
Security is a global concern. A fundamental challenge of
protecting critical infrastructure (for example, ports, air-
ports) as well as critical resources (for example, fisheries,

wildlife) arises from limited availability of security resources.
Protecting all targets at all times is typically not realistic, and
as a result, 100 percent security is not possible. Instead, secu-
rity resources must be deployed intelligently, an endeavor in
which artificial intelligence (AI) can play a major role. 
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n In recent years, AI-based applica-
tions have increasingly been used in
real-world domains. For example, game
theory–based decision aids have been
successfully deployed in various securi-
ty settings to protect ports, airports, and
wildlife. This article describes our
unique problem-to-project educational
approach that used games rooted in
real-world issues to teach AI concepts to
diverse audiences. Specifically, our edu-
cational program began by presenting
real-world security issues, and progres-
sively introduced complex AI concepts
using lectures, interactive exercises, and
ultimately hands-on games to promote
learning. We describe our experience in
applying this approach to several audi-
ences, including students of an urban
public high school, university under-
graduates, and security domain experts
who protect wildlife. We evaluated our
approach based on results from the
games and participant surveys. 



Security Games: Using AI to 
Address Real-World Problems
In recent years, the field of security games, a subfield
of AI, has drawn increasing attention from outside
the AI community (Tambe 2011). In particular, game
theory–based decision aids have been successfully
deployed to protect critical infrastructure such as air-
ports and ports (for example, Pita et al. [2008[), mak-
ing real-world impacts and resulting in fundamental
changes to security operations for various organiza-
tions. Security problems continue to evolve world-
wide, creating new research challenges and practical
applications for security games. Focusing on wildlife
protection specifically, poaching represents the sec-
ond largest threat to biodiversity after habitat
destruction. This led to the development of green
security games, a subfield of security games focused
on protecting forests (Johnson, Fang, and Tambe
2012), fisheries (Haskell et al. 2014) and wildlife
(Fang, Stone, and Tambe 2015; Kar et al. 2016).
Although park rangers conduct patrols to combat
poaching, security resources are often limited in vast
conservation areas. Manually generating patrol
schedules can require considerable effort from
wildlife security staff, and such manual plans can be
predictable, allowing poachers to exploit patrol
schedules. Our security game–based solutions com-
bine different AI subfields — including game theory,
optimization, and machine learning — to help
rangers automatically generate randomized patrol
strategies that account for models of poachers’
behaviors. 

As a subfield of computational game theory, secu-
rity games (Tambe 2011) model the strategic interac-
tion between two players: a defender and an adver-
sary. Security games take into account: (1) differences
in the importance of targets; (2) the responses of
attacker (for example, poacher) behavior to the secu-
rity posture; and (3) potential uncertainty over the
types, capabilities, knowledge, and priorities of
attackers. This problem can be cast as a game. As a
brief example, a security game in the wildlife domain
involves the following: the ranger allocates security
resources (that is, ranger patrol teams) to protect a set
of critical targets of varying importance (figure 1).
Higher value targets may be portions of a protected
area with higher biodiversity, larger numbers of ani-
mals, and/or protected species. The ranger deploys a
mixed strategy, which optimizes over all possible
configurations of allocating patrols across these tar-
gets, and is represented as a vector of probabilities of
covering any given target. The poacher conducts sur-
veillance on the ranger’s strategy before selecting a
target to attack, with the goal of maximizing payoff
for any given defender strategy. The players’ actions
lead to different payoff values, and the defender’s
performance is evaluated by her or his expected util-
ity. The defender’s goal is to find the optimal strate-
gy so as to maximize expected utility, knowing she or

he faces an adaptive adversary who will respond to
any deployed strategy. 

Prior Work: Teaching with 
Projects, Problems, and Scaffolds
The potential applications of this work to various
contexts have created the need to introduce the AI
concepts underlying security games to individuals
with limited AI backgrounds. These include not only
students, but also audiences outside of traditional
classroom settings. Given recent advances in green
security games in particular, helping decision makers
and those who may consider using AI-based decision
aids in the field to understand the underlying theo-
retical framework can aid in fostering adoption of
these emerging technologies. 

Teaching security games and related concepts such
as probability, optimization, and agent-based model-
ing to those with limited AI backgrounds can be chal-
lenging. In traditional classroom settings, AI con-
cepts have been made accessible to undergraduate
students who enter with limited AI backgrounds
(Stern and Sterling 1996, Parsons and Sklar 2004,
Wollowski 2014). One method that has been effec-
tive in teaching AI in classrooms is the use of games.
For instance, games have been used to teach robotics,
(Wong, Zink, and Koenig 2010), Pac-Man has been
used as a tool to teach various AI concepts (DeNero
and Klein 2010), and in a game called CyberCIEGE,
players build a virtual world while learning about AI
issues involved in cyber security (Cone et al. 2007).
However, no prior work describes effective methods
for teaching AI to audiences beyond the classroom.
Similarly, little evidence speaks to approaches for
framing such games to teach and foster interest in AI. 

We explored the possibility of using real-world
problems to frame AI instruction. This approach is
similar to project-based learning, an educational
framework that aims to increase motivation for learn-
ing by engaging students in investigation (Blumen-
field et al. 1991). Specifically, project-based learning
involves presenting a problem that guides activities,
and such activities culminate in a final product to
answer the initial question. A meta-analysis of proj-
ect-based learning studies conducted in real-world
classrooms found that such an approach results in
positive effect on application of general science
knowledge, and although no immediate main effect
on declarative knowledge (of underlying concepts,
facts) was found, this increased over time (Dochy et
al. 2003). Similar approaches have been applied to
engineering curricula at the college level at several
higher education institutions, and although no sys-
tematic evaluation results could be identified, quali-
tative feedback from students indicated that they
evaluated the approach positively (Mills and Treagust
2003). Particularly relevant to AI, Gini et al. (1997)
used a variety of robotics projects to teach robotics
and other AI concepts at the college level; however,
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no evaluation results were provided. In sum, project-
based learning has shown promise in piquing student
interest and improving application of knowledge in
general, but its effectiveness as a technique for teach-
ing AI specifically, particularly outside of the class-
room, has not yet been investigated. 

Project-based learning also lends itself well to oth-
er instructional strategies. For instance, scaffolding is
an instructional framework that can help learners
achieve learning goals in an assisted, often stepwise
manner (Wood, Bruner, and Ross 1976). Broadly, in
instructional scaffolding, teachers provide adjustable
support for learners to enhance learning and pro-
mote progressive mastery of material by introducing
new concepts and skills in a systematic manner (Pea
2004). Within a scaffolding framework, imaginary
problems have been used to highlight the larger
importance of learning goals, followed by project-
based learning, which can serve to structure specific
learning activities and tasks (Barron et al. 1998). Such
a “problem-to-project” scaffolding approach has pre-
viously been found to improve a variety of classroom
learning outcomes (Barron et al. 1998). However, we
could find no evidence speaking to its efficacy for
teaching AI specifically, or for teaching outside of tra-
ditional classroom settings. 

Real-World Problem-to-Project 
Teaching Approach
Building on our prior paper (Sintov et al. 2016), this
article describes our teaching approach, which used a
problem-to-project scaffolding framework. The pro-
gram began by presenting real-world wildlife securi-
ty problems that painted a broad picture for why
learning security game and other AI concepts is
important. As detailed in the following sections, we
then used project-based learning techniques along
with instructional support to introduce progressively
complex AI concepts underlying security games,
including probabilistic reasoning, optimization, and
agent-based modeling. We taught these concepts
with a combination of lectures, interactive exercises,
and hands-on games to help learners tie learning
activities to the larger real-world security goals. We
describe our experiences delivering this approach to
several audiences, including: (1) students of an urban
public high school; (2) undergraduate students at a
large private university; and (3) law enforcement offi-
cers and rangers who protect wildlife in Indonesia. It
is important to note that although the wildlife secu-
rity problems used in our program are based on real-
world data and input from security experts working

Figure 1.  Online Computer Game Interface.

(Kar et al. 2016)
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in the field on such problems, they represent an
abstracted version of the problems they aim to
address. 

We evaluate our teaching approach in several
ways: (1) we show how high school and university
participants played the games and the effectiveness
of their strategies playing as defender, represented as
defender utility, that is, the defender’s overall payoff
obtained when peers play as poachers; (2) we show
how security experts who typically generate defend-
er strategies in the real world played as poachers
against an AI algorithm-generated defender strategy;
and (3) we assess participants’ perceptions of our
approach using surveys. We make recommendations
for teaching similar topics to audiences with limited
AI backgrounds.

Our Ranger Versus Poacher Games
We used interactive games as a key teaching tool in
our program. Prior to playing these games, learners
participated in lectures, discussions, and other learn-
ing activities. The games therefore provided learners
an opportunity to apply their culmination of knowl-
edge, while also allowing them to build on this
knowledge through hands-on exercises that allowed
trial-and-error testing of their ideas. 

Adapting an online computer game used in anoth-
er study of green security games (Kar et al. 2016), we
created a board game. As background information,
we describe the computer game here. 

The computer game was set in a protected wildlife
park that was divided into a 5-by-5 grid, yielding 25
distinct cells, with hippopotami and rangers scat-
tered throughout (figure 1). In the computer game,
participants played the role of a poacher whose
objective was to hunt as many hippopotami as pos-
sible while avoiding detection by rangers. Partici-
pants were primed by reading a background story
detailing the hardships of a poacher’s life as well as
the rewards of successful poaching. They could nav-
igate throughout the park and select any cell to
“attack.” They were asked to consider three main cri-
teria in deciding where to attack: distance, animal
density, and coverage probability. Distance was the
distance from the starting position to the attack loca-
tion. This was incorporated to better approximate
the real-world scenario whereby time and distance
traveled to locate a snare represents a cost to poach-
ers. Animal density was represented by hippopota-
mus density, which varied across the park, but densi-
ty in a particular region (cell) did not change within
a given round. Coverage probability was represented
by a heat map overlaid on the park, indicating the
likelihood of ranger presence at a given cell. Cells
with higher coverage probabilities were more red,
whereas those with lower coverage probabilities were
more green. This represents the real-world surveil-
lance situation in which poachers have knowledge of

general patterns of ranger locations, but cannot
always predict exact ranger presence. 

In the computer game, a computer algorithm
determined ranger locations. A total of nine rangers
were protecting the park, with each ranger protecting
one cell. Therefore, only 9 of 25 distinct cells in the
park were actually protected, and the color-shaded
heat map showed players only the probability of
ranger presence at each cell. Additionally, the follow-
ing detailed information was available by clicking on
any cell: monetary reward for poaching successfully,
monetary penalty for getting caught, and chance of
success/failure (figure 1). Players were successful in
the game if they attacked a cell without a ranger and
failed if a ranger was protecting their chosen cell. 

For our teaching program, we adapted this com-
puter game into a board game (figure 2) to provide
learners the opportunity to play as both poachers and
rangers. Board games used the same background sto-
ry, 5-by-5 grid, defender resource allocation, and
reward distribution as the computer game. However,
instead of using the Queen Elizabeth National Park
map and images of hippopotami to show the relative
“value” of different areas, the board games used mov-
able figures to represent animal distributions. This
did not require any equipment such as computers,
making it easily scalable to other settings. Also, in
board games, learners could take turns playing the
roles of ranger and poacher, whereas the computer
game permitted play only as poachers. Additionally,
the board games facilitated peer interaction. One
group, acting as defender, was given a limited num-
ber of defense resources. They could place ranger fig-
ures anywhere on the board to generate the defender
strategy. The other group, acting as adversary, placed
the poacher figure anywhere on the board in decid-
ing where to “poach” against their peers’ defender
strategy, representing poaching decision making.
Finally, the board game did not provide immediate
feedback on probabilities and rewards associated with
success or failure (right-hand panel of figure 1), bet-
ter approximating the real-world situation in which
this level of detail is typically unavailable. Therefore,
the board games were leveraged as a more scalable
and flexible learning tool. Although we aimed to
abstract the real-world problem to the extent possible
in this game, not all details of the real-world scenario
could be included, and hence findings should be
viewed in light of this limitation.

High School Students
An AI unit focused on computational game theory
was delivered to a group of high school students as
the last unit of study in a year-long engineering elec-
tive course. An underlying tenet of the unit was that
AI concepts can be made accessible to anyone. We
reasoned that AI concepts could also provide a great
launching point into a discussion on computers in
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general; if students could understand quantitative
decision making in this context, they could use it as
a base of knowledge from which other computer sci-
ence concepts could be more readily understood.
Unit objectives included students gaining probabilis-
tic reasoning skills, enhancing student interest in AI,
and high levels of student satisfaction with the learn-
ing experience. The unit was developed during sum-
mer 2014, funded by the National Science Founda-
tion’s Research Experience for Teachers program
called ACCESS 4Teachers, and was based on an
undergraduate-level course at the University of
Southern California titled CS499: Artificial Intelli-
gence and Science Fiction (Tambe, Balsamo, and
Bowring 2008). 

Participants
The 30 students who participated in the elective
course were juniors and seniors at an urban public
charter high school located in Los Angeles. All stu-
dents were of Hispanic or African-American origin,
resided in South Los Angeles, and the majority qual-
ified for free or reduced price lunch. Based on a sub-
set of students who responded to our feedback sur-

vey, the mean age of the group was 18.1 years and
roughly 36 percent were female.

Unit Structure
The unit began with a basic exploration of the nature
of human intelligence and how machines (both fic-
tional and real) have been made to mimic human
nature. Consistent with a scaffolding framework, we
next placed an emphasis on thinking about problems
from a quantitative perspective, and considering how
humanlike qualities (emotions, risk-aversion, and
others) could be quantified to enable computers to
act in an intelligent fashion. To illustrate these ideas,
students read stories from Asimov’s I, Robot and Robot
Visions, watched clips of the character Data from Star
Trek, and debated the meaning of intelligence based
on these stories. Students tended to be very engaged
in these real-world examples, and were often per-
plexed when they saw how quantitatively-based deci-
sions differed from their emotional ones. Next, to
review the concept of probability, more pop-culture
examples were given, ranging from an exploration of
the California Lottery to the popular game show Deal
or No Deal?, and the unit progressed to introducing
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Figure 2. Board Game.

(Sintov et al. 2016).



the concept of expected value. The teacher delivered
lectures, and skills were reinforced by students com-
pleting worksheets and applied problems. For many
students, a full grasp of the material required a review
of fraction operations, which were reviewed on an ad
hoc basis in small groups. The unit culminated with
students integrating and applying their knowledge to
play the games.

Final Project
The final project for the unit used the board game
described previously (figure 2). To reinforce the idea
of quantitative decision making, students were
tasked with designing their own defender strategies
using short formulas to allocate a limited number of
ranger-hours to the 25 grid cells in the game. Stu-
dents worked independently or in groups to com-
plete the strategies (in this case, using Google spread-
sheets). These spreadsheets were then used to
generate 12 distinct games based on the student-
designed defense strategies. Taking on the role of
poacher, students played the games against defender
strategies generated by other groups. Finally, students
reviewed the results of their strategies, made adjust-
ments, and presented their work to explain where
initial strategies were particularly successful or unsuc-
cessful. 

Results of Games
Different groups employed different methods in
designing defender strategies. While some chose to
concentrate ranger patrols in areas dense with ani-
mals, often associated with a high probability of fail-
ure, others developed strategies in which the expect-
ed value for poachers was nearly zero. Figure 3 shows
the expected defender utilities obtained by each of

the 12 student groups based on the attacks conduct-
ed on the other teams’ defender strategies. The team
with the highest expected utility generated a strategy
that not only considered the animal densities, but
also the distance from the poacher’s starting location,
placing lower coverage in cells farther away from the
poacher’s starting location. The team with the lowest
expected utility placed maximum coverage (100 per-
cent) on the highest animal density cell and divided
remaining resources (ranger-hours) uniformly across
all remaining targets, ignoring important factors like
animal distribution and distance. 

Feedback
A total of 14 (8 males, 5 females, 1 declining to state)
out of 30 students responded to a survey that assessed
their experiences in the unit. To inform unit objec-
tives, questions assessed the unit’s impact on learn-
ers’ overall interest in AI, perceived educational val-
ue of the unit, and likelihood of recommending the
unit to others. Responses were provided on Likert
scales (for example, ranging from 1 = strongly dis-
agree to 7 = strongly agree). Open-ended questions
assessed general likes and dislikes. More than 70 per-
cent of respondents agreed (somewhat or more) that
the activity increased their interest in AI, and 93 per-
cent agreed (somewhat or more) that the activity was
a valuable learning experience. Additionally, more
than 90 percent responded that they would recom-
mend the unit to other high school students. Open-
ended responses indicated that respondents particu-
larly enjoyed the interactive game aspect of the
course. The least enjoyable aspects of the course were
those that students perceived as tedious or repetitive,
such as calculating probabilities.
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Figure 3. Defender Utilities for High School Student Groups.
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University Students
AI and security games were introduced to a class of
University of Southern California (USC) freshmen as
a two-week unit in their Freshman Academy course
in fall 2015, which is an introductory engineering
course aimed at introducing students to ongoing
research at USC across various engineering disci-
plines. Similar to the high school course described in
the previous section, the two-week AI unit portion of
the course was also designed based on a seminar at
USC titled CS499: Artificial Intelligence and Science
Fiction. Aligning with unit objectives for the high
schools students, objectives for the university stu-
dents included honing probabilistic reasoning skills,
enhancing student interest in AI, and high levels of
student satisfaction with the learning experience.

Participants
The 30 students who took part in the AI unit were all
USC freshmen majoring in engineering. Based on a
subset of students who responded to our feedback
survey, the mean age of the group was 18.2 years, and
roughly 77 percent were female.

Unit Structure
Instructors opened the unit by introducing security
as a global concern, and highlighted problems spe-
cific to wildlife security. Step by step, the unit intro-
duced more complex concepts, starting with basic
concepts in AI and game theory. As part of our scaf-
folding framework, to teach the notion of payoffs in
a game context, the classic prisoner’s dilemma prob-
lem in game theory was introduced. Discussion was
facilitated around this topic to provide foundational
understanding regarding payoffs in the games (that
is, animal densities and penalties). Faculty and CEOs

of technical startups then facilitated discussion
around the use of AI applications to solve real-world
security problems, painting a picture of the various
ways in which AI can influence day-to-day life. Sim-
ilar to the high school students, the unit culminated
with students integrating and applying their knowl-
edge to play the games. Basic game-theoretic con-
cepts such as maximin were explained to help stu-
dents to focus on subsets of information in decision
making: for instance, in the case of maximin, when
only information about the payoffs in the game is
available, instructors aimed to help students design
the most conservative strategy.

Final Project
Similar to the final project for high school students
described above, following the lecture and discus-
sion-based elements of the unit, students played the
board game. Here, students first played as rangers.
The class was divided into seven groups, each of
which designed its own defender strategy on a game
board. Some groups chose to allocate ranger cover-
age in proportion to the number of animals, where-
as others placed highest coverage at the highest ani-
mal density region and uniformly everywhere else;
some others developed strategies in which the
expected value for poachers was nearly zero across all
of the regions of the park. Each group’s strategy was
then shown to the other groups, who played the
game in the poacher role against their peers’ defend-
er strategies. 

Results of Games
The resulting defender utilities for each university
student group playing the board games is shown in
figure 4. The team with the lowest defender utility
(G3) placed very low coverage (< 0.40) in the highest
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Figure 4. Defender Utilities for University Student Groups.
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animal density cell and as expected, all the other
teams attacked that cell. Similar results were obtained
for group G7, which placed a coverage of 0.50 on the
highest animal density target. Other teams per-
formed reasonably well but none performed better
than maximin, which would have resulted in a
defender expected utility of –2.17. 

Comparing the university students’ results with
those of the high school students (figure 3), visual
inspection suggests that overall, the high school stu-
dents outperformed the university students. This
may be due to the limited time allotted to the uni-
versity students. The high school students had more
time, which allowed more discussion and scrutiniz-
ing over decisions. However, the small sample sizes
prohibited statistical comparison, so this observation
should be interpreted with caution. 

Feedback
A total of 24 (7 males and 17 females) out of 30 uni-
versity students responded to a survey that assessed
their experiences in the unit. Questions mirrored
those administered to the high school students to
address unit objectives. More than 69 percent of
respondents indicated that the activity increased
their interest in AI at least somewhat, and more than
80 percent agreed (somewhat or more) that the activ-
ity was a valuable learning experience. Additionally,
more than 65 percent responded that they would rec-
ommend the activity to peers. Qualitative data sug-
gested that respondents particularly enjoyed the
interactive aspects of the unit. The least enjoyable
aspects of the unit were cases in which students in a
team couldn’t agree on a particular strategy.

Security Experts 
A three-day workshop was developed in collabora-
tion with the World Wildlife Fund (WWF) to demon-
strate the value of AI-based solutions for security to
security experts who protect wildlife. The workshop
was held in Bandar Lampung, Sumatra, Indonesia, in
May 2015. A game theory–based decision aid called
PAWS (Yang et al. [2014]; Protection Assistant for
Wildlife Security) was developed, in part, based on a
study of green security games for the purpose of pro-
tecting wildlife from poaching. We sought to teach
how AI systems like PAWS fed with partial informa-
tion can generate patrol strategies that can perform
relative to strategies created by field experts with
extensive knowledge of the system. Hence, diverging
a bit from the classroom-based units described above,
our objectives for this third audience included pro-
moting participant adoption of AI-based software
(that is, PAWS), sharpening participants’ probabilistic
reasoning skills especially in the poacher role, and
participant satisfaction with the learning experience. 

Participants
A total of 28 participants (26 males and 2 females)
attended the workshop. They represented the five pri-
mary groups (either government or NGO) involved
in protecting wildlife in Bukit Barisan Selatan and
Tesso Nilo national parks on Sumatra: the Indonesian
National Park Service, WWF, Wildlife Conservation
Society, Indonesian Rhino Foundation, and prosecu-
tion officers from the court. The majority of these
individuals were rangers with a great deal of domain
expertise in wildlife crime and protection who direct-
ly conduct field patrols over conservation areas; the
prosecutors report cases to lawyers and judges who
can open official investigations to prosecute wildlife
crime. The mean age of the sample was 35.0 years (SD
= 7.5), and mean years of formal schooling was 14.0
(SD = 3.1). Approximately 60 percent of respondents
identified their job sector as wildlife/national park
protection, 20 percent as nonprofit/NGO, and 20 per-
cent as law enforcement, and overall they had an
average of 9.6 years of experience working in wildlife
protection (SD = 6.1).

Participants were native speakers of Bahasa
Indonesia. The instructors delivered the workshop in
English and interpreters translated all the material
between instructors and participants throughout the
three-day course. All written materials were made
available in both English and Bahasa Indonesia.

Unit Structure
We began by introducing basic examples and theo-
retical foundations relevant to agent-based modeling,
game theory, and security games through lectures.
Building on and integrating this knowledge as part of
our scaffolding framework, we next presented appli-
cations that leverage multiple AI techniques. Learners
also discussed in groups various challenges faced in
wildlife protection and solutions for those chal-
lenges, including AI-based solutions. They played the
computer-based game as poachers. On the last day,
they had the opportunity to integrate and apply their
knowledge in playing the board game as poachers
and rangers. They also reflected on their results and
shared ideas for improving patrolling effectiveness.
These interactive exercises provided learners with a
new lens for understanding poachers’ behaviors and
limits of manual patrolling strategies, as well as intro-
ducing the methodology and advantages of game-
theoretic solutions.

Security Game Tutorials
On the first day of the workshop, we introduced secu-
rity game examples from several domains, beginning
with a basic security game. We explained how the
defender could optimally conduct patrols over targets
and how attackers may respond against that strategy.
We next covered (1) real-world applications of secu-
rity games for protecting critical infrastructure and
(2) challenges in wildlife protection and the applica-
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tion of security games to this domain specifically,
reviewing how adversaries’ behaviors are modeled
and how to optimize patrolling strategies through
allocating limited security resources. Finally, we pre-
sented our PAWS software—which was built based on
security game models for addressing wildlife protec-
tion problems—describing data inputs (for example,
animal density, poaching data) and what outputs are
generated (for example, models of poachers’ behav-
iors and suggested patrolling routes for rangers). We
described how similar approaches had been previ-
ously successfully used in the wildlife domain, and
how they could be used on Sumatra with PAWS. 

Discussion Sessions
Participants engaged in several discussion sessions on
challenges in wildlife protection including resources
(that is, factors that motivate people to enter pro-
tected areas), illegal activities (that is, types of illegal
activities in conservation areas), and wildlife protec-
tion (that is, improving security approaches). In
small groups, they exchanged knowledge about these
topics and generated potential solutions; each group
then presented their conclusions to the rest of the
groups. We encouraged groups to develop solutions
and provide feedback that could be conceptualized in
a game-theoretic manner and potentially incorporat-
ed into AI software. 

Games
Participants played the board game as poachers and
rangers. For this activity, participants were divided
into two groups. Each group took turns playing as
rangers (who created patrol strategies) and poachers
(who decided where to poach in games generated by
the other team), and each defender strategy was
played only once. 

Given the large amount of time for the workshop
relative to the classroom-based units, in addition to
board games, every participant played five rounds of
the computer-based games as poachers (figure 5).
After each round, the poacher behavior models were
updated based on participants’ responses, and each
subsequent game used a defender strategy created
using these updated models. On the final day, we pre-
sented the game results, that is, the defender utilities
based on poachers’ decisions in the online games. 

By playing these games in a repeated fashion, the
participants developed a better understanding of how
poachers may react to rangers’ strategies over time,
and of the weaknesses of various defender strategies.
They also learned how AI software such as PAWS can
make optimal decisions based on models of players’
behaviors, and how such decisions can adapt and
improve over time as more data are collected. 

Results of Games
Each defender strategy in the board games was
played only once, so the results based on single data

points may not be reliable. In light of this and the
fact that only the security experts played the com-
puter game (whereas high school and university stu-
dents did not), we highlight the results of the com-
puter games here. Figure 6 shows the defender
utilities obtained by deploying AI-based defender
strategies (that is, PAWS) over several rounds against
security experts playing as poachers. In the figure,
lower values on the y-axis indicate better participant
performance, and worse performance by PAWS. We
observe that PAWS’s performance begins low, initial-
ly increases, then declines. This suggests some
improvement and learning over time among the
security experts, providing modest support of our
unit objective of improving probabilistic reasoning
skills. 
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Figure 5. Participants Played Board Games (top) 
and Computer Games (bottom). 



Feedback
A survey administered at the end of the unit
addressed unit objectives. Approximately 79 percent
of learners were at least somewhat willing to adopt
PAWS (mean = 5.9 on a scale of 1 [strongly disagree]
– 7 [strongly agree], SD = 1.1). Additionally, open-
ended responses also largely supported the purpose
of the PAWS software. Roughly half of respondents
(n =  15) commented that PAWS could optimize
patrols and would make the job of patrolling easier.
When asked about software limitations, respondents
recommended increasing complexity of models,
including approximately one-third (n =  10) of
respondents suggesting that dynamic animal distri-
bution models be added. This latter point highlights
the challenges faced by AI researchers in accurately
representing all details of a given real-world scenario. 

Regarding satisfaction with the unit, 86 percent
rating the learning experience as at least somewhat
useful (mean = 5.7 on a scale of 1 [completely use-
less] – 7 [extremely useful], SD = 0.8), and more than
96 percent of respondents rated it as at least some-
what important (mean = 6.0 on a scale of 1 [extreme-
ly unimportant] – 7 [extremely important], SD = 1.0).
Additionally, more than 86 percent of respondents
reported that they were at least somewhat likely to
recommend it to peers (mean = 6.04 on a scale of 1
[strongly disagree] – 7 [strongly agree], SD = 1.04).

Conclusion
This article describes our unique approach that used
a real-world problem-to-project scaffolding frame-
work to teach game-theoretic concepts to several
audiences. Learners included students at an urban
public high school, university undergraduate stu-
dents, and law enforcement officers and park rangers
who protect wildlife in Indonesia. Our instructional
units began by presenting real-world problems in
wildlife and other security domains that painted the
broad picture for why learning security game con-
cepts is important. Throughout the learning units,
techniques from project-based learning along with
instructional support were used to progressively
introduce complex AI concepts and help learners tie
learning activities to the larger real-world security
goals. Games were a key learning tool in our
approach. Members of all three audiences played the
role of two different actors as part of our games: (1)
playing as rangers, they generated defender strate-
gies to protect against poachers’ attacks; (2) as
poachers, they attempted to outsmart the defender
strategies generated by their peers to earn the high-
est possible rewards. This approach not only gave
learners valuable hands-on experience with complex
AI concepts, but also in the development of real-
world applications for security. 

Participant feedback was consistently positive,
with the majority of participants from all three audi-
ences rating the learning experiences as useful, and
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Figure 6. PAWS Algorithm Defender Utilities Against Security Experts Playing as Poachers in Computer Game.
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indicated they would recommend the unit to others.
In addition, the majority of the high school and uni-
versity students reported that it increased their inter-
est in AI. These results are particularly notable given
the wide age range and cultural backgrounds of par-
ticipants, and suggests that our approach was broad-
ly accessible and engaging. 

The benefits of problem-to-project scaffolding in
our work included having a unifying theme, enabling
both learners and instructors to tie concepts and tasks
back to a central idea. A related benefit was that the
theme afforded the ability to enhance relevance, espe-
cially for audiences outside of the classroom, high-
lighting the value of our approach for teaching con-
cepts in AI to learners representing a broad swath of
age, gender, and cultural backgrounds. Additionally,
learners showed relatively high levels of engagement,
as evidenced by survey findings and qualitative feed-
back. Being able to meet students where they were at,
and serve different learning styles using a variety of
activities, was another benefit of the broader scaffold-
ing approach. Drawbacks of our scaffolding frame-
work included somewhat of a narrow focus: by begin-
ning with a particular security problem, a
circumscribed range of AI topics fit with the unit. This
also led to development of instructional materials
specific to the problem. 

These findings suggest that our approach may
potentially be applied successfully to additional audi-
ences. For instance, our approach can help address
educators’ needs, as a recent study found that many
are seeking more cutting-edge classroom materials
(Wollowski et al. 2015). A possible additional target
group is security organizations that could benefit
from security applications based on AI and game the-
ory. Enhancing decision makers’ and field officers’
understanding of the theory on which these applica-
tions are based could foster the adoption of emerg-
ing AI-based decision aids. 

Limitations and Future Directions 
Our findings should be viewed in light of several
limitations. First, it is important to note that
although the wildlife security problems used in our
program were based on real-world data and input
from security experts working in the field on such
problems, they represent an abstracted version of
the problems they aim to address. In addition, it is
unclear how our approach would generalize to
teaching AI topics beyond game theory and securi-
ty games. In the future, we plan to adapt our activi-
ties to focus on other AI topics. We also plan to
incorporate new activities; for instance, an activity
for learners to analyze defender strategies in depth,
bringing to light subtle human biases that may
affect initial strategies, thereby highlighting bene-
fits of AI agents (compared to humans) in decision
making.
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