








are having fun, and it is particularly clear in the
groups that are the least orderly in their turn-taking.
Even occasional use of Edith’s “too many voices”
response had a sobering, albeit temporary, effect on
spirited game play. A pilot study that attempted to
use a hierarchy of proxemic, gestural, and verbal cues
to make turn-taking less chaotic (but still fun) looked
promising (Andrist, Leite, and Lehman 2013), but in
the subsequent, larger data collection, the modified
game showed no appreciable effect on overlap. 

Obviously there are design decisions we could
make — single child interaction, push-to-talk inter-
faces, and others — that would constrain away the
effects of side talk and overlapping speech complete-
ly. Instead, we choose to try to tame them. 

Case Study 2: Mole Madness
Mole Madness (MM) is a two-dimensional side-
scrolling platform game, a scene from which appears
in figure 3. One player controls the mole’s horizontal
movement with the keyword go, while the other
player controls vertical movement with the keyword
jump. Without speech, the character gradually slows,
falls to the ground and spins in place. The mole’s
environment contains objects that are typical for this
type of game: walls arranged as barriers to go over or
between, items that increase health (cabbages, car-
rots, tomatoes) or decrease health (cactuses, birds,
bees), and a special object (star) that boosts the char-
acter’s speed. Although players are not given any spe-
cific instruction other than to move the mole
through the world to the flag at the end of each lev-
el, the health bar in the upper left corner of the
screen updates as the various kinds of objects are
touched. Whether through convention or visual
affordance, players seem to adopt maximizing speed
and/or health as a goal.

We created MM in reaction to the problems in
RFW. Where RFW has at least two players, MM has
exactly two, the minimum number required to pro-
duce speech overlap. Where RFW has 20 or more
potentially confusable words and phrases that are
meaningful in every choice cycle, MM has exactly
two phonemically distinct task words, the maximum
necessary to provide each player with uniquely rec-
ognizable speech. Where RFW’s Edith might add her
voice to the acoustic confusion, MM’s mole takes its
turn through silent action. And where RFW has no
disincentive for noncharacter-directed conversation,
MM is fast-paced, with an obvious visual conse-
quence when task talk is supplanted by side talk. In
short, an autonomous RFW entails solving hard ver-
sions of hard problems, while an autonomous MM
entails solving the same problems in their easiest
forms — a degenerate point in the same part of the
design space for LBCI. 

Turn-Taking in Mole Madness
Like RFW, our understanding of Mole Madness has
grown through multiple data collections over time.
Between 2013 and 2015, the LBCI group had 182 chil-
dren play MM in pairs under a variety of conditions
(most of the children also played MM one on one
with a robot co-player, but our remarks here focus on
the child-child games). In the early pilot games (34
pairs), children used Wii controllers in conjunction
with go and jump to move the character. In the next
two data collections, 45 pairs of children used only
their voices, with the mole’s movement generated by
a wizard with a two-button controller who was lis-
tening out of view of both the children and the game
screen. The most recent 12 pairs of children interact-
ed with the mole directly in an autonomous version
of the game. Additional details can be found in
(Lehman and Al Moubayed 2015). 

Both the issues of overlapping speech and out-of-
task behavior should be greatly simplified by MM’s
design. The mole’s world is arranged to elicit specific
patterns of speech — if children play strategically,
then turn-taking should be almost completely pre-
dictable. There are flat stretches to evoke repeated,
isolated gos by one child, steep walls to produce
repeated, isolated jumps by the other, and crevasses

Articles

WINTER 2016   59

Figure 3. Two Children Playing and a 
Screenshot from the Animated Side-Scroller Mole.



labeled values at 1 (ready to do some-
thing else), 3 (could take it or leave it),
5 (very much into the game) and 7
(can’t drag him/her away) and unla-
beled values at 2, 4, and 6 (Al
Moubayed and Lehman 2015). The
average mean across all players in the
training group was 3.64, 3.88, and 3.67
(coders 1, 2, and 3, respectively), while
the average mean across all players in
the test group was 4.68, 5.06, and 4.91.
In other words, players who interacted
with the wizarded character were
judged to feel less than halfway
between could take it or leave it and
very much into the game (on average),
while players who interacted with the
autonomous mole were judged to be
solidly enjoying the game play.

Engagement Isn’t Fun
Every interaction is a concrete design
problem, an attempt to find enough
constraint to make what the human
does align with what the technology
can handle. When natural behavior is
inconsistent with those assumptions,
it exposes the hard edges of the design.
Children who play Robo Fashion
World have discussions among them-
selves about which item to choose
next, shout their choices out at the
same time, and make up “king hat”
rather than saying “crown.” Children
who play Mole Madness, on the other
hand, tell each other what to do and
not to do before and after doing it, take
actions that make no strategic sense,
and invent new pronunciations of
common, everyday words. On the sur-
face, problem behaviors in the two
games appear distinct and specific to
their respective interactions, but in
reality they differ in degree rather than
kind. The most important thing about
MM is not that it can be implemented
as an autonomous system, but that it
demonstrates that certain challenges
are likely to arise whenever young chil-
dren are having fun. 

More often than not, young chil-
dren are accompanied by others — par-
ents, babysitters, siblings, and friends.
When a character interaction is in dan-
ger of breaking down because what is
expected is unclear to the child, some-
one who is older and more capable is
always a potential source of guidance

to get through and items to avoid that
require coordinated, overlapping, and
orchestrated sequences of the two
commands by both voices. Together
with the rapid pace, the everyday
vocabulary and simple semantics of
the keywords should make the game
accessible to even the youngest play-
ers, without the desire or need for side
conversation. 

Despite such anticipation and cue-
ing, almost none of the predictability
that should have followed from the
design decisions outlined above actu-
ally occurs during gameplay. Overlap-
ping speech is not limited to areas
where it is required to maneuver the
character because most children dis-
cover, to their great delight, that
sequences of overlapping gos and
jumps make the mole fly. As a result,
overlap can occur anywhere and does
so, almost 40 percent of the time. 

Even the keywords, themselves, defy
expectations. All players start the first
level with well-articulated, sensible
employment of their individual key-
words, but as confidence grows, lan-
guage behavior changes, and children
throughout the age range seek to
increase the expressivity of the task
vocabulary through elision, repetition,
and elongation. A clearly pronounced
instance of go or jump takes about 300
milliseconds and has a straightforward
cause-and-effect meaning. To get faster
movement than full word pronuncia-
tion allows, all children spontaneously
create fast speech forms (“g- g- g- guh
go,” “jumjumjumjumjump”), crowd-
ing multiple commands into the same
amount of time. Most children also
create slow speech forms through elon-
gation (“gooo!” “juuuuuuuuuump”)
when they want a single, bigger move-
ment, a movement right away, or
steady movement at the typical pace.
The existence of these different forms,
all unquestionably in-task from the
child’s point of view, adds not only to
the complexity of recognizing each
command per se, but also to the prob-
lem of handling speech overlap.

The presence of out-of-task speech is
the final complication. The pacing of
the game did have an effect — most
interplayer speech was both brief and
nonconversational (“oh nice start,” “ah
a crow,” “yay I got that”). It was also

different from side talk in RFW in that
the amount was significantly correlated
between players, that is, children tend-
ed to adopt more or less the same
degree of sociability during play. In
other respects, however, the phenome-
non was quite similar: the overall
amount was highly variable across
pairs, but almost every pair had some,
and about 25 percent of the utterances
contained at least one instance of go or
jump. Side talk with keywords was vir-
tually always about the game play
itself, encompassing both instructions
where misidentification of the ad -
dressee would be advantageous (“jump
he’s falling”) and admonitions where
misidentification would exacerbate the
problem (“no stop saying go”).

Solutions in the Small
Despite the reappearance of the very
phenomena we wanted to eliminate,
MM did prove to have easier, more
tractable versions of RFW’s problems.
As a result, we were able to build an
autonomous version of the game by
extending classic, example-based key-
word spotting to handle overlapping
speech and historical context. The
implemented system has been trained
on almost seven hours of hand-labeled
data from the children in the last wiz-
arded data collection. It contains sepa-
rate models for nonoverlapping go,
nonoverlapping jump, overlapping
keywords, speech in social utterances,
and background noise. It calculates
whether to send a go and/or jump
command to the mole every 150 mil-
liseconds, based on the pattern of pos-
terior probabilities for the full set of
models over the last 450 milliseconds
of game play (for details, see Sundar,
Leh man, and Singh [2015] and Leh -
man, Wolfe, and Pereira [2016a]). 

An evaluation with 12 pairs of previ-
ously unseen children showed that the
system was more responsive and accu-
rate than a human wizard for all of
overlapping, nonoverlapping, fast, reg-
ular, and slow speech (Lehman, Wolfe,
and Pereira 2016b). Most important,
children were judged to have enjoyed
the game. We asked three mothers of
young children to code the video of
each player in both the wizarded train-
ing set (31 pairs) and the autonomous
test set using a seven-point scale with
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for problem solving. Although getting
that guidance almost inevitably results
in metaconversation that includes task
vocabulary, being able to get it may be
the only way the child can successful-
ly reengage in the interaction. More
importantly, children don’t use others
just for information — they use them
to make an already fun experience
more fun. In RFW, children who were
shouting their choices over each other
were smiling and laughing as they did
so. In MM, the children who coders
judged to be having the most fun were
the children with the largest amount
of side talk and the ones who were the
most synchronous in their volume,
pitch, and use of alternate word forms
(Chaspari and Lehman 2015). 

The Fun Curve in figure 4 captures
this dilemma: the very behaviors that
signal we’ve achieved our entertain-
ment goal appear to be the most prob-
lematic for autonomy. In our part of
the design space, children’s actions
become unpredictable at both ends of
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Figure 4. The Fun Curve. 

Unpredictability, from the system’s point of view, occurs, by definition, when the child is not engaged in the interaction. It also occurs, at
least for systems we can build with current technologies, when the child is having too much fun. 
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the curve — when they are disengaged
from the task and when they are so
engaged that they, essentially, act like
children: creative, boisterous, and
unreservedly social. Adults can act this
way as well, but adults can also diag-
nose the effect of their behavior on the
quality of the interaction, modify their
behavior to bring it back in-task, and
find enjoyment despite the self-
restraint. Most language-based interac-
tion technologies and agent imple-
mentations have been the result of
anticipating the natural communica-
tion of adults; adult self-correction and
adaptation is a source of constraint that
they assume. When basic capabilities
are designed and combined into agents
for children, it is typically done in the
context of education or therapy, where
engagement is the focus, the efficacy of
fun may be debated, and the idea of
“crazy fun” is antithetical to the more
critical requirement of time-on task.

The solution to the dilemma is a sci-
ence of fun. Our characters should be

able to anticipate what form fun will
take and recognize when children are
having it. They should have weak
methods for easing its most extreme
expression back toward a state where
the main activity can resume. And,
eventually, they should have strategies
for actively joining in. If a great deal of
the art of interaction design lies in min-
imizing what is, from the character’s
point of view, out-of-task behavior,
then a character that supports fun as its
key in-task behavior will open up a new
part of the space of interaction design. 
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