








stages are quite limited (< 10). Strong n-consistency
has the remarkable property that a solution can be
found without search (if one exists). Hence, when the
user interactively selects one special cylinder, it is
computationally efficient to remove all mismatching
cylinders of the other stages from the selection lists
on the GUI. As a result, consequent application of
constraint methods helps to find the best solution
within a given design space and to avoid erroneous
manual trials.

Summary
Within Siemens, constraint technologies have been
successfully used for solving configuration problems
for more than 25 years. By the application of con-
straints we were able to significantly reduce not only
the development effort but also maintenance costs
compared to procedural or rule-based systems. In cas-
es where we could compare similar configuration sys-
tems, approximately 80 percent of the maintenance
costs and more than 60 percent of the development
costs for the knowledge representation and reason-
ing tasks were saved. There were three crucial success
factors.

First, the combination of object-oriented and con-
straint technologies. Object-oriented modeling pro-

vides an expressive language and a natural structur-
ing of the domain knowledge. Constraints support a
clean and declarative formulation of the different
requirements and restrictions.

Second was the application of various reasoning
services and methods, which were best suited for
each concrete problem. The most important meth-
ods we used were: (1) Constraint checking to give
feedback to the user about the current consistency
state of the configuration. (2) Constraint propaga-
tion to filter out invalid choices. (3) k-consistency
propagation to provide positive and negative impli-
cants (for small problems). (4) Backtrack algorithms
to implement a complete search (for small and medi-
um-size problems). (5) Iterative repair algorithms to
perform a search for large-scale problems. (6) Opti-
mization search to find the best or good-enough
solutions. (7) Reconfiguration technologies to recon-
cile legacy configurations.

Third was the capability to deal with large dynam-
ic configuration problems, where the number of
components in a solution is not known beforehand.
In this case the standard theory of constraint satis-
faction had to be combined with expressions that
define instantiations of classes, resulting in genera-
tive constraint satisfaction.

Although many real-world problems have been
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Figure 4. A Configurator for Railway Interlocking Systems.
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Figure 6. 3D View of Process Gas Compressors and Compressor Valves.



successfully solved with constraint technologies, we
are still far from providing out-of-the-box solutions
for complex, dynamic configuration problems. One
of the main open tasks is to design general and robust
methods for reasoning about the existence of objects
in an object-oriented environment (that is, express-
ing existential quantification over complex struc-
tures) and to provide these methods in off-the-shelf
configuration frameworks.
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