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The challenge of creating an efficient, sustainable ener-
gy system requires solving design and control problems
in the presence of different sources of uncertainty.

There is the familiar array of decisions: discrete actions, con-
tinuous controls, and vector-valued (and possibly integer)
decisions. The tools for these problems are drawn from com-
puter science, engineering, applied math, and operations
research.

The problems of energy planning, however, introduce a
fresh dimension in terms of the range of different types of
uncertainty: familiar Gaussian noise, heavy-tailed distribu-
tions, bursts, rare events, temporal uncertainty, lagged infor-
mation processes, and model uncertainty. Randomness aris-
es in supplies and demands, in costs and prices, and in the
underlying dynamics (the efficiency of gas turbines, and
evaporation rates from reservoirs). A by-product of this vari-
ability is the need to use different types of objective func-
tions. We can minimize the expected costs, but there is grow-
ing interest in drawing on different types of risk measures as
we try to capture our attitudes toward uncertainty.

The design and control of energy systems is proving to be
a rich playground for specialists in the science of making
decisions under uncertainty (also known as stochastic opti-
mization). The purpose of this article is to identify some of
the modeling and algorithmic challenges that arise in ener-
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n The problem of controlling energy
systems (generation, transmission, stor-
age, investment) introduces a number of
optimization problems that need to be
solved in the presence of different types
of uncertainty. I highlight several of
these applications, using a simple ener-
gy storage problem as a case applica-
tion. Using this setting, I describe a
modeling framework that is based on
five fundamental dimensions and that
is more natural than the standard
canonical form widely used in the rein-
forcement learning community. The
framework focuses on finding the best
policy, where I identify four fundamen-
tal classes of policies consisting of poli-
cy function approximations (PFAs), cost
function approximations (CFAs), poli-
cies based on value function approxi-
mations (VFAs), and look-ahead poli-
cies. This organization unifies a
number of competing strategies under a
common umbrella.
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gy systems, and to demonstrate a way of modeling
them that represents a slight departure from the clas-
sical modeling frameworks used in computer science
or operations research.

The proper handling of information is arguably
one of the most subtle challenges in the correct mod-
eling of complex systems. We have well-developed
notation for modeling physical processes: the opera-
tion of generators, the flow of electricity, the storage
of power, and the logistics of people, equipment and
fuels. Deterministic optimization models follow a
small number of standard modeling conventions, as
evidenced by a substantial body of papers with mod-
els that are clear, correct, and implementable.

By contrast, the communities that attempt to com-
bine decisions and uncertainty are fragmented into a
jungle of subcommunities with names such as rein-
forcement learning (Sutton and Barto 1998), stochas-
tic search (Spall 2003), approximate/adaptive dynam-
ic programming (Werbos 1974, Powell 2011,
Bertsekas 2012), stochastic programming (Birge and
Louveaux 1997), Markov decision processes (Puter-
man 2005), decision trees, optimal control (Stengel
1994), and simulation-optimization (Swisher, Jacob-
son and Yucesan 2003, Fu 2008). Notation for the
modeling of information can be nonstandard even
within a community.

Ignoring for the moment our inability to agree on
the right way to write down these problems, we then
face the challenge of designing algorithms to deal
with the different types of uncertainty. Reliable algo-
rithms exist only for an astonishingly narrow set of
problems. The sorry state of affairs is difficult to dis-
cern from the ocean of research “proving” that algo-
rithms work and experimental work where we are all
heroes in our own papers. We focus on the challenge
of finding good policies, and identify four funda-
mental classes of policies that help to integrate what
have often been presented as competing algorithmic
strategies.

Sample Problems in Energy Systems
The process of delivering electricity requires a system
comprised of a series of components, spanning gen-
eration, transmission, storage, and systems for man-
aging loads (demands). Since electricity is a critical
but difficult-to-store commodity, utilities use com-
plex contracts to protect both consumers and them-
selves from the risk of high electricity prices. All of
these processes interact in a complex way that bene-
fit from the tools of stochastic optimization.

Energy Storage
The problem of storing energy now to be used later
arises in such a wide range of settings that it has
become a foundational problem, as ubiquitous in
energy systems as inventory theory is in operations
management. Storage is particularly important in the

context of the electric power grid, because electricity
is extremely difficult to store, resulting in a variety of
strategies to compensate for different types of vari-
ability (generator failures, transmission failures, and
unexpected increases in temperatures on a hot day).
There is tremendous interest in direct methods of
storing energy from the grid, spanning pumped
hydro (pumping water uphill), grid level battery stor-
age, compressed air (pumping air under high pressure
into underground cavities), flywheels, and vehicle to
grid.

Some settings include battery arbitrage, bidding,
pairing storage with wind or solar, and hydroelectric
storage.

Battery arbitrage: Real-time spot prices of electricity
on the grid will typically average around $50 per
megawatt-hour, but it may range down to the 30s
(and can even go negative!), but will routinely spike
above $200 per megawatt-hour, and occasionally
more than $500 per megawatt-hour. These prices
vary by node (they are known as locational marginal
prices, or LMPs), and they may be updated every 5 to
15 minutes. Battery arbitrage involves drawing ener-
gy from the grid when prices are low, and selling
energy back when prices are high. The problem is to
determine these upper and lower limits. 

Bidding energy storage: If your battery is large
enough, you are required to bid your energy into the
electricity market. Electricity markets are managed
primarily by independent system operators (ISOs)
such as PJM Interconnections, which manages the
grid that covers a triangle from the Chicago area to
Virginia up through New Jersey, and all the states in
between (13 in total). The rules differ between ISOs,
but a battery operator might have to quote lower
(charge) and upper (discharge) prices either an hour
ahead or even a day ahead. The optimization prob-
lem is to choose these prices to maximize net rev-
enues while managing the energy level in the battery.

Pairing storage with wind or solar: Wind and solar are
both very popular as a completely green source of
energy, but they suffer from our inability to control
them (a property known as dispatchability in the
electricity community). The sun shines only during
the day, and both wind and solar suffer from inter-
mittency, creating a need for backup sources. Storage
offers a way of smoothing both the intermittency as
well as daily cycles.

Hydroelectric storage: Some regions are served by
networks of water reservoirs, which introduces the
problem of optimizing the flows between reservoirs,
a problem that has long attracted the attention of the
stochastic optimization communities.

Storage problems have to be solved in the presence
of different types of uncertainty: uncertain genera-
tion from wind turbines and solar panels, stochastic
(and heavy-tailed) real-time prices, infrequent fail-
ures of generators or transmission lines, as well as
forecasts of temperatures and loads.
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Commodity Contracts
Utilities need to sign contracts, typically 3 to 5 years
into the future (but sometimes longer), to supply a
customer with energy at a guaranteed price. The util-
ity needs then to purchase hedges to protect against
potential spikes in prices. While spikes are generally
of short duration, a lengthy heat wave in Texas in
2012 cost a utility tens of millions of dollars. Con-
tracts can be purchased over different horizons. For
this problem, we might introduce the notation att΄,
giving us the amount we wish to purchase at time t
for delivery during time period t΄. Forecasts ftt΄ (for
example, of prices or demands) and decisions att΄ (for
example, purchasing forward contracts) are known as
lagged information and decision processes.

Negotiating these advance contracts requires that
we deal with different sources of uncertainty: the
long term growth in demand, improvements in ener-
gy efficiency, structural changes in commodity prices
such as gas and oil, as well as the usual spikes in
prices shown in figure 1.

Demand Response
Demand response, in the terminology of the energy
community (sometimes called demand side manage-
ment or demand side response), refers to the ability
to reduce demand using various incentives. This
might be through a real-time price or, more often, a
previously arranged contract where customers are
paid in return for agreeing to reduce their load on
demand. These contracts may offer consumers a low-
er price in return for their agreement to reduce their
load on demand (possibly under direct control of the
grid operator or a load-serving entity).

Demand response providers have to deal with a
number of issues. First, customers often want some
advance notice (two hours is typical) so they can take
actions to minimize the impact of the reduction.
Commercial buildings might want to air condition a
lobby so the cool air can be used later. A manufac-
turing enterprise might want to make extra product,
which is then held in inventory. Both of these exam-
ples represent a form of advance storage. In other cas-
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Figure 1. Electricity Spot Prices on the PJM Grid.
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es, demand is pushed off to later in the day (again, a
different form of storage).

Second, customers may not always respond in a
predictable way. Increasing the cost of charging an
electric vehicle may have a bigger response on a
warm and sunny day, when customers are more will-
ing to walk, than a cold and rainy day. It may be nec-
essary to learn a function that changes depending on
conditions.

The challenge we face with demand response is
that we are often dealing with people, not equip-
ment. Not only do we not know how people (includ-
ing organizations) may respond to load curtailment
incentives, the response may depend on local condi-
tions that change over time. Well known is the prob-
lem of fatigue, where responses diminish as repeated
demands for curtailment are made. These behaviors
introduce the dimension of model uncertainty (fig-
ure 2).

Unit Commitment
The unit commitment problem involves planning
the power generating units (nuclear, steam plants
run by coal or gas, and fast-ramping gas turbines)
that are to be turned on or off, and the level at which
they should be operated. Most grid operators follow

PJM (a transmission organization), which runs a day-
ahead market to determine the steam generators that
should be used tomorrow, and an hour-ahead market
that plans which gas turbines should be online. There
is also a real-time, economic dispatch problem that
can ramp a generator up and down within limits,
without turning it off or on.

Unit commitment problems are hard largely
because they might involve up to a hundred thou-
sand integer variables. Fortunately, such problems
can be solved using commercial solvers such as Cplex
or Gurobi. However, these solvers can only be used if
we view the future deterministically. ISOs have
learned how to insert reserve capacity to handle the
uncertainty in demand forecasts and the infrequent
generator failure, but face a much more difficult chal-
lenge in designing a schedule that can handle the
much higher level of uncertainty as generation from
wind and solar increases.

As an example, it is not hard to recognize that if
we are going to count on a significant contribution
from wind or solar, we are going to have to arrange
enough backup reserve to provide power when the
wind drops or clouds come in. But this is not enough,
especially when we are drawing energy from wind,
which can exceed the forecast. If this happens, we

Price

El
ec

tr
ic

ity
 d

em
an

d

Possible demand
response curves. 

Figure 2. Uncertainty in Demand Response Models.



also need to be able to ramp the generators down. If
we cannot do this (which might happen if gas tur-
bines are running at their minimum), then we can-
not use the wind energy, forcing us to replace free
energy, which generates no carbon dixoide (CO2),
with more expensive energy from natural gas, which
has a substantial CO2 footprint.

A significant part of unit commitment involves
protecting against generation and network failures.
Figure 3 shows the primary transformers in New York
City, which fail from time to time. It is important to
plan generation capacity that will meet demands
even in the event of these infrequent, but not rare,
network failures.

Replacement of Transformers
Transformers represent a critical technology in a grid.
A large number of transformers were installed in the
1950s and 1960s, and are still operating today. As a
result, utilities do not actually know the true failure-
rate curve. Overestimating the failure-rate curve
(which is common if the utilities believed the curves
provided by manufacturers were accurate) increases
costs by replacing transformers unnecessarily. How-

ever, underestimating the failure-rate curve exposes
the utility to the risk of a burst of failures. It can take
up to 12 months to order and install a replacement,
and utilities would be exposed to considerable finan-
cial risk if they had to order, say, 20 transformers in
a single year.

Information, Forecasting, 
and Uncertainty

The aforementioned examples help to illustrate a
range of different types of uncertainty. Before high-
lighting the different types of uncertainty, it is useful
to make a few remarks about the nature of informa-
tion and uncertainty.

First, all of the applications above involve some
sort of manageable resources (generators, energy in
storage, commodities, spare transformers, and even
customers). Exogenous information can enter in the
form of energy from the sun, uncertain tempera-
tures, uncertainty in the response of customers to
curtailment decisions, infrequent generator failures,
and heavy-tailed spot prices.

Second, we often have access to some sort of fore-
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Figure 3. Primary Feeders in New York, with Potential Failures.



cast. We might let ftt΄ be the forecast of solar energy
during time period t΄, using information available up
to time t. If Et΄ is the actual energy generated at time
t΄, it is reasonable to expect that the forecast of the
demand is unbiased, which is to say

(1)

where 𝔼t [...] represents the expected value of a quan-
tity made at time t. It is common to think of the ener-
gy Et΄ as random if we are at time t < t΄, but the real
uncertainty is not in Et΄, but rather the difference
between Et΄ and its forecast, which we might write as

(2)

Figure 4 illustrates a forecast of wind (bold solid
line) produced by a meteorological model called
WRF (weather research and forecasting). Also shown
is the actual observations (dashed line), along with
a number of sample realizations of the random vari-
able εt΄ drawn from a stochastic model estimated
specifically to capture the difference between actual
and forecasted wind. Note that in this plot, the vari-

ft !t = Et[E !t ]

E !t = ft !t + ! !t

ation in the forecasted wind is much more variable
than the error in the forecast. It is important to dis-
tinguish predictable variability from unpredictable
variability.

This application illustrates a different type of
uncertainty. In the graph, the meteorological model
seems to do a good job of forecasting sudden increas-
es in wind speed, but in addition to amplitude errors
(errors in the amount of wind), there also appear to
be temporal errors, representing errors in predicting
the timing of changes in the wind speed.

This discussion highlights the different types of
uncertainty that arise in different applications in
energy systems:

Gaussian noise, which is used to model the familiar
bell-shaped curve of the normal distribution.

Heavy-tailed distributions, as arise in models of real-
time electricity prices. In one study, electricity prices
were well predicted by a Cauchy distribution with infi-
nite variance.

Binomial random variables with small probabilities,
which would be used to model the event that a gener-
ator fails.
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Figure 4. Actual and Forecasted Wind, Along with Sample Paths Representing Other Potential Outcomes.



Poisson distributions, which would be used to model
the number of failures over a large network.

Temporal errors, which capture errors in the timing of
an event.

Model uncertainty, where we may not know the struc-
ture of a model or, more often, we do not know the
parameters of a model.

Unobservable processes. We will never know the elas-
ticity of demand in response to electricity prices, or
the true load on the network which is influenced by
activities that are outside of the range of our grid (but
still connected). Instead, we will have to represent our
understanding of these parameters through a proba-
bility distribution.

We also have to distinguish between problems
where we have a reasonable estimate of the probabil-
ity distribution of the uncertainty, and problems
where we do not. If we do not know the probability
distribution, we may assume that we are working in
a setting where we can observe the random events.
The second case is one way that model-free applica-
tions arise, although this is a term that is used differ-
ently in different communities.

Case Application: 
Analysis of a Solar Storage System

There is growing interest in pairing solar arrays with
battery storage on the grid, where the battery can be
used to smooth the variations in the solar energy
(which can be quite spikey due to clouds). The bat-
tery can be used for multiple purposes. A major use is
frequency regulation (smoothing out the high-fre-
quency deviations from the standard 60-Hertz signal

for electricity), for which there is an established mar-
ket that pays about $30 per hour, per megawatt of
power (a megawatt is the rate at which power moves
over the network). Another use is known as battery
arbitrage to exploit price volatility. Battery arbitrage
arises because the price of electricity (known as a
locational marginal price, or LMP), changes every 5
minutes (on the PJM grid — this frequency of update
varies from one ISO to another). LMPs typically range
between $30 per megawatt hour (but can go lower),
up to $1000 per megawatt hour, averaging about $50
per megawatt hour. A battery can be used to store
electricity when prices are low, and sell it back when
prices are high.

Managing energy storage requires a policy that can
react to price spikes, while thinking about the timing
of when solar energy will be generated, and when it
is needed. A sample configuration is illustrated in fig-
ure 5. Forecasts are often available for both genera-
tion and loads (which tend to depend heavily on
temperature). We have to decide whether our solar
array should meet current demands of a building, sell
to the grid, or store in a battery.

We are going to use this setting to illustrate some
principles of modeling and the design of control poli-
cies.

The Challenge of Modeling
It is very common in the reinforcement learning
community to represent stochastic dynamic prob-
lems as consisting of a state space S, action space A,
reward function r(s, a) , a discount factor γ, and a one-
step transition matrix P with element p(s΄ | s, a).
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Implicit in the representation is that the problem is
stationary. Such a representation would be called
model based in computer science because we assume
we know the transition matrix P (known in this com-
munity as the model). It is widely recognized that the
transition matrix is not known for many applica-
tions. Such models are known as model free and it is
assumed that if we are in a state sn and take action an,
that it is possible to observe from an external source
the next state sn+1 and an associated reward r(sn, an,
sn+1) . This line of thinking overlooks the many appli-
cations where the dynamics are known, but the tran-
sition matrix is not computable.

Such problems are often modeled as dynamic pro-
grams by writing Bellman’s optimality equation, giv-
en by

(3)

Of course, Bellman’s optimality equation is not a
model at all, but rather a characterization of an opti-
mal policy. The problem is that it is also well known
to be computationally intractable for all but the
smallest problems. The problem is most commonly
described as the curse of dimensionality, which refers
to the explosion of the state space as additional
dimensions are added. In reality, for many problems
there may be up to three “curses” of dimensionality,
which we discuss below.

As problems become more complex, we have to
put more attention into how we model these prob-
lems. There is a tendency to quickly put problems
into a canonical framework and then focus on algo-
rithms. However, the standard form can prevent us
from addressing important dimensions of the prob-
lem.

Next, I offer a simple framework that divides mod-
eling into five components: states, actions, exoge-
nous information, the transition function and the
objective function.

The State of the System
Perhaps one of the most important quantities in a
dynamic model is a state variable, but try to find a
formal definition. Classic texts such as Bellman
(1957) and Puterman (2005) avoid a definition with
statements such as “there is a state of the system.”
Wikipedia offers, “State commonly refers to either
the present condition of a system or entity,” which is
true but hopelessly vague, or, “A state variable is one
of the set of variables that are used to describe the
mathematical ‘state’ of a dynamical system” (using
the word you are trying to define in the definition is
a red flag that you do not have a definition). My own
definition (from Powell [2011]) is that a state variable
is the “minimally dimensioned function of history
that is necessary and sufficient to calculate the deci-
sion function, cost/reward function, and (if available)
the transition function” — in other words, all the

V(s) = mina!A r s,a( )+ ! p !s | s,a( )V !s( )
!s "S
!"

#$
%
&'

information you need to model the information
from time t onward, and only the information that
is needed.

Even this definition is so general that a student
modeling a complex system might overlook impor-
tant elements. It helps to describe three increasing
sets of variables: (1) The physical (or resource) state
Rt. This might be the energy in a battery, the state of
a generator, or the status of a component such as a
transformer that might fail. (2) The information state
It, which (in addition to including Rt) might include
the price of electricity, the current temperature, the
wind speed, or the price of natural gas. (3) The
knowledge (or belief) state Kt. In addition to known
information captured in It, the knowledge state cap-
tures distributional information about any unknown
parameters.

A common mistake is to assume that the state of
the system is given by the physical state, which is
often (but not always) the only controllable dimen-
sion(s). In some applications, we need to include
information that was first revealed in the past, lead-
ing some authors to describe these as history-
dependent (that is, non-Markovian) systems. For
example, we might need to know the wind speed
over the past three hours to predict the wind speed
in the next hour. Just because we first learned the
wind speed three hours ago does not make it any dif-
ferent (as a piece of information) from the wind
speed that we just learned now. But if we do not need
the wind speed four hours ago, then it is not part of
the (information) state.

The most subtle part of a state variable is the
knowledge (belief) state, which is how we describe
unobservable parameters. We might learn about how
the market responds to a price signal, but only by
varying the price and learning (imperfectly) the price
response coefficient. In this setting, we may wish to
try different prices to learn the price more efficient-
ly, but this would involve a classic exploration /
exploitation trade-off familiar to the bandit commu-
nity.

To illustrate using our solar-storage case applica-
tion, let Rt be the energy stored in the battery, and let
Et be the energy generated from the solar array over
t – 1 to t. Let pt be the price of electricity on the grid
(known as a locational marginal price or LMP) at
time t, which depends on the temperature Qt at time
t (LMPs tend to be both higher, and a lot more
volatile, at very low and very high temperatures).
The flow of energy into and out of the battery is gov-
erned by bids bt = (gt–1,t, ht–1,t), made at time t – 1,to
be implemented between t and t + 1. The battery
charges (buys from the grid) if pt < gt–1,t, and dis-
charges (sells back to the grid) if pt > ht–1,t. According
to market rules, the bids bt = (gt–1,t, ht–1,t)were set at an
earlier time (for simplicity, assume they were set at t
– 1), which means that at time t, bt–1 is part of our
(information) state. Finally, we recognize that tem-
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perature can be forecasted with some degree of pre-
cision. Let ftt΄ be the forecast of the temperature Qt΄ at
time t΄ given what we know at time t (note that ftt =
Qt). We can roll this into a single variable ft = (ftt΄)t΄≥t.
Pulling all this together gives us our state variable St
= (Rt, Et, pt, ft, bt).

The recognition that a forecast is part of the state
variable seems to be quite recent. However, we can
also argue that a forecast is really a part of our prob-
ability model of future events. Technically, if this
probability model is changing over time (as forecasts
are updated), then this probability model should also
be part of the state variable. But the probability mod-
el can also be viewed as a latent variable, one that is
used in calculating the expectation, but that is not
explicitly represented in the state variable.

Decisions
Decisions come in different shapes and sizes: discrete
actions, continuous scalars, and continuous or dis-
crete vectors of arbitrary size. The reinforcement
learning community works primarily with discrete
actions, denoted a. The engineering controls com-
munity tends to work with low-dimensional contin-
uous vectors denoted u. Finally, the operations
research community often works with very high
dimensional vectors denoted by x, typically in the
context of convex resource allocation problems.

An important complication that arises in many
applications involves lagged decisions. For example,
we might have to purchase electricity contracts in
month t to deliver electricity in month t’. Alterna-
tively, we might have to request at hour t that a com-
mercial building operator reduce its air conditioning
in hour t΄ (perhaps four hours in the future). We can
represent these decisions as att΄, or as a vector at =
(att΄)t ΄≥ t. Using this notation, we see that these lagged
decisions are very similar to our forecasts (and work
in a similar way, except that we control them).

When writing the model, it is important to define
decisions but defer until later how a decision will be
made. Standard modeling practice is to define an
arbitrary function π(s), referred to as a policy, that
returns an action a (or control u or decision x) given
a state s. In practice, researchers tend to quickly
adopt a particular class of functions to represent the
policy, which can artificially narrow their search for
a solution. For reasons that will become clear, we are
going to let π represent the structure of the function
used. Then, we let Aπ(s) be the function (policy) that
returns an action a if we are in state s.

We can use Xπ(s) or Uπ(s) for our policies if we are
using decision x or control u.

For our solar storage case application, the decision
variable would be at = (xt, bt,t+1), where

is the energy flows from grid to battery (or back),
solar panel to battery, and solar panel to grid, respec-

xt = xt
GB ,xt

SB ,xt
SG( )

tively, while bt,t+1 = (gt,t+1, ht,t+1) represents the bids we
make at time t that will be used at time t + 1. Next,
we let Aπ(St) be the function (policy) that returns the
action at when we are in state St.

Exogenous Information
The reinforcement learning community often avoids
explicit models of exogenous information by either
assuming that the one-step transition matrix is given
(the exogenous information is buried in this matrix),
or by assuming the application is “model free,”
which means that exogenous information is not
observable.

The exogenous information process provides the
information we need to describe the changes in the
state variables. Since there is very little in the way of
standard notation for modeling exogenous informa-
tion, we have adopted the style of putting hats on
exogenous information variables. We illustrate our
style using our solar-storage application. For this sys-
tem, the exogenous information comes in the form
of changes in LMPs, which we denote by δpt = pt – pt–

1, changes in the energy from the solar panel, δEt, and
changes in the forecasts of future temperature, δft. We
let Wt be our generic exogenous information vari-
able, which would be Wt = (δpt, δEt, δft) for this appli-
cation. If we were modeling storage over the grid, δpt
= (δpti)i∈I where δpti is the change in the LMP at node
(bus) i. Thus, Wt can have thousands of dimensions.

Transition Function
The concept of a transition function is widely used in
the engineering controls community, but it is a term
that is rarely heard in either the computer science or
operations research communities. The transition
function consists of a series of equations that describe
how the state variables change over time.

For our solar storage application, let η be the round
trip efficiency (typically around 0.80). If we let A = (η,
η, 0)T, then ATxt is the net flow into or out of the bat-
tery. Also, between t and t + 1 there will be exoge-
nous changes to the storage due to the interaction
between the available energy from the solar panel
Et+1, the LMPs pt, and the decision bt. To keep the
model simple, we represent this change using the
random variable δRt+1, which depends on the bid bt as
well as the observations of the change in the LMP
δpt+1 and change in the solar energy δEt+1. Our transi-
tion function is then

(5)

(6)

(7)

(8)

These equations capture, respectively, the evolu-
tion of storage (the only controllable state), followed

Rt+1 = Rt + A
Txt +!Rt+1

pt+1 = pt +! pt+1

Et+1 = Et +! Et+1

ft+1, !t = ft , !t +! ft+1, !t
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by the stochastic processes describing energy from
wind, the loads (demands) on the grid, and the
updating of forecasts. The variables with hats repre-
sent exogenous information that first became known
at time t + 1.

The transition function goes by many names in
the literature: transfer function, system model, plant-
model, or simply model. While the function the
notation f (...) is often used for the transition func-
tion, we use St+1 = SM(St, at, wt+1) to represent our tran-
sition function (or “system model”). Note that at
time t, the state St is known, the action at is com-
putable (using our policy Aπ(St)), but the new infor-
mation Wt+1 is random at time t (it will be known at
time t + 1).

This notation allows us to describe the second
curse of dimensionality, which we introduced earlier.
Let’s consider what is involved in computing the
one-step transition matrix. While it is convenient to
assume that the transition matrix might simply be
given, computing it requires solving the equation

(9)

where 1{E} = 1 if the event E is true, and the expecta-
tion is over the random variable W (or Wt+1). If we are
modeling a network with 100 storage devices, Wt+1
would have 300 dimensions. Calculating equation
(9), then, means computing a 300-dimensional inte-
gral (or summation). It is easy to overlook the need to
compute an expectation when calculating the one-
step transition function. In fact, a more natural way
of writing Bellman’s equation is to use its expectation
form

(10)

Now we see the expectation explicitly, and we can
understand that if our exogenous information
process is multidimensional, then we are going to
have a problem calculating this expectation. This is
the second curse of dimensionality. Finally, if at is a
vector, then enumerating a set of discrete actions to
solve the maximization problem introduces the third
curse of dimensionality.

The Objective Function
Our last step involves writing the objective function.
Let C(s, a) be the cost (contribution if we are maxi-
mizing) if we are in state s and take action a. If we fix
our policy with the function Aπ(St) when we are in
state St, we can write our objective function over a
finite horizon 0, …, T as

(11)

where St+1 = SM(St,A
π(St),Wt+1) governs how we evolve

from state St to St+1. In virtually all practical applica-
tions, equation (11) is calculated using simulation.

V(St )

=mina!A r(St ,a)+! E V(SM (St ,a,Wt+1)) | St{ }( )

min!!" EF! (S0 ,W ) = E! " tC(St ,A
! (St ))

t=0

T

!

p( !s | s,a) = E1
s '=SM (s,a,W ){ }

We let (W1, W2,...,Wt, ...) represent a Monte Carlo
sample realization of all the exogenous information.
There are, of course, many possible sample realiza-
tions. We can either use one very long simulation, or
take an average over a number of simulations.

For some applications, the policy Aπ(St) is station-
ary. While stationary policies (and infinite horizon
problems) are quite popular in the reinforcement
learning community, applications in energy systems
(in our experience) seem usually to require some sort
of time-dependent policy (the policy itself is a func-
tion of time, and not just a function of a time-depen-
dent state). Time of day, day of week, and seasonal
patterns tend to be present across applications, and
these tend to require the use of time-dependent poli-
cies.

The use of expectations is so widespread that we
tend to use them blindly as a kind of default objec-
tive function. Expectations represent the correct
operator when we want to minimize (or maximize)
our average performance. However, there are many
applications where we have to pay serious attention
to risk. For example, in the unit commitment prob-
lem, we have to worry about the risk that we do not
have enough generating capacity to cover the net-
work load. Also, a supplier signing a contract to
deliver energy at a fixed price in the future has to
worry about the risk that electricity might cost more
than the contract. If we want to depend on high pen-
etrations of wind and solar, we have to worry about
the risk that there will not be enough energy avail-
able from these intermittent sources. And if we are
interested in investing in solar while counting on the
value of solar renewable energy certificates (a mar-
ket-driven form of subsidy), investors will worry
about the possibility that the value of these certifi-
cates might drop from year to year.

A relatively simple approach to handling risk is to
replace the expectation with a quantile. If W is a ran-
dom variable, let Qa(W ) be the α quantile of W.
Equation (11) now becomes

(12)

This simple change is actually not so simple. First,
the quantile operator is no longer additive, which
prevents us from using the Bellman optimality equa-
tion. Second, it is much harder to estimate the quan-
tile of a function using standard Monte Carlo meth-
ods than it is to estimate the mean.

The finance community has developed a rich the-
ory around risk measures, especially a class known as
coherent risk measures, which enjoy certain proper-
ties that are important in finance. Coherent risk
measures enjoy properties such as convexity (with
respect to the costs), monotonicity (higher costs
mean higher risk), translationary invariance (adding
a constant does not change the risk), and positive
homogeneity (multiplying the costs times a scaling

min!!"Q"F
! (S0 ,W ) =Q" # tC(St ,At

! (St ))
t=0

T

#
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factor is the same as multiplying the risk times the
same scaling factor). For more on this topic, see
Shapiro, Dentcheva, and Ruszczynski (2009) and
Ruszczynski (2010). In our work, we have found that
we might worry about the risk of running out of ener-
gy or losing money on a contract; such risk measures
are not coherent, but rather fall in a category we are
calling threshold risk measures (see Collado and Pow-
ell [2013]). Considerable attention is also being giv-
en to worst-case performance, sometimes referred to
as robust optimization (for an excellent introduction
to the field of robust optimization, see Ben-Tal,
Ghaoul, and Nemirovski [2009]). The general field of
stochastic optimization using risk measures or
“robust” objectives is quite young, but with tremen-
dous applications in energy.

The biggest challenge with finding the best policy,
whether we use equation (11), (12), or any other risk
measure, is determining what is meant by a search
over policies. There is a fairly wide range of commu-
nities working in the general area of making effective
decisions over time under uncertainty. Part of the
diversity is explained by differences in problems
addressed by different communities. But a contribut-
ing factor is the lack of a standard vocabulary for
describing problems, and there seems to be a surpris-
ing misunderstanding in terms of what is meant by
the word policy. We address this issue next.

Policies
If we were solving a deterministic problem, our chal-
lenge would be to find an optimal set of decisions.
When we work on stochastic problems, the challenge
is to find a set of functions that are known in the lit-
erature as policies. Since Bellman’s seminal work in
the 1950s on dynamic programming, there has been
a widely shared presumption that this means solving
Bellman’s optimality equation (equations (3) or (10)).
While this works well on a small class of problems, it
has proven to be astonishingly difficult for most real
applications, and certainly those that we have
encountered in energy applications. As a result, dif-
ferent communities have identified a variety of
strategies to solve different problem classes, a situa-
tion we have come to refer to as the jungle of sto-
chastic optimization, illustrated in figure 6. Our con-
clusion, however, is that the range of strategies is not
as diverse as it seems, since similar policies are often
disguised by differences in presentation style and
notation.

There seems to be some confusion about the
meaning of the term dynamic program. Dynamic
programming is often equated with Bellman’s opti-
mality equation. Actually, a dynamic program is a
sequential decision problem, as depicted in equation
(11). Bellman’s optimality equation is (1) a charac-
terization of an optimal policy, and (2) a foundation
for finding a policy. A policy, on the other hand, is a

mapping from a state to an action — any mapping. A
policy, for example, may require solving a decision
tree or a linear (or integer) program.

The search for an optimal (or good) policy can
seem like an impossible task. How in the world are
we supposed to search over some arbitrary class of
functions? This seems even more hopeless when our
decisions involve hundreds or thousands of dimen-
sions (as occurs in the stochastic unit commitment
problem) and have to obey a complex set of con-
straints. It turns out that a good guide is to look at
the range of tools that people are already using.

The Four Classes of Policies
My own experience stumbling around the jungle of
stochastic optimization for several decades has led to
the conclusion that all the different algorithmic
strategies can be boiled down into four fundamental
classes: policy function approximations, cost func-
tion approximations, policies based on value func-
tion approximations, and look-ahead policies.

Policy function approximations (PFAs) are func-
tions that return a state given an action, without
solving an imbedded minimization or maximization
problem.

Cost function approximation (CFA) covers policies
where we minimize a cost function, usually modified
in some way to achieve better long-term perform-
ance. In rare cases, minimizing a single period cost
may be optimal.

Policies based on value function approximations
(VFAs) is the class of policies most often associated
with dynamic programming, where we optimize a
one-period cost/contribution plus an approximation
of the value of future costs/contributions given the
downstream state.

Look-ahead policies cover the entire class of poli-
cies where we optimize over a finite horizon H, but
then just implement the first period decision. Look-
ahead policies include rolling/receding horizon pro-
cedures, decision trees, rollout heuristics, Monte Car-
lo tree search, model predictive control, and
stochastic programming.

The four classes of policies can be briefly summa-
rized as PFAs, CFAs, VFAs, and look-ahead policies. A
more detailed summary of these policies, illustrated
using energy applications, follows.

Policy function approximations represent the class
of policies that are described by an analytic function
of some form. PFAs come in a variety of forms: (1)
lookup tables (wear a coat if it is raining); (2) para-
metric models, such as Aπ (St | θ0) = θ0 + θ1St + θ2S

t
2; (3)

neural networks; and (4) nonparametric functional
approximations.

In our energy application, the decision to charge
or discharge a battery is governed by the rule: “charge
if pt < gt or discharge if pt > ht,” which is a form of PFA.
PFAs are the only class of policy that do not require
solving a minimization problem.
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A policy based on a cost function approximation
might be written

(13)

where Cπ(St΄,a | θ) is a modification of the original cost
function C(St΄,a) designed to achieve better long-term
performance. The vector θ represents parameters that
can be tuned to improve the performance of the pol-
icy, and may affect the cost function itself or the con-
straint set At(θ). For our energy application, the set
At(θ) would capture the flow conservation con-
straints on energy flows as well as logical limits on
bids. Cost functions are widely used in engineering
practice, but they have not received the respect they
deserve. In the energy setting, a cost function is often
used for the economic dispatch problem, which is a
linear program that is allowed to adjust generators up
or down (but cannot turn them on or off) to meet the
current set of demands in real time.

Policies based on value function approximations
would be written

(14)

At
! (St ) = argmina!At (! )

C" (St ,a |! )

At
! (St |" ) =

argminxt
C(St ,at )+# E Vt+1(S

M (St ,at ,Wt+1)) | St{ }( )

where we have replaced the value function with
some sort of approximation. For many problems, it
is useful to define the post-decision state variable Sa

t,
which is the state at time t immediately after a deci-
sion has been made (see Powell [2011], chapter 4).
For example, in our energy storage problem we intro-
duced earlier, the post–decision state would be

where

We have to augment the state variable to reflect that
we not only have the bids bt–1 made at time t–1, but
also the bids bt that we just chose (to be used at time
t + 1). Note that the post–decision state is a deter-
ministic function of St and at, allowing us to write
our VFA-based policy as

(15)

The policy π determines the structure of the value
function approximation. For example, it is very pop-
ular to use a linear model with a predefined set of
basis functions, which we would write as

St
a = Rt

a , pt ,Et ,ft ,bt!1,bt( )

Rt
a = Rt + A

Txt

At
! (St |" ) = argminat

C(St ,at )+Vt
a(St

a )( )
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(16)

where the basis functions ϕf(s) represent the type of
policy, while the regression parameters θf are the tun-
able parameters.

Look-ahead policies are widely used in practice. In
their most popular form, a deterministic approxima-
tion of the future would be used, producing a policy
of the form

(17)

where the look-ahead horizon is represented as one
tunable parameter θH, but where the cost function or
constraints can also depend on tunable parameters
(θC and θA, respectively). There is a large community
that attempts to build uncertainty into the look-
ahead model. In computer science, this falls under
the umbrella of Monte Carlo tree search, designed for
discrete action spaces. The operations research com-
munity, with its focus on vector-valued decisions,
uses the framework of stochastic programming,
which approximates future uncertainties by building
a scenario tree of sampled outcomes (not unlike
Monte Carlo tree search); see Sen and Higle (1999)
for an easy-to-read tutorial. The difference is that the
scenario tree is constructed in advance. In this set-
ting, θ would be the set of parameters that govern
how the scenario tree is generated. Look-ahead poli-
cies are the only policy class that does not require
some sort of functional approximation. While this
can be quite attractive, the cost is that this is a rela-
tively brute-force approach, and is computationally
the most difficult.

In addition to this list of policies, it is possible to
create a wide range of hybrids. For example, we
might combine a deterministic look-ahead policy
with a value function approximation, or a look-
ahead policy with a cost function approximation
(with modified costs and constraints). Look-ahead
policies or policies based on value function approxi-
mations can also be combined with low-dimension-
al policy function approximations.

Note that three of our policies involve some sort of
function approximation, whether it be the cost func-
tion approximation, the policy function approxima-
tion, or the value function approximation. Functions
can be approximated using three broad strategies:
lookup tables, parametric functions (these may be
linear or nonlinear in the parameters), and nonpara-
metric functions. In practice, look-ahead policies are
often solved using a form of (parametric) cost func-
tion approximation, which typically enter the prob-
lem in the form of bonuses, penalties and modified
constraints (such as reserve capacity).

Look-ahead policies combined with cost function

At
! (St |" )

= argmin
at ,at+1,...,at+H( )!A (! A )

C(St ' ,at ' |!
C )

t '=t

t+!H

"

At
! (St |" ) = argmina C(St ,at )+ ! f"f (St

a )
f !F
!

"

#$
%

&'
approximations are popular in planning electricity
markets. Grid operators use large optimization mod-
els to determine which generators to turn off or on
(the unit commitment problem) by planning over
perhaps a 48-hour horizon (the look-ahead part).
Built into this model are constraints to ensure that
we have sufficient reserve, where we might require
that total generation is (1 + θ) times the forecasted
load (this is the cost function approximation part).

Note that all of the policies above depend on some
type of tunable parameters, which was represented
using θ. Once we fix the class of policy, we can tune
the parameters using

(18)

In general, we cannot compute the expectation
exactly. As a result, we have to turn to the large field
of stochastic search algorithms.

Choosing a Policy
The list of policies above transforms the vague search
over policies in equation (11) into a much more con-
crete process of identifying specific classes of policies,
and then optimizing the tunable parameters. We
have used all of these policies in our energy systems
research.

So how do we choose between these? Not surpris-
ingly, it all depends on the structure of your policy. I
present some guidelines from our own empirical
work:

Policy function approximations are best when the
structure of the policy is obvious. For example, we
might want to change a battery when prices are
below one number, and discharge when it is above a
higher number. This structure is simply obvious (or
may even be specified by regulations). When this is
the case, we only have to search for the best values of
the tunable parameters.

There are problems where minimizing single-peri-
od costs are optimal, and others where it is a good ini-
tial heuristic. For example, our utility may want to
assign repair resources to jobs at least cost, but this
might ignore a job that requires moving a long dis-
tance. We can introduce a bonus for covering jobs
based on how long they have been waiting.

Value function approximations work well when
you feel that approximating the value of being in a
future state is relatively simple. This does not mean
the problem is small. We have successfully used VFAs
to optimize large transportation systems. VFAs seem
to work especially well for energy storage problems,
and problems where the value of being in a state can
be approximated in a straightforward way using stan-
dard statistical tools. High dimensionality is not an
issue if you are willing to live with separability.

If you have some type of forecast (prices, loads,
weather), then a look-ahead policy is going to be a
natural choice. The question is: can you use a deter-

min! E! C(St ,At
! (St |! ))

t=0

T

!
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ministic approximation of the future, or do you need
to model uncertainty explicitly in the look-ahead
model? This is not an obvious choice, and solving a
stochastic look-ahead model can be quite hard (basi-
cally, it is a stochastic, dynamic program, but typi-
cally on a somewhat simplified problem). Determin-
istic look-ahead models can sometimes provide good
solutions for stochastic models.

Often, a deterministic look-ahead policy may work
well, but we are concerned about robustness. Howev-
er, achieving a more robust solution may be fairly
obvious. For example, standard industry practice with
the unit commitment problem is to require reserve
capacity to account for possible network failures. I
would call this a hybrid look-ahead/CFA policy.

It is generally best to use a policy with a min or
max operator (that is, anything but PFAs) if your
decision is a vector that has to satisfy a set of con-
straints. These problems can generally be solved
using some sort of math programming solver, such as
Cplex, Gurobi, CVX, or LOQO, that is designed to
handle constraints. PFAs work well when we have a
good understanding of the structure of the policy,
but this generally only happens for very low-dimen-
sional decisions. However, it is possible to combine a
PFA with an optimization-based policy by including
the PFA in the objective function in the form of a
penalty term for deviating from what the PFA feels
would be best for a particular variable. For example,
our economic dispatch model (which minimizes cost
to meet demand, a form of CFA) may wish to dis-
charge energy to the grid because of a high price, but
our battery may be close to the point where further
discharge will degrade its lifetime, requiring that we
deviate from our guidelines for discharging the bat-
tery (a form of PFA).

Closing Notes
The applications in energy systems open up a wide
array of challenges that require making decisions in
the presence of different sources of uncertainty. The
thoughts in this article are designed to bring togeth-
er the different communities working in stochastic
optimization. The contributions of the reinforce-
ment learning community in the solution of prob-
lems with discrete action spaces with nonconvex
objective functions would benefit from the skills of
the operations research communities (approximate
dynamic programming, stochastic programming,
simulation-optimization) that are familiar with vec-
tor-valued decisions with convex objective functions.
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