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The recent explosion of content (such as movies, TV
shows, sports, and others) available on television cou-
pled with an increase use in mobile devices (that is,

smartphones and tablets) has created significant interest in
second-screen applications from both end users and content
providers. Second screen applications are designed to run
from mobile devices and to enhance the television viewing
experience in numerous ways, one of which is helping end
users effectively find and control content on television
through spoken natural language (that is, conversational TV
program discovery).

Conversational TV program discovery applications have
recently become available in the marketplace from select
cable/satellite providers. However, these applications are lim-
ited. They support a predefined set of utterance types (for
example, switch to <channel>, find a <genre>movie, and find
a movie with <actor >). Hence, end users must conform to
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n In this article, we report on a multi-
phase R&D effort to develop a conver-
sational second-screen application for
TV program discovery. Our goal is to
share with the community the breadth
of artificial intelligence (AI) and natural
language (NL) technologies required to
develop such an application along with
learnings from target end users. We first
give an overview of our application from
the perspective of the end user. We then
present the architecture of our applica-
tion along with the main AI and NL
components, which were developed over
multiple phases. The first phase focuses
on enabling core functionality such as
effectively finding programs matching
the user’s intent. The second phase
focuses on enabling dialogue with the
user. Finally, we present two user stud-
ies, corresponding to these two phases.
The results from both studies demon-
strate the effectiveness of our applica-
tion in the target domain.
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Table 1. Types of Utterances Supported.

Utterance Type Example 

Search: Multislot Action movies with Tom Cruise playing tonight. 

Search: High Precision Find a French movie with a British actor. 

Search: Logical Expression Watch action movies without Tom Cruise or Bruce Willis. 

WH-Question Who directed the Dark Knight? Where was Terminator �lmed?

Command Switch to HBO. 

these types, and cannot combine them in an ad hoc
manner (for example, search by genre, actor, and TV
station).

More advanced research prototypes (Liu et al.
2012) do not have these limitations. However, these
prototypes focus on a piece of the overall problem
(for example, entity recognition), and do not support
the full range of features required of an end-to-end
system. For example, these prototypes do not support
question answering (for example, who is the french
actress in the movie the dark knight). They also don’t
support rich dialogue across multiple turns of inter-
action with the user or handle expressive utterances
involving conjunction, disjunction, and negation
(for example, find a movie without Tom Cruise and
Nicole Kidman), nor do they handle the complexities
of searching and controlling live television.

In this article, we report on a multiphase research
and development effort at Nuance Communications
to develop an end-to-end conversational second-
screen application for television program discovery
that addresses these limitations. Our solution inte-
grates the following artificial intelligence (AI) and
natural language (NL) technologies in a comprehen-
sive manner: (1) Statistical and linguistic-based natu-
ral language understanding technologies (Ratna-
parkhi 1996; Maxwell and Kaplan 1993) to construct
a rich semantic representation of the end user’s utter-
ance. (2) Dialogue technologies (Bohus and Rudnicky
2003; Larsson 1998) to enable multiturn conversa-
tions through conversational state tracking and
dynamic prompt generation. (3) A large-scale com-
monsense knowledge-base1 that serves as the target
output of linguistic processing and supports SQL
query generation. (4) Techniques from natural lan-
guage interface to databases (NLIDB) (Popescu,
Etzioni, and Kautz 2003) to transform the output of
linguistic processing into a SQL query to execute
against a commercial electronic program guide (EPG)
database, which is updated on a daily basis. (5) NL
generation technologies (Gatt and Reiter 2009) to
summarize and confirm the outcome of acting on the
end user’s utterance.

Our goal is to share with the community the
breadth of AI and NL technologies (mentioned pre-

viously) that are required to develop such an end-to-
end system, the considerations involved in integrat-
ing these technologies, and the learnings from target
end users. We start by giving an overview of the main
features of our system. We next describe our system’s
architecture along with the main AI and NL compo-
nents of the architecture, developed over multiple
phases. We then present two user studies. The first
study evaluates the core functionality of our system,
that is, its ability to find programs matching the
user’s intent. We also present an in-depth analysis of
the failure cases that surfaced from this study. The
second study evaluates the effect of supporting dia-
logue, that is, allowing the system to carry on a mul-
titurn conversation with the user as she or he search-
es for content on television. We conclude with efforts
to further enhance our application with the eventual
goal of making it available to a large user population.

Application Overview
When a user starts the application for the first time,
it will prompt the user for his/her zipcode and
cable/satellite provider. The application uses this
information to limit all results to the user’s provider
and viewing area. The user is then taken to a start
screen with a speech icon that she or he can tap on
to begin speaking to the application. Table 1 shows
the types of utterances supported by the application.

If the spoken utterance is a search request (for
example, watch an action movie tonight or find a
movie with Tom Hanks), then the application will
display all relevant results ordered by start time (see
figure 1). The application will also display a confir-
mation of these results in the prompt box at the bot-
tom of the screen, along with dynamic prompts such
as suggestions for refining the results. The user can
scroll through these results, and tap on any one to
view additional details such as the program synopsis,
cast, ratings, and others.

The user can also tap on the speech icon to con-
tinue the conversation, in which case, the applica-
tion will combine history from previous utterances
with the current utterance issued by the user. For
example, if the user started with action movies fol-
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lowed by something with Tom Hanks, then the appli-
cation will combine the genre request from the first
utterance with the actor request from the second
one. Table 2 shows an example dialogue with the
application.

If the utterance is a question (for example, where
was Tom Cruise born?), the application will display
the answer (Syracuse, NY) in the prompt box, along
with a prompt directing the user back to the current
dialogue. The application will also display any pro-
grams relevant to the question such as, for example,
any Tom Cruise movies or TV shows that are playing.

If the utterance is a command (for example,
change channel, increase volume, and so on), the
application will execute the command. For channel
change commands, the application will also display
the programs that are currently showing on the new
channel. The application will prompt the user
accordingly for utterances that it does not under-
stand.

Architecture Overview
Our application implements a client-server architec-
ture (see figure 2). The client is responsible for calling
Nuance’s automatic speech recognition (ASR) service
to convert the speech input to text,2 displaying the
results, and controlling the TV.

The server is responsible for the natural language
interpretation, retrieval of results, dialogue manage-
ment, and response generation. We focus on the
server in this article, which is implemented as a hub-
and-spoke architecture. Each spoke performs a spe-
cific task (see table 3 for an overview), and the hub
invokes them in the proper order. Hence, the result-
ing system is highly modular, allowing future spokes
to be added with minimal impact to the rest of the
system. For example, the blue (darker gray) spokes
were developed (and evaluated) first to provide the
core functionality of our application, that is, finding
programs matching the user’s intent. The green

Figure 1. Results Screen. 

A text confirmation, along with dynamic prompts to refine the results, is shown at the bottom of the screen.
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(lighter gray) spokes were added later, primarily to
enable dialogue, with minimal impact to the existing
spokes.

Ontology and Data Source
Our hub-and-spoke architecture requires a common
representation across all the spokes. Moreover, this
representation should support challenges that may
occur during NL interpretation and SQL query for-
mulation. We believe these requirements can be
served by a large multipurpose ontology, and chose
ResearchCyc (Cycorp 2013) for this purpose. For
example, the named entity recognizer (NER) may
have difficulty distinguishing between TV and movie
titles. Cyc’s rich subsumption hierarchy can provide
one concept that subsumes both and can be the tar-
get for NER. In particular, the Cyc term VideoCon-
ceptualWork includes the desired categories of movie
and tv show, and excludes undesirable but related
categories such as books and music. Similarly, lin-
guistic processing can produce rich relational struc-
tures containing semantic relations grounded in Cyc

between the entities detected by NER. Cyc’s rich
domain and range constraints on these relations can
be used during SQL query formulation to further
constrain the query.

Our application also requires a continuously up-
to-date database of programs playing on TV. We use
a third-party commercial electronic program guide
(EPG) as our target database. This EPG is a relational
database and contains schedule information for all
cable and satellite providers in the United States and
Canada for the upcoming two-week period. It also
contains additional metadata for each program such
as the cast, filming location, birth dates of cast mem-
bers, and others. Moreover, the EPG vendor provides
daily updates, which our system downloads and
applies on a nightly basis.

Named Entity Recognition
The Named Entity Recognizer (NER) takes the ASR
output from the client and detects proper nouns like
movie titles and people names. It also detects other
phrases that are not proper nouns but have signifi-

Figure 2. Architecture Overview. 

The Hub invokes the spokes in a clock-wise manner starting with NER. The blue spokes were developed (and evaluated) first to provide the
core functionality of our application, that is, finding programs matching the user’s intent. The green (lighter gray) spokes were added lat-
er to enable dialogue and query expansion.
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cance in the TV domain, for example, genres and
time phrases. Table 4 shows an example of NER input
and output where the tag for each detected entity is
grounded in our target ontology.

Our NER is a BIO-style tagger where each word is
tagged with bX, iX, or o, indicating the start of enti-
ty X, the continuation of entity X, or that the word
is outside any entity, respectively. The NER is a

machine-learned approach and uses the maximum
entropy framework to predict BIO tags from anno-
tated data, similar to that described by Borthwick et
al. (1998). The model features and search algorithm
are borrowed from the part-of-speech tagging
approach of Ratnaparkhi (1996), but the original
contextual features have been changed to include all
consecutive word bi-grams in a window of ±2 words
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Table 2. Example Dialogue with Our Application. 

iPad UI results omitted for brevity.

User romantic movies tomorrow 

System Romantic movies tomorrow. Would you like something with Sandra Bullock, Nicole Kidman, Kristen 
Stewart, or more suggestions? 

User more suggestions 

System How about Robert Pattinson, Kate Winslet, Katherine Heigl, or more suggestions? 

User Winslet 

System Romantic movies with Kate Winslet tomorrow. Would you like Titanic or Little Children? 

User the �rst one 

System You chose Titanic on Bravo at 10:30 AM on Saturday  

User movies about the Gulf War 

System Movies set during the Gulf War. Would you like Courage Under Fire, Jarhead, or The Finest Hour? 

User explain the second one 

System This �lm is an adaptation of the book Jarhead: A Marine’s Chronicle of the Gulf War and Other Battles,
whose subject is the Gulf War. Would you like Courage under Fire, Jarhead, or The Finest Hour? 

Table 3. Overview of Task Performed by Each Spoke.

Spoke Description 

NER Detects entities of interest from utterance 

Canonicalizer Maps entities to DB elements 

Linguistic Processing Produces relational structure from utterance 

Belief Tracker Tracks user’s intent across multiple utterances 

Knowledge Scaling Expands entities that do not map to �elds in EPG. 

Semantic Query Engine Formulates SQL query to execute against EPG 

Dialog Manager Manages conversation with user 

Response Generation Generates NL responses 

Table 4. Example of NER Input and Output.

Input a tv show with jerry seinfeld playing this weekend 

Output a [TVShow-CW] tv show [/] with [Person] jerry seinfeld [/] playing [CalendarDay] this weekend [/]



from the current word, and the previous tag, and pre-
vious 2 tags conjoined with the current word.

Our NER also uses list match features to flag phras-
es in the utterance that match those in an externally
provided dictionary. We construct this dictionary by
extracting approximately 160,000 entries (that is,
movie and TV show titles, actor names, and role
names) along with their type (that is, movie, actor,
and so on) from our third party commercial EPG.
Each word in a phrase is assigned a feature if the
phrase has an exact match in the dictionary. The fea-
tures are of the form bY, iY, eY, and denote the begin-
ning, middle, and end of a phrase of type Y. A word
can receive multiple list match features if it partici-
pates in multiple matches.

We apply these feature patterns to the training
data to create the actual feature set used by the mod-
el training algorithm. We use a combination of real
and synthetic utterances for training (that is, 19,000
versus 166,000 utterances). The synthetic utterances
are necessary because the real ones do not cover all
the anticipated linguistic phenomena, and are gen-
erated using a combination of manually authored
natural language patterns and dictionary derived
from our third party EPG.

Canonicalizer
The Canonicalizer takes relevant entities detected by
NER and maps them to the corresponding database
element based on the surface form in the utterance.
This mapping is necessary because of the mismatch
between how a user may refer to an entity of interest
(for example, movie, actor, and others) and how the
entity is encoded in our target EPG. For example, a
user may refer to the second terminator movie as ter-

minator two, but the EPG may encode it as Termina-
tor 2: Judgment Day (the official title).

We implement our Canonicalizer using the open
source search engine Solr because it provides a wide
array of fuzzy match options (which are absent from
most relational database systems), allowing us to
fine-tune the match strategy. Hence, for each relevant
entity (for example, TV show, movie, actor, and oth-
ers) the Canonicalizer performs a fuzzy match lookup
of the entity’s surface form (that is, the phrase used
by the end user to refer to the entity) in the Solr index
over the EPG table and attribute corresponding to the
entity’s type. Each match result is a 3-tuple of the
form < T, A, I > where T is the table corresponding to
the entity’s type, A is the attribute in T containing the
unique identifier for the entity, and I is the unique
identifier. If there are multiple matches (for example,
Avatar referring to both the movie and animated TV
show), then the top N, based on popularity, are
returned.

These results are associated with their respective
entity for use by downstream spokes to further con-
strain the SQL query during query formulation.
Moreover, downstream spokes need only include the
identifier (and not the surface form) in the resulting
SQL query, which speeds up query execution.

Linguistic Processing
The Linguistic Processing spoke produces rich rela-
tional structures, which are necessary to properly
handle complex utterances involving disjunction,
negation, and complex semantic relations (for exam-
ple, movies with Tom Hanks versus movies by Tom
Hanks or British movie with a French actor). These
relational structures are directed acyclic graphs where
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Figure 3. An Example Relation Structure.

This example relation structure is for the utterance “movies with tom cruise or nicole kidman.” The root (or main) concept corresponds to
the main verb of an utterance or head noun, if the utterance is a noun phrase.

Movie: 
movie  

Root

OR 

Person:
Tom Cruise

videoWorkActor videoWorkActor  

none 

Person:
Nicole Kidman 

arg 



the nodes are concepts and logical operators ground-
ed in our target ontology, and the edges capture
semantic relations between the nodes (see figure 3).

This spoke uses the Xerox language environment
(XLE) (Maxwell and Kaplan 1993), which incorpo-
rates a lexical functional grammar (LFG) parser and
an integrated rule system. The LFG parser takes the
input utterance and produces a packed representa-
tion (Maxwell and Kaplan 1993) that compactly
encodes all viable alternative parses of the utterance,
for example, encoding alternative prepositional
phrase attachments. Moreover, entities detected by
NER are used to control the parsing. For example, in
“watch tom cruise” if NER tagged “tom cruise” as a
person type, then the parser will observe this tag, and
not generate alternative parses such as Tom being the
subject of a cruise event.

The rule system (Crouch and King 2006) rewrites
the parse output into alternative relational structures
using three sets of rewrite rules. First, the rule system
rewrites the parse structure by adding WordNet
(Miller 1995) word senses for each concept term
(including NER entities) in the parse.

The rule system then rewrites the resulting struc-
ture into alternative abstract knowledge representa-
tion (AKR) formulae (Bobrow et al. 2005), which
encode the space of possible thematic roles between
the concept terms based on the alternative parses
from the LFG parser. The formulae also use logical
contexts to capture various linguistic notions such as
utterance type (for example, question, command,
and others), disjunction, negation, and others. We
note that this abstract knowledge representation
serves as an intermediate representation that allows

Articles

FALL 2015   79

Table 5. State Updates for Each Turn of an Illustrative Dialogue. 

Each relational structure in the state represents a separate intent. The order of relational structures in the stack reflects the
subdialogue structure of the conversation.

Utterance System State after Utterance 

User: romance  

movie on now. 

 
System: How about  

The Notebook or  

Walk the Line? 

 

User: Who directed walk 
the line? 

 
System: James Mangold. 

 

User: The Notebook? 

 
System: Nick Cassavetes. 

 

User: A comedy tv show. 
 

Movie GenreTypeTime
ROOT movie romance now

none genre

showTime

Person VideoWork
ROOT who walk the line

none directorOf

Movie GenreTypeTime
ROOT movie romance now

none genre

showTime

Person VideoWork
ROOT who the notebook

none directorOf

Movie GenreTypeTime
ROOT movie romance now

none genre

showTime

TVShow GenreTypeTime
ROOT tv show comedy now

none genre

showTime



different ontologies to be supported, hence increas-
ing the modularity of our system.

Finally, the rule system rewrites the formulae into
alternative relational structures grounded in our tar-
get ontology. WordNet senses for each concept term
are mapped to appropriate terms in the ontology.
Thematic roles are mapped to predicates (that is,
semantic relations), and type-checking rules are
applied to ensure terms are compatible with the argu-
ments of the predicates, removing alternatives that
are ill-typed. For example, the formula for play termi-
nator two has multiple WordNet word senses for play,
including one for playing a musical instrument and
one for playing a movie. The former can be removed
because terminator two is detected as a movie by the
NER, and choosing it triggers a type violation.

The resulting alternative relational structures are
scored using a set of simple heuristics that prefer the
most common (that is, frequently occurring) inter-
pretation for the TV domain. For example, in watch a
movie with tom cruise on tv it is unlikely that tom cruise
will be sitting on the TV, so this alternative is scored
lowly (and removed). Should multiple relational
structures (and hence unresolved ambiguity) remain,
then one is randomly selected as the final result.

Belief Tracker
The Belief Tracker merges the relational structure for
the user’s current utterance (produced by linguistic
processing) with the relational structures from previ-
ous utterances to produce a coherent representation
of the user’s intent (Williams et al. 2013; Yeh, Porter,
and Barker 2005). Consider the illustrative dialogue
in table 5. The user starts with the intention of find-
ing a romance movie to watch but is then led by the
system response into asking a question about one of
the search results. The user then modifies the argu-
ment of the question to ask about a different movie.
Finally, the user returns to the original search intent
and modifies the genre. Hence, a model of dialogue
state needs a representation that is both dynamic

(capable of representing changing intents) and lay-
ered (capable of representing multiple intents in a
priority order).

To address these representation requirements, the
Belief Tracker uses a stack of relational structures
(table 5). Each relational structure in the stack repre-
sents a single intent (that is, search, query, or com-
mand), and its position in the stack defines the order
in which the intent will be processed by the system.
When the intent on the top of the stack has been
resolved, it is popped off and the next intent is
processed. This approach is inspired by the notion of
question under discussion in the conversational
analysis literature (Larsson 1998).

The tracking algorithm is specified by a set of state
update rules that apply to pairs of relational struc-
tures from the previous state R2 and the current input
R1. An update rule is a tuple (P1, P2, E, T) where P1 and
P2 are path regular expressions (that is, regular
expressions that match against directed paths in a
relational structure) applied to R1 and R2, respective-
ly, E is a set of constraints on paths matching P1 and
P2 (for example, equality of two node labels), and T is
a sequence of transformation rules to apply to both
structures. An example rule is shown in figure 4.

The update rules are applied in sequence to the
relational structure on the top of the stack. If no
match is found, the relational structure is popped
(signifying a change in intent) and the rules are
applied to the next structure. This process continues
until a matching rule is successfully applied to a rela-
tional structure on the stack or the stack becomes
empty, in which case the new structure is added on
top of the original stack as a new intent. These update
rules are currently hand-crafted, but we plan to even-
tually learn them from data.

Knowledge Scaling
The Knowledge Scaling spoke utilizes large-scale
knowledge graphs (in our implementation, Freebase
[Bollacker et al. 2008]) to perform inference that
expands entities that do not map to fields in a struc-
tured database into entities that do. These entities
may include occupations (for example, wizards), his-
torical events (for example, the Vietnam War), and
mythical creatures (for example, vampires) that have
significance in the TV domain, but typically are not
encoded in any structured fields of a EPG database.
The resulting inference also enables the generation of
logically motivated explanations for the results. We
give an overview of this spoke in this article, and refer
the readers to Yeh and Ratnaparkhi (2014) for addi-
tional details.

This spoke examines the merged relational struc-
ture produced by the Belief Tracker spoke for entities
(for example, Occupation, Event, and others.) and
relations (for example, description) that are triggers
for query expansion (and hence inference), for exam-
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Figure 4. Example Update Rule for Main Concept Unification. 

If the main concept of the previous relational structure is a program and the
main concept for the current utterance is a specialization of program then
unify these concepts. Relations of the previous concept become relations of
the current one.

P1 : ROOT/none/(Program/)
P2 : ROOT/none/([Movie|TvShow|Game]/)
E : {}
T : {Unify (P1.@1, P2.@1)}



ple, movies about an occupation of interest such as
lawyers. If these triggers are present, this spoke col-
lects all applicable inference paths (learned in a semi-
supervised manner), and uses them to traverse the
knowledge graph. Figure 5 shows an example of an
inference path for finding movies about an occupa-
tion of interest.

All results (that is, nodes in the knowledge graph
reached by an inference path), along with instantia-
tions of the inference paths that lead to the results,
are returned for use by downstream spokes. For
example, the SQE spoke will incorporate these results
during SQL query formulation. Similarly, the
Response Generation spoke can generate a logically
motivated explanation of why each result is being
shown by applying predefined templates to the cor-
responding instantiated path, for example, The char-
acter Elle Woods in Legally Blonde is a lawyer.

The Knowledge Scaling spoke learns the inference
paths offline in a semisupervised manner. It takes as
input a knowledge graph (that is, Freebase), and a
small set of training examples. Each training example
is a pair with an instance of an inference topic (for
example, lawyer, which is an instance of occupation)
and an expansion result (for example, Legally Blonde).
This spoke then learns inference paths through the
following steps:

Hypotheses Generation. An initial set of instance-lev-
el paths — we’ll call hypotheses — to the expansion
results, whose instances and edges have the strongest
association.

Hypotheses Activation. Spreading activation (Collins
and Loftus 1975) is performed to gather support for
the initial hypotheses and to discover additional,
variant hypotheses, that is, additional, variant
instance-level paths. Spreading activation is appro-
priate for this step because it provides an effective
method to search a network for nodes (in our case
hypotheses) that are similar to the source.

Inference Path Generation and Selection. The
instance-level paths are generalize into inference
paths by replacing instances with their types and col-
lapsing resulting generalizations that are identical.
The resulting generalizations are used online.

Semantic Query Engine
The Semantic Query Engine (SQE) takes the merged
relational structure from the Belief Tracker spoke, and
maps it to a SQL query. There are two approaches to
this problem: (1) learn the mappings from an utter-
ance to a target query (Zelle and Mooney 1996; Kate,
Wong, and Mooney 2005); or (2) compose a query
from manually defined mappings between linguistic
and database elements (Popescu, Etzioni, and Kautz
2003). We adopt the latter approach because it does
not require training examples, which are difficult to
acquire at scale for this task.

SQE first tries to specialize each entity’s type based

on semantic relations between them in the relation-
al structure. This step compensates for fine-grained
types that may be difficult for NER to detect. For
example, given the utterance movies with tom cruise,
NER tags tom cruise as a person type, and linguistic
processing relates tom cruise to movies through a vide-
oWorkActor relation. Hence, SQE can retrieve the
domain (and range) constraints of videoWorkActor
from the underlying ontology. If this type constraint
(that is, Actor) is a subclass of the original type (that
is, Person), then SQE can specialize it.

Second, SQE constructs a query tree (rooted at an
and node) by traversing the relational structure in a
depth-first manner, starting at the main concept.
Each logical operator (that is, and, not, or) and enti-
ty traversed is converted into an operator and entity
node, respectively. These nodes are attached to the
most recent operator node traversed or the root and
node if no operator has been traversed yet (see figure
6). For compactness, an and or or node with one
child is removed, and its child is attached to its par-
ent node. SQE uses this tree in the next step to gen-
erate nested queries and to connect them.

SQE then maps each entity type into a SQL frag-
ment: a 3-tuple of the form < T, A, C > where T is the
database table to include in the from clause of the
query, A are relevant attributes from T to include in
the select clause, and C is a set of constraints to
include in the where clause. Each constraint is a 3-
tuple of the form (A′, V, Op) where A′ is the constraint
attribute from T, V is the constraint value on A′, and
Op is the constraint operator (for example, equality,
membership, and others). We manually define these
mappings based on our target EPG database. Canon-
icalizer results (see above) associated with the entity
are also added to C. For example, the tuple for tom
cruise (an Actor type) and associated canonical is

< credit, name, {(type, ‘Actor′, =), (id, 30914, =)} >

Based on these mappings, SQE finds the shortest
join path between the tables in each fragment pair
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Figure 5. An Example Inference Path. 

The edges encode which relations to traverse for a particular inference (in
this case movies about an occupation). The nodes encode constraints on the
types of entities/instances in the knowledge graph that can instantiate the
path subject to the relations specified.

Occupation Film_character Film 

occupation_of portrayed_in



dialogue. For example, if the system selected a con-
cept refinement strategy to prune the results, the user
could either select one of the system’s suggestions or
override the refinement with additional commands,
questions, or entirely new concepts and values. Sub-
dialogue strategies were implemented for question
answering, device control, and explanations (that is,
describing the system’s reasoning for the results dis-
played).

The Dialog Manager outputs its communicative
intent to the Response Generation spoke using a tax-
onomy of 26 parameterized speech acts such as
REQUEST.ASK for concept refinement and
INFORM.REPORT for notifications of system actions.

Natural Language Response Generation
The Natural Language Generation (NLG) spoke gen-
erates responses across four categories:

Confirmation Prompts. A restatement of the con-
straints requested by the user. With noisy ASR and
NER, confirmations let the user know whether
his/her request was understood correctly. In cases
where no results are found, the system will also indi-
cate this.

Dynamic Prompts. Dynamically generated prompts
for concept refinement, explanations, and others.
The generation of these prompts is driven by para-
meterized speech acts produced by the Dialog Man-
ager.

Answers. Presentation of possible answers found
for WH-questions posed by the user. Additional pro-

through a breadth-first search over possible joins in the
database. SQE also observes the structure of the query
tree, and greedily merges fragments with overlapping
database elements (that is, tables and attributes).

Finally, SQE checks the type of the utterance pro-
duced by linguistic processing. If the type is a WH-
question, then SQE includes the table and attribute
associated with the question type in the from and
select clause of the query respectively, and extracts
the return value as the answer. This strategy is suffi-
cient because many WH-questions can be answered
by applying the appropriate facet over the set of
results satisfying the question constraints. The result-
ing SQL query is executed against the EPG.

Dialog Manager
We use a Nuance proprietary system similar to the
Ravenclaw architecture (Bohus and Rudnicky 2003)
as our Dialog Manager (DM). The DM has two main
strategies for pursuing a conversation: concept refine-
ment and list refinement. Concept refinement solic-
its from the user additional entities and relations to
constrain his or her search. An entropy-based statis-
tical measure and popularity metrics for programs are
used to decide which concept to refine, along with
relevant suggestions for its value. List refinement is a
strategy applied once the number of results is small,
to either select or remove elements directly from the
list until the user has a single selection. In all cases
the system maintains a mixed-initiative paradigm, so
the user can provide any input at any point in the
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Figure 6. Query Tree Constructed from 
Relational Structure Show in Figure 3.

and 

or Movie:
movie

Actor:
Tom Cruise 

Actor:
Nicole Kidman 



cessing, such as converting the time represented in
the EPG to local time, is performed based on the
question type.

Exception Responses. Responses to inform the user
of exception conditions, for example, NER did not
detect any entities, no answers were found for a ques-
tion, and others.

This component uses templates, the SimpleNLG
package of Gatt and Reiter (2009), and transforma-
tion heuristics to generate concise prompts. Sim-
pleNLG allows us to more easily enforce common
grammatical constraints such as number and noun-
verb and article-noun agreement. We predefine a set
of SimpleNLG syntax tree templates, and our system
selects the appropriate one based on the speech act
and its parameters (that is, slot-value tuples) pro-
duced by the Dialog Manager. The selected template
is instantiated appropriately, and relevant transfor-
mations (for example, suppressing portions of the
template) are applied based on the context (for exam-
ple, number of results, result type, and so on).

For example, if the NLG component is asked to
generate a confirmation prompt for the speech act
CONFIRM.IMPLICIT with slot-value tuples genre =
“romantic comedy” and type = “movie or tv show,”
it will suppress the type slot (if the result includes
both movies and TV shows) to generate the concise
response “romantic comedies,” whereas a pure tem-
plate-based approach will generate the more verbose
response “romantic comedy movies or tv shows.”
This strategy allows our system to better handle vari-
ation, brevity, and fluency of natural English.

Evaluation 1 — Core System
We present the first of two user studies with Nuance’s
Usability and Interaction Design group. The goal of
this first study is to assess the core functionality of
our application, that is, finding programs matching
the user’s intent. The core system evaluated in this
study includes only the blue (darker gray) spokes in
figure 2.

Experiment Design
We used the following experiment design to answer
three key questions: (1) How satisfied is the user with
the application? (2) How effective is the application
at finding programs matching the user’s intent? (3)
What is the response time of the application?

We sourced 16 subjects from a third-party staffing
agency for this study. These subjects represent target
users of our application: users between the ages of 18
and 55, equal mix of male and female users and tech-
nical and nontechnical users. For each subject, a
moderator first gave the subject a high-level overview
of the application (installed on an iPad mini) and the
experiment environment — that is, a simulated liv-
ing room with a TV that can be controlled by our
application (see figure 7).
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The moderator then gave the subject instructions
for a practice trial. The subject was informed of a stack
of magazines in the living room, and asked to relax as
if he or she is at home. While the subject is relaxing,
she or he was told to flip through these magazines for
inspiration on what to watch on TV. The subject was
then told to tell the application what she or he want-
ed to watch. Based on the results returned, the subject
was asked to rate her or his overall satisfaction on a 7-
point Likert scale and to assess the effectiveness of the
application by scoring the trial as a success or failure.
A trial is successful if (1) at least one of the results on
the first page matched the subject’s intent or (2) the
application correctly gave no results when no pro-
grams matching the subject’s intent are showing on
TV. The application also logged the time spent to
process the request.

After the practice trial, the moderator instructed
the subject to perform 10 additional trials following
the same instructions as above. During these trials,
the moderator observed the subject in an adjacent
room through a one-way mirror, and only interacted
with the subject if she or he had any questions (or
experienced any technical issues).

This design is unintrusive (putting the subject at
ease), and limits the introduction of biases. Subjects
were not exposed to example utterances, which may
bias their requests. They came up with requests
entirely on their own.

Results
A total of 160 trials were completed (10 per subject).
Two raters reviewed each trial to determine those
that are out of scope — for example, requests in adja-
cent domains such as music, or unsupported requests
such as showing trailers of upcoming movies. A total
of 39 trials — where both raters agreed as out of scope
– were removed. Five additional trials were removed
because the moderator had to intervene due to tech-
nical issues, and 13 trials where the subject incor-
rectly recorded his/her ratings were removed as well.
The remaining 103 trials were used to compute the
results.

Figure 8 shows the user satisfaction ratings. The
average rating is 4.81 on a 7 point scale with a stan-
dard deviation of 1.69. This result is encouraging giv-
en the in-the-wild nature of the trials — that is, sub-
jects were allowed to pose any request that came to
mind to the application. Moreover, this result is sta-
tistically significant compared with a random base-
line that assumes a uniform expected frequency over
the ratings (p < 0.01 for the chi-square goodness-of-
fit test, df = 6).

Table 6 shows the number of successful versus
failed trials. Again, these results are encouraging giv-
en the in-the-wild nature (and hence difficulty) of
the trials. We also found a strong positive correlation
between the percentage of successful trials and the
average satisfaction rating per subject (p < 0.005 for



the Spearman rank correlation, ρ = 0.8338, n = 16).
This positive correlation supports the validity of the
satisfaction ratings.

Finally, the average response time of our applica-
tion across all trials is 828.41 milliseconds (sd =
1097.77 ms). None of the subjects expressed concerns
over the response time during the evaluation, but
this is an area that can be improved upon.

Failure Analysis
We performed an analysis of the failed trials to better
understand the cause. For each failed trial, we identi-
fied the spoke that caused the failure, and categorized
the nature of the failure. Table 7 shows the top-five
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Figure 7. Picture of the Simulated Living Room Taken Through a
One-Way Mirror from the Adjacent Moderator Room.

Table 6. Number of Successful Versus 
Failed Trials, and Overall Task Accuracy.

(Successful trials over total trials).

# Successful # Failed Accuracy (%) 

64 39 62.14 percent 



failure categories. From this analysis, we identified
the NER spoke as the top source of failure. Incorrect
or missed NER accounted for 28 of 39 failed trials.
The primary reason for these failures is that the com-
bination of real and synthetically generated training
examples did not fully cover the breadth of user

requests and linguistic phenomena that occurred in
practice, resulting in an undertrained NER model.

Further analysis confirmed that 24 of these trials
would have been successful had the NER performed
correctly, increasing the number of successful trials
from 64 (62.14 percent) to 88 (85.44 percent). Hence,
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Figure 8. User Rating Distribution over a 7 Point Scale.

Users were rating in response to the question: “The system was able to provide the information I was looking for.”
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Table 7. Top Five Failure Types, and Number of Affected Trials. 

A trial can have multiple failures.

Failure Type Description # 
Trials 

Incorrect NER NER spoke incorrectly detected an entity (that is, wrong phrase boundary or 
type). 

17 

Missed NER NER spoke missed an entity critical to processing an utterance. 11 

Incorrect ASR ASR component produced incorrect text output for speech input. 6 

Failed DB Mapping SQE spoke failed to map an entity required to formulate a correct SQL query. 4 
Incorrect relational 
structure 

Linguistic Processing spoke produced a relational structure that prevented the 
generation of a correct SQL query 

3 



we are actively investigating ways to improve the
performance of this spoke.

Another interesting failure is failed DB mapping,
which occurs when a subject refers to a database ele-
ment at a different level of granularity. For example,
a subject may want to watch a show in the home dec-
orating genre, but the EPG only encodes the more
generic genre of home and garden. This granularity
mismatch may be resolved using logical inferences
(for example, subsumption), which we are investi-
gating.

Evaluation 2: Effect of Dialogue
We present a follow-on user study with Nuance’s
Usability and Interaction Design group to assess the
impact of adding dialogue to our application, that is,
adding the Belief Tracker and Dialog Manager spokes
in figure 2.

Experiment Design
We used the following experiment design to answer
three key questions: (1) What is the success rate of an
application with dialogue versus one without dia-
logue in helping users find programs that they want
to watch? (2) What is the overall usability of an appli-
cation with dialogue versus one without? (3) Do
users prefer applications with a stateful dialogue
model or a one-shot model?

We evaluated two versions of our application:3 a

stateful version (Dialog) where the dialogue compo-
nents (that is, the Belief Tracker and Dialog Manager
spokes, described earlier) were activated, and a
repeated one-shot version (One-Shot) where the dia-
logue components were deactivated. Both versions
were run on iPad minis with identical configurations.

We employed the same third-party staffing agency
to recruit 14 new subjects from the general public
with the same demographics as the first study. These
subjects (that is, target users) were between the ages
of 18 and 55, with 8 male and 6 female.

For each subject, the moderator counter balanced
the selection of which application to start with, and
walked the subject through a practice trial to famil-
iarize him/her with the selected application. After the
practice trial, the moderator presented the subject
with 7 scenarios (that is, tasks) in randomized order.
An example scenario is as follows:

You have young nieces and nephews coming over.
Find a program you would like to watch with them.

For each scenario, the moderator asked the subject
to imagine him or herself in the scenario, and then
speak to the application to find a program that he or
she would like to watch. The subject was allowed to
continue speaking with the application until he or
she either found a suitable program (in which case
the scenario was recorded as a success) or gave up (in
which case a failure was recorded). Moreover, the
moderator did not impose any restrictions on what
the subject could say to the application. Hence, the
application was exposed to real-world conditions.

After completing all the scenarios, the moderator
asked the subject to respond to the system usability
scale (SUS) (Brooke 1996), an industry-standard 10-
item Likert scale for measuring overall system usabil-
ity. The moderator then repeated the above protocol
with the other version. For each scenario, the mod-
erator asked the subject to start with the same utter-
ance that she or he started with for the first applica-
tion. The subject could say anything afterwards. This
design enabled a more direct measure of the effect of
dialogue. After the subject finished both sets of sce-
narios, the moderator concluded by asking the sub-
ject which version of the application (that is, Dialog
or One-Shot) he or she preferred, along with reasons
for the decision.

Results
Table 8 shows the task success rate for Dialog and
One-Shot, that is, the frequency with which a subject
found a program that he or she would like to watch
for the given scenario. The difference between the
two versions was statistically significant (p < 0.001 for
the chi-square test, df = 1). Dialog had a higher suc-
cess rate because the stateful model allowed subjects
to pose more complex requests, that are difficult to
formulate as a single utterance, into simpler ones that
led to better results. It also had higher success because
the concept and list refinement strategies of the DM
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Table 8. Number of Successful Versus Failed Scenarios, 
and Overall Task Success Rate. 

We define the task success rate as the number of successful scenarios (that
is, tasks) over the total number of scenarios.

System # Successful # Failed Task Success Rate (%)

Dialog 84 14 85.72% 

One-Shot 62 36 63.27% 

Table 9. Composite SUS Score Across All Subjects 
for the Dialog and One-Shot Applications.

Standard deviation is shown in parentheses. The difference between the two
versions is not statistically significant.

Dialog One-Shot 

84.29 (15.70) 85.71 (15.52)



helped subjects explore more of the space of available
programs, which led to better results. The average
number of turns for Dialog and One-Shot were 5.38
and 4.81, respectively.

Table 9 shows the composite SUS score across all
subjects for each application. The composite score for
each system is around the mid-eighties, and corre-
spond to a SUS grade of B or adjective rating of Good
verging on Excellent (Bangor, Kortum, and Miller
2009). These results are encouraging, given the open-
ended nature of the experiment, that is, subjects can
pose any utterance to the application. Moreover,
these results suggest that both versions of our appli-
cation are highly usable for finding relevant content
on live television.

Table 10 shows which application version subjects
prefer. We observe that 11 of the 14 subjects prefer
Dialog, and this difference is statistically significant
(p < 0.001 for the chi-square goodness-of-fit test, df =
2). We note that the preference for Dialog is not due
to poor usability of One-Shot. The two versions have
comparable usability. Rather, the most common rea-
sons given by subjects include (1) the Dialog version
gave useful feedbacks in the form of dynamic
prompts indicating dialogue state, refinement sug-
gestions, and others; (2) the Dialog version gave sug-
gestions that helped subjects discover content they
had not thought of; and (3) the Dialog version was
more natural to interact with. These results further
support the positive impact of dialogue in the TV
program discovery domain.

Conclusion and Follow-On Efforts
In this article, we presented a conversational second-
screen application for TV program discovery. Our
application has several unique features, such as the
use of a modular architecture plus a common ontol-
ogy across the different components of the architec-
ture, which enable a flexible, extensible system; the
use of deep natural language understanding, which
supports a wide range of expressive utterances; and
support for dialogue (that is, multiturn interactions
with the user), which further improves the user’s
experience in TV program discovery. Our application
operates at scale, that is, enabling TV program dis-
covery over “live” data that covers the entire United
States and Canada.

We also presented two user studies. The results
were encouraging given the in-the-wild nature of
both evaluations, and demonstrate the effectiveness
of our application in the domain of TV program dis-
covery.

Additional enhancements and investigation are
needed before our system can be made available to a
large user population. First, we are actively address-
ing the top failure types from our failure analysis. For
example, we could achieve a significant performance
lift by improving the robustness of the NER. We are

also developing additional enhancements to our
application — such as user preference modeling —
to further improve the end user experience. Finally,
we are actively investigating possible ways in which
our system could be embedded within existing
mobile virtual assistant capabilities and solutions to
support rich user requests (and interactions) in the
TV domain.
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Notes
1. Cycorp 2013. Research Cyc. (www.cyc.com)

2. A detailed description of Nuance’s automatic speech
recognition (ASR) is outside the scope of this article. Infor-
mation on a publicly available, commercial version of the
ASR service that we used is available at nuancemobilede-
veloper.com. 

3. For this study, a machine-learned approach based on the
maximum entropy framework was used for linguistic pro-
cessing. Details omitted due to space limit. The relational
structures produced by this approach are equivalent to
those produced by XLE.
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