved in the forward direction by 
means of backing-up operations, as in Samuel’s 
method and TD algorithms. The same effect of the 



backward-in-time DP algorithm can be produced by 
making multiple forward passes through sequences, 
backing up predictions at each step. Because DP has 
long been identified with this backward-in-time algo-
rithm, its relevance to learning has been underap-
preciated. In fact, within AI, DP had long been large-
ly dismissed as merely a recursive formulation of 
simple breadth-first search (Nilsson 1971). (Though 
outside of AI, Paul Werbos’s [1977] work recognized 
connections between DP, prediction, and learning, 
leading to his development of a thread of RL parallel 
to what was developing in AI.) Missing from the view 
of DP as breadth-first search is that DP is actually 
memoized search. Results of each portion of the 
search are saved — memoized — to be accessed 
repeatedly as the search proceeds. This strategy is 
essential for the forward-going version of DP and 
underlies its relevance to learning. 

The most surprising thing for me in all of this was 
that Samuel and Bellman, though both having made 
key contributions in the 1950s, apparently were 
unaware of each other’s work. We have not found 
any reference to the other’s work in any publication 
by either Samuel or Bellman. Maybe the connections 
were too obscure at the time in the absence of later 
developments, but a more plausible explanation is 
that there was just too little interaction between ear-
ly AI and control engineering and operations 
research. Checkers was far removed from the kinds of 
problems in which Bellman was interested, and DP 
was not thought of as relevant to learning. Fortu-
nately, this situation has changed by now. 

It is fair to say that modern RL research has been a 
major contributor to bringing these fields closer 
together. RL is now regarded as a collection of algo-
rithms for approximating solutions to stochastic 
optimal control problems. Most current RL theory 
has been developed using the mathematical frame-
work of Markov decision processes (MDPs), one of 
the simplest stochastic optimal control formulations. 
This link from RL, with its roots in AI and psycholo-
gy, to the highly developed field of stochastic opti-
mal control is one of the most important outcomes 
of modern RL research. 

The Power of Monte Carlo 

Another surprise for me — and I think also for many 
others working with RL at the time — was the success 
of Gerald Tesauro’s backgammon-playing program 
TD-Gammon (Tesauro 1992, 1994). TD-Gammon 
required little backgammon knowledge, yet learned 
to play extremely well, near the level of the world’s 
strongest grandmasters. (Several versions of TD-Gam-
mon differed in various ways and achieved different 
levels of success against human experts.) The learn-
ing algorithm in TD-Gammon was a combination of 
a TD algorithm and nonlinear function approxima-
tion using a multilayer neural network trained by the 

backpropagation algorithm (Rumelhart, Hinton, and 
Williams 1986). Like Samuel’s checkers player, TD-
Gammon learned over many games of self-play. 

TD-Gammon was actually the source of two sur-
prises. The first was simply its demonstration that an 
RL system was able to learn a complex skill rivaling 
that of human experts. (Samuel’s checkers player 
learned to play better than Samuel could, but it did 
not learn to play at the level of expert human check-
ers players.) The second surprise was more subtle. 
Over the years, RL had received the reputation of 
being very slow. This reputation was well deserved 
since compared to supervised learning, an RL system 
does learn slowly. Learning from a scalar reward sig-
nal is more difficult than supervised learning, where 
gradient information is more directly accessible. 

But Tesauro’s results invited a different compari-
son: that between RL and conventional DP algo-
rithms, which could — at least in principle — find an 
optimal backgammon-playing strategy. Applying DP 
to backgammon, however, immediately encounters 
what Bellman called the “curse of dimensionality”: 
the size of a problem’s state space grows exponen-
tially with the number of the space’s dimensions. In 
the case of backgammon, given the dimensions 
Tesauro chose to represent the game’s states, there are 
approximately 1020 distinct states — a very large 
number! Since conventional DP algorithms require 
multiple exhaustive sweeps through the state space, 
a rough calculation based on the speed of the fastest 
computers of the day told us that it would take over 
1,000 years to perform even a single sweep. Faster 
computers would help, but not enough to make con-
ventional DP feasible for a problem with a state space 
this large. Compared to conventional DP, then, RL 
was not slow at all, merely taking upwards of a mil-
lion games of self-play! 

Of course, TD-Gammon only approximated an 
optimal playing strategy (and one focused on play-
ing against itself), however it vividly demonstrated 
that RL can produce adequate approximations to 
optimal decision rules for problems with very large 
state spaces. One important component of TD-Gam-
mon was its multilayer neural net trained by back-
propagation to approximate its version of Samuel’s 
scoring polynomial. The revelation for me, however, 
was that TD-Gammon avoided exhaustive sweeps of 
that very large state space by focusing its computa-
tional effort on the states visited in many simulated 
games, that is, on the states in sample trajectories 
through backgammon’s state space. This is an exam-
ple of a Monte Carlo method, a method that uses 
repeated random sampling to obtain results in prob-
lems where other approaches are difficult or impossi-
ble to apply. The power of Monte Carlo simulation 
has long been appreciated in other fields, such as 
physics and economic forecasting, but TD-Gammon 
first illustrated the utility of this approach for tack-
ling challenging problems with RL. 
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To understand one of the advantages of Monte 
Carlo simulation compared to other methods, con-
sider the problem of computing the expectation of 
the score that a given playing strategy will achieve 
over any complete backgammon game against a giv-
en opponent strategy. This prediction problem is not 
the entire optimization problem addressed by TD-
Gammon, but it is a component of the full problem 
and simpler to analyze. To estimate this expectation 
via Monte Carlo simulation, one simply simulates 
many complete games between the given strategies 
by drawing (pseudo) random numbers to simulate 
the board state transitions that would be produced 
by rolling the dice in actual play. The desired esti-
mate of the expected score is then simply the average 
of the scores achieved over the simulated games. 
(This is essentially an instance of the algorithm TD(1) 
[Sutton and Barto 1998, 2018].) 

Alternatively, it is possible to compute the exact 
expectation by finding one component of the solu-
tion to a system of n simultaneous linear equations, 
where n is the number of game states. The compo-
nent of interest corresponds to the initial game state, 
which is the state from which all of the simulations 
begin in the Monte Carlo method. To construct these 
equations, it is necessary to know all the n × n state-
transition probabilities, which requires complete 
knowledge of the opponent’s strategy, as well as the 
rules of the game and the reward associated with 
each state. One way to solve this system is an itera-
tive method that conducts multiple exhaustive 
sweeps over the n states, updating expected scores for 
games that would begin in, or include, each state. 
Even though we are interested in the prediction for 
only one state, the initial state of the game, the pre-
dictions for all the other states are updated on each 
sweep because an exact solution requires considera-
tion of all possible games and their probabilities of 
occurring. This iterative method is a simplified ver-
sion of a conventional DP algorithm that does not 
involve the optimization steps. The memoizing 
nature of DP makes it an efficient way to perform this 
computation. Another method is the standard Gauss-
ian elimination method for inverting the n × n 
matrix corresponding to this system of equations. 

The left panel of figure 1 shows plots of the work 
(number of multiplications) versus the number of 
states, n, required by the iterative, Monte Carlo, and 
Gauss methods for reducing the initial prediction 
error by a factor of ξ = .01 (with a 95 percent confi-
dence level, and all sample games assumed to have 
the same expected number of moves). First note that 
the work for the Monte Carlo method is independent 
of n. In contrast, the work for the iterative and Gauss-
ian methods increases rapidly (though polynomial-
ly) with increasing n. The advantage of the Monte 
Carlo method over the iterative and Gauss methods 
grows rapidly beyond a rather small number of states. 
This advantage depends on the desired error reduc-

tion factor, ξ. Plotting ξ versus work, as shown in the 
right panel of figure 1 for the iterative and Monte 
Carlo methods, shows that the Monte Carlo method 
does not require a lot of work unless one demands 
high accuracy (very small ξ), a property clearly not 
enjoyed by the iterative (or the Gauss) method. 

The prediction problem just analyzed is not the 
optimization problem addressed by TD-Gammon, 
and it is not the optimization problem that can be 
solved by the full version of DP: it is the problem of 
evaluating a given playing strategy, not the problem 
of finding, or approximating, the best strategy. Nev-
ertheless, TD-Gammon’s algorithm shares key fea-
tures with the Monte Carlo prediction method and 
enjoys the same kinds of advantages over optimiza-
tion by conventional sweep-based DP. 

In a game like backgammon, as well as in many 
other problems with large state spaces, many states 
have a very low probability of being visited in any 
trajectory that might actually occur. Such states are 
essentially irrelevant, so it is not important to devote 
computational effort to finding good actions to take 
from them. Monte Carlo stochastic estimation auto-
matically allocates computational effort to states 
according to their probabilities of occurring in actu-
al trajectories. Computation is rarely devoted to find-
ing good actions for states that would occur only 
rarely. The favorable scaling properties of Monte Car-
lo methods suggest why RL, though perceived to be 
slow, can actually be advantageous for problems with 
large numbers of states. 

Two Kinds of Models 

Models of the world with which an RL agent inter-
acts, that is, models of the agent’s environment, can 
play a variety of roles in acting and learning. Models 
can support planning, which enables agents to eval-
uate possible courses of action without actually per-
forming them in their real environments. Conven-
tional DP algorithms need models to compute all the 
expected values needed to find optimal decision poli-
cies. Simulation-based Monte Carlo methods need 
environment models to run the many simulations 
they require. For much of my experience with vari-
ous kinds of RL algorithms, I did not distinguish 
between different kinds of models: models could be 
used in different ways, but models were models, sim-
ply structures that could act as surrogates for an 
agent’s actual environment. 

My casual view lasted until the late 1990s when 
my graduate student Robert Crites applied RL to the 
problem of elevator dispatching. The elevator dis-
patching problem is the problem of deciding how 
elevators should respond to passenger requests so 
that, for example, the amount of time any passenger 
is expected to wait until they get to their destination 
is minimized. Crites studied the application of RL to 
the four-elevator, ten-floor system shown in figure 2 
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(Crites 1996; Sutton and Barto 1998). Along the 
right-hand side are pickup request buttons and an 
indication of how long since each button was 
pressed. Each car has a position, direction, and speed, 
plus a set of buttons to indicate where passengers 
want to get off. Each car has a small set of primitive 
actions: if it is stopped at a floor, it must either move 
up or move down; if it is in motion between floors, it 
must either stop at the next floor or continue past the 
next floor. Roughly quantizing the continuous vari-
ables, Crites estimated that this elevator system has 
over 1022 states, making conventional sweep-based 
DP completely infeasible, but making the problem a 
good candidate for RL. 

Inspired by TD-Gammon, Crites obtained a pro-
gram that simulated the elevator system. (A research 
group studying more conventional methods was 
kind enough to give Crites its simulation code.) Peri-
ods of elevator operation were analogous to the sim-
ulated self-play games from which TD-Gammon 
learned. Each of several RL controllers were trained 
on 60,000 hours of simulated elevator time, which 
took four days on a workstation of the day. Crites’s 
results showed that the dispatching policy learned by 
RL surpassed in simulation the best of the heuristic 
elevator control algorithms of which we were aware. 
(We never got so far as to work with an elevator com-
pany toward actually deploying a dispatching policy 
learned by RL in a real elevator installation because 
immediately upon receiving the PhD, Crites landed a 

job doing something completely different.) 
My revelation came when I tried to write down the 

state-transition and reward probabilities that were 
the stock-in-trade of the MDP framework that had 
become standard for RL research. In the first place, 
the large number of states made it impossible to list 
all of these probabilities, but I was hoping to make 
the job simpler by considering aggregations of states 
that shared transition probabilities and/or rewards. 
But this was formidable too because the state transi-
tions and rewards embodied in the simulation were 
the result of the interaction of many parts of the 
model. While not exactly an agent-based simulation 
in the modern sense (for example, Waldrop [2018]), 
the simulation shared with agent-based simulations 
the property that the state-transition probabilities 
emerged from many interacting components: pas-
sengers arriving, passengers making pickup and 
dropoff requests at various floors, elevators stopped 
or moving up or down at various locations, and the 
timing of all these events. The simulation generated 
behavior of the elevator system according to state-
transition probabilities, but these probabilities were 
not explicit, and, in fact, were not needed at all for 
applying RL. 

Now it is common in RL to distinguish between 
what are sometimes called distribution models and 
sample models. Distribution models consist of the 
probability distributions, either in tabular form or 
specified by sets of equations, that are needed by con-

Articles

10    AI MAGAZINE

Figure 1. Comparison of Three Prediction Methods. 

Left: Work versus number of states, n, for reducing the initial error by a factor of ξ = .01 Right: Error reduction versus work for n = 100. From 
Barto and Duff (1994).
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ventional DP algorithms. Sample models, on the oth-
er hand, produce state transitions and rewards that 
are sampled from these distributions. Clearly, if one 
has a distribution model, one can sample as needed 
from the distributions. But as the elevator task made 
clear, it is possible to generate samples by a simula-
tion program that does not contain explicit repre-
sentations of the underlying probability distribu-
tions. While theoretically possible to make these 
distributions explicit, it is not necessary. For this rea-
son, a sample model is often much easier to create 
than the corresponding distribution model. 

I realized, then, that another advantage of RL over 
optimization methods that depend on distribution 
models, such as conventional DP, is that RL can 
approximate optimal solutions through Monte Car-
lo optimization using only sample models. This 
advantage would not have been news to those in oth-
er disciplines who already understood the advantages 
of simulation-based optimization, but for me it was 
an important realization. 

Dopamine 

One of the most exciting connections between RL 
and another discipline is the result of what neurosci-
entists are learning about the brain’s reward system. 
There is mounting evidence from neuroscience that 
the nervous systems of humans and many other ani-
mals implement algorithms that correspond in strik-
ing ways to RL algorithms. The most remarkable 
point of contact involves dopamine, a chemical fun-
damentally involved in reward processing in the 
brains of mammals. 

Experiments conducted in the late 1980s and the 
1990s in the laboratory of neuroscientist Wolfram 
Schultz (reviewed in Schultz [1998]) showed that 
neurons that produce dopamine as a neurotransmit-
ter respond to rewarding events with substantial 
bursts of activity only if the animal does not expect 
those events. This finding suggests that dopamine-
producing neurons are signaling reward prediction 
errors instead of reward itself. Further, these experi-
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Figure 2. Four Elevators in a Ten-Story Building. 

From Sutton and Barto (1998). 
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ments showed that as an animal learns to predict a 
rewarding event on the basis of preceding sensory 
cues, the bursting activity of dopamine-producing 
neurons shifts to earlier predictive cues while 
decreasing to later predictive cues. 

Researchers familiar with RL quickly recognized 
that these results are strikingly similar to how the TD 
error behaves as an RL agent learns to predict reward 
(for example, Barto [1995]; Schultz, Daylan, and 
Montague [1997]). It is not an exaggeration to say 
that the results of the experiments of Schultz and col-
leagues, together with their correspondence to RL 
algorithms, have revolutionized the neuroscience of 
reward processing in the brain. It is now almost uni-
versally accepted that bursts of dopamine neuron 
activity convey reward prediction errors to brain 
structures where learning and decision-making take 
place, and evidence supports the idea that the pre-
diction errors might be TD errors. 

RL theory provides a model for understanding the 
functional significance of reward prediction errors. In 
addition to driving the learning of reward predic-
tions, reward prediction errors are ideal signals 
implementing trial-and-error learning. Actions fol-
lowed by greater-than-expected reward (a positive 
reward prediction error) are selected for; actions fol-

lowed by less-than-expected reward (a negative 
reward prediction error) are selected against. This 
observation suggests that the brain might implement 
something like an actor-critic algorithm in which TD 
errors are both error signals to train the critic’s pre-
dictions and signals for encouraging or discouraging 
the actor’s choice of actions. 

Figure 3 illustrates a hypothesis about how the 
brain might implement an actor-critic algorithm. 
Panel (a) shows the actor-critic algorithm as an arti-
ficial neural network. The actor adjusts a policy based 
on the TD error δ it receives from the critic; the crit-
ic adjusts reward predictions using the same δ. The 
critic produces a TD error from the reward signal, r, 
and its current reward predictions. Panel (b) shows a 
hypothetical neural implementation of an actor-crit-
ic algorithm. The actor and the critic are respectively 
placed in particular parts of the brain. The TD error 
is transmitted by dopamine-producing neurons to 
modulate changes in synaptic weights of input from 
cortical areas. 

While these developments do not directly support 
Klopf’s hypothesis that individual neurons imple-
ment a kind of law of effect, a recent study by Atha-
lye et al. (2018), entitled “Evidence for a Neural Law 
of Effect,” adds to the plausibility of Klopf’s idea. 
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Figure 3: Actor-Critic as an Artificial Neural Network and a Hypothetical Neural Implementation. 

Adapted from Takahashi, Schoenbaum, and Niv (2008). 
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These authors devised a way to monitor the activities 
of groups of neurons in the brains of mice and direct-
ly trigger dopamine neuron activity when the moni-
tored neurons produced desired target activity pat-
terns. They found that the target activity patterns — 
those reinforced by dopamine — occur with increas-
ing frequency over time, and that bursts of dopamine 
neuron activity shape the activity patterns to more 
closely resemble the target patterns. There are other 
ways to explain these results besides locating the law 
of effect within individual neurons, but Klopf’s 
hypothesis is a leading possibility. 

A remarkable aspect of these developments is that 
the RL algorithms and theory that connect so well 
with properties of the dopamine system were devel-
oped from a computational perspective in total 
absence of any knowledge about how dopamine-pro-
ducing neurons behave and the role dopamine plays 
in learning. TD learning and its connections to opti-
mal control and DP were developed years before the 
key neuroscience experiments were conducted. This 
unplanned correspondence suggests that the TD 
error/dopamine parallel and other aspects of RL algo-
rithms capture something significant about brain 
reward processing. The brain’s reward system is 
undoubtedly much more complicated than these 
algorithms, and the story is still unfolding as more is 
being learned about the brain’s reward system, but 
we can surely expect that continued interaction 
between neuroscience and RL will lead to fruitful 
advances on both sides. 

Challenges 

Many challenges have to be faced as RL moves out into 
the real world. One is the challenge of extending the 
capabilities of RL systems so that they can help address 
pressing real-world problems, which will mean also 
making RL methods more robust and easier to apply. 
Another challenge is to develop ways to ensure that RL 
applications make positive contributions to our lives 
that outweigh any negative consequences. 

Many researchers around the world are working to 
extend the capabilities of basic RL systems. Some of 
the most dramatic results have been achieved by 
combining RL with other methods, such as deep neu-
ral networks and Monte Carlo tree search, as in Deep-
Mind’s impressive Go-playing programs. Combining 
RL with other methods, such as Bayesian methods, 
symbolic methods as seen in developments of rela-
tional RL, and evolutionary methods, also extends 
the capabilities of basic RL systems in important 
directions. Other extensions are perhaps more cor-
rectly viewed as enhancements of the RL framework 
itself, as seen in the development of hierarchical RL, 
RL for partially observable MDPs, and ways of han-
dling continuous state and action spaces. Wiering 
and van Otterlo (2012) provide good introductions 
to research in many of these directions. 

Other efforts have been devoted to making RL 
methods more robust and easier to apply to real prob-
lems. Many design decisions are involved in applying 
RL, including selecting state and action representa-
tions and setting hyperparameters that control such 
things as learning rate, exploration, and eligibility 
trace characteristics. Some approaches eliminate 
hyperparameters altogether, or adapt them during 
learning. Of particular interest to me is the problem of 
designing the reward function for an application. 
This is the function that assigns a numerical reward 
amount to states, actions, state-action pairs, and per-
haps other aspects of the RL system: it defines the goal 
of the learning agent. The success of an RL applica-
tion strongly depends on how well the reward func-
tion frames the goal of the application’s designer and 
how well it assesses progress in reaching that goal. 
The reward function is another hyperparameter that 
has to be set at the start. 

A critical challenge in designing a reward function 
is that any method, like RL, that is based on opti-
mization can produce unexpected results. This possi-
bility has long been recognized in literature and engi-
neering. In the ancient myth of King Midas, for 
example, joy with his golden touch turned to fear 
when his food and even his daughter turned into 
gold. Norbert Wiener, the founder of cybernetics, 
warned of this problem more than half a century ago 
by relating the supernatural story of “The Monkey’s 
Paw”: “... it grants what you ask for, not what you 
should have asked for or what you intend” (Wiener 
1964, 59). The problem is featured as “perverse 
instantiation” in Bostrom’s (2014) broadside about 
the dangers of AI. RL agents can discover unexpected 
ways to make their environments deliver reward, 
some of which might be undesirable or even danger-
ous. 

This perverse literalness is not so much of a prob-
lem if RL takes place in simulated environments, as is 
the case for the most notable applications of RL to 
date. But if RL operates online while an agent is inter-
acting with a real physical environment, it is critical 
to make sure that what is learned conforms to the 
intentions of the application’s designer and that the 
agent does no harm to itself or to its environment, 
including any people in it, both during and after 
learning. It is critical too when what is learned in 
simulation is then, after learning, deployed in the 
real world. Unless RL is restricted to always operate in 
benign environments, like game playing where one 
can tolerate the worst that can happen, ensuring the 
safety of RL applications is a critical challenge that 
needs careful attention. 

We can take some solace from the fact that opti-
mization has been used for hundreds of years by 
engineers, architects, and others whose designs have 
positively impacted the world. Approaches have 
been developed to mitigate and manage optimiza-
tion’s risks, and we owe much that is good in our 
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environment to optimization methods. Mitigating 
and managing risk for an RL system while it is learn-
ing in the real world is not completely novel or 
unique to RL. Control engineers have had to con-
front similar problems from the beginning of using 
automatic control in situations where a controller’s 
behavior can have unacceptable, possibly cata-
strophic, consequences. As RL moves out into the 
real world, developers have an obligation to adapt 
and extend best practices that have guided applica-
tions of more established technologies that have 
improved the quality, efficiency, and cost-effective-
ness of processes upon which we have come to rely. 

Conclusion 

I delivered brief opening remarks at the First Multi-
disciplinary Conference on Reinforcement Learning 
and Decision Making held at Princeton University in 
2013. After recounting my early anxiety that I was 
doing nothing but reinventing the wheel, I urged the 
mostly young audience to not let this sort of anxiety 
inhibit their research. But, I went on to say: if you do 
reinvent the wheel, please call it a wheel, or perhaps 
an improved wheel, instead of giving it a new name 
unconnected from the fabric of history. Effort to do 
this by me and others in studying RL — which con-
tains a lot of wheel-like parts — has resulted in the 
multidisciplinary fabric that has sustained my inter-
est in the subject. 

My intention in this article has been to convey a 
sense of this multidisciplinary ground that RL covers 
by describing some of the connections, surprises, and 
challenges that have impressed me over the years 
during which my students and I focused on RL. 
Exploration of Klopf’s idea of hedonistic neurons led 
to excursions through some of the early history of AI, 
to psychology’s theories of learning, to appreciation 
of DP and the power of Monte Carlo methods. Then 
the striking parallels between TD algorithms and the 
brain’s dopamine system revealed strong connec-
tions between RL algorithms and reward processing 
in the brain. It is fair to say that the scientific merit 
of Klopf’s hypothesis of the hedonistic neuron — the 
exploration of which started me out upon this jour-
ney — has been amply demonstrated, and as neuro-
science reveals more about how reward processing 
works in the brain, we might see more detailed sup-
port for the idea that individual neurons implement 
the law of effect. Finally, witnessing the potency of 
deep neural networks coupled with RL and Monte 
Carlo tree search in DeepMind’s Go-playing pro-
grams opened a vista onto possibilities for RL to help 
improve the quality, fairness, and sustainability of 
life on our planet, provided its risks can be success-
fully managed. 
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