
DrillEdge is a software system that provides real-time deci-
sion support when drilling oil wells. Decisions are sup-
ported through analyzing real-time data streams of

parameters measured both on the surface and downhole when
drilling. The real-time analysis identifies symptoms of problems,
which are combined to provide best practices for how to handle
the current situation. Verdande Technology has developed
DrillEdge to reduce the cost and decrease the probability of fail-
ures in oil well drilling. Currently, DrillEdge continuously mon-
itors around 30 oil well drilling operations in parallel for sever-
al customers and has been deployed commercially for two years.
Verdande Technology’s customers include Baker Hughes, Petro-
leum Development Oman (PDO), and Shell, among others. In
March 2011, Verdande Technology was awarded the Meritous
Award for Engineering Excellence for its DrillEdge software plat-
form by E&P Magazine.

More and more oil well drilling operators monitor a large part
of their drilling operations in real time from off-site real-time
operation centers (RTOCs), which are located close to their
experienced subject matter experts of various kinds. In this way
the operators seek to provide remote support and ensure that
knowledge can be transferred between shifts, operations, and
regions. Typically, less experienced personnel are located at the
drilling rig and more experienced personnel are stationed in the
RTOCs. The experiences gained from handling a problem at one
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n In this paper we present DrillEdge — a com-
mercial and award-winning software system
that monitors oil well drilling operations in
order to reduce nonproductive time (NPT).
DrillEdge utilizes case-based reasoning with
temporal representations on streaming real-
time data, pattern matching, and agent systems
to predict problems and give advice on how to
mitigate the problems. We document the meth-
ods utilized, the architecture, the GUI. and the
development cost in addition to two case stud-
ies.



rig can be utilized by the personnel in the RTOC
when handling another problem later on at a dif-
ferent rig probably located in another region.
Another advantage of RTOCs is cost reduction as
subject matter experts are centralized. Booth
(2011) has documented the advantages and histo-
ry of RTOCs.

Monitoring a situation is to become aware of it.
This is the main concern for decision makers. End-
sley (1995) investigated situation awareness in
depth and identified three levels of situation
awareness. First the elements of the situation are
perceived, then the situation must be compre-
hended, and finally the future state of the situation
can be projected. It is only after the decision mak-
er is aware of the situation that a decision can be
made regarding how to handle it. These three lev-
els apply to oil well drilling operations. Experience
with similar situations is valuable when making
decisions. By recalling similar problems, different
options for actions and risk assessment may be
identified (Crichton, Lauche, and Flin 2005).

Reusing past experience, that is, being reminded
of similar situations and making use of decision
steps made earlier, has turned out to be an efficient
way for human beings to handle new situations.
Case-based reasoning (CBR) (Kolodner 1992) is a
computational method (Watson 1999) that is
based on this principle. One of its roots stems from
Roger C. Schank’s work on representation of mean-
ing for generation of natural language (Schank
1980). While working with natural language pro-
cessing, Schank started considering inference as
being the most important part and proposed
scripts as a method to connect events together by
the remembrance that they have been connected
before, which again led to the study of dynamic
memory (Schank 1983) for situation understand-
ing, problem solving, and learning.

The leap from memory structures and retrieval algo-
rithms that allow understanding to happen to the
use of cases in other sorts of reasoning is a short
one. [...] Further observations showed that, indeed,
cases were useful in problem solving (Kolodner
[1993], page 102).

In CBR, new problems are solved by reusing the
solutions of the most similar past problems stored
in a case base. Furthermore, newly solved problems
are stored in the case base and thus incremental
and sustained learning is supported intrinsically by
the reasoning method. The reasoning process can
be viewed as a cyclic, four-step process often
referred to as the CBR cycle (Aamodt and Plaza
1994).

First, the current problem is compared to the
past cases in the case base, and the most similar
cases are retrieved. Second, the solutions of the
most similar cases are reused to solve the current
problem. Third, the suggested solution is revised

and possibly updated, and finally the current prob-
lem with its revised solution is retained in the case
base. A case in DrillEdge is a concrete drilling situ-
ation that comprises a collection of symptoms that
previously lead to a problem and a recommonda-
tion for how to handle a similar situation. Cases
are captured from actual historic drilling data and
contain the operators’ best practices for how to
handle the situations.

DrillEdge is not alone in being a commercially
deployed CBR system, as CBR systems have a long
tradition in this regard (Watson 1997, Cheetham
and Watson 2005). General Electric has deployed
several CBR systems internally, and one of them is
a software tool for determining color formulas that
match requested colors (Cheetham 2004). CBR
even helped users with specially compiled TV
guides that suit their particular viewing preferences
(Cotter and Smyth 2000).

In the next two sections we explain some core
terms of oil well drilling and explain the type of
problem addressed by the DrillEdge system. This is
followed by three sections in which the rationale
for our method choices are described, also describ-
ing the two main method types — pattern recog-
nition and CBR — in more detail. After a section
on related work, the DrillEdge system architecture
is described. Information about the system devel-
opment process and costs are provided, and a
description of the system’s deployment status is
given. Finally, we present two case studies from
actual deployment.

The Problem
The main task of drilling engineers situated
remotely in a RTOC is to monitor and understand
the situation on the oil well drilling rigs in order to
be able to support the rig crews if a problematic sit-
uation occurs. Problems that might occur that can
be detected by remote observation of drilling
parameters are when the drilling pipe gets stuck in
the ground because of gravel pack around it, the
drill string twists, off and drilling mud is lost in the
formation. There are several problems related to
the task of monitoring the drilling situation
remotely.

Perceiving elements of the drilling situations is
done through monitoring the real-time parameter
graphs. For some drilling engineers, this means
staring at graphs for 12 hours straight. This is of
course a tiring and boring task, which might result
in important symptoms and trends being over-
looked. Therefore all elements of the situation
might not be perceived.

To comprehend the current situation, all rele-
vant information must be available. Even if the
perception of elements is performed perfectly, as
two or more shifts perform the monitoring task,
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important information might be lost because of
rotating the shifts. Symptoms of problems that
might have been deemed unimportant in the past
might be crucial in understanding what is hap-
pening currently. If these seemingly unimportant
symptoms were observed by another shift but were
not communicated, making the right decision in
the current situation is hard.

Another problem is the huge amount of data
provided by different sources. Understanding a
problem is to build a mental model of it based on
the relevant information. Often the problem for a
drilling engineer is to combine all the information
or to find the right clue even when the data is
available (Booth 2011). Some of the information is
provided in real time, such as some physical mod-
els that are updated accordingly, while other infor-
mation needs to be computed manually. Other
information is stored in the drilling plan or daily
drilling reports. Combining all the relevant infor-
mation to get the full view constitutes a high work-
load and is not practically possible.

Being able to project the future status of the sit-
uations requires not only theoretical knowledge
but also experience. One of the reasons for moving
expert knowledge from the rigs to RTOCs was to
colocate the experience. However, there is still
unsatisfactory experience transfer in the oil well
drilling industry, which easily leads to a lack of
experience when it would be needed. The two
main reasons for this are the age gap and the con-
nection between personnel demands and the oil
price. Because the oil price governs the personnel
demands, a significant number of personnel are
laid off when the oil price is low. The age gap
describes the current distribution of personnel
experience. Recently, the oil price has been high
and the demand for personnel is high. Also, many
are close to retirement age, and there are few peo-
ple in between. Therefore the industry expects a
gap in the experience needed.

Lack of experience can be mitigated by looking
up best practices or incident reports that are rele-
vant to the current situation. However, as search-
ing for the right information in a data base or
report often results in too many or too few relevant
documents, this is rarely done.

Motivation for Using 
AI Technology

In the past decade, the focus in the oil and gas
industry has been on collecting drilling data and
making it available remotely in real time. This
focus has seen the development of standards for
transferring data as well as web-service-based stan-
dards for accessing databases. As a result, there is

now a common platform to plug into data streams.
However, applications that plug into this infra-
structure to do useful things with the data have
been limited and initially focused on visualization
tools to support manual interpretation of data in
centralized real-time operation centers. The idea
behind RTOCs is that if a problem develops, deep
expertise from across the organization can be
brought in to assist, rather than having to depend
solely on people at the rig site. However, in order
to bring expertise in on a well, the rig or the RTOC
must first recognize that a problem is developing,
and manually monitoring sensor data from a rig is
a highly skilled and work-intensive task. It is diffi-
cult for even an experienced person to monitor
more than a few operations at a time manually.
This means that unless such monitoring can be
partially or fully automated, the value of RTOCs
cannot be fully realized.

The most obvious way to automate rig monitor-
ing is to set more or less complex alarms that will
notify human operators if some value or combina-
tion of values crosses a threshold. This type of
technology exists, but is of very limited use
because most symptoms are much more complex
than what can be captured by such an alarm. Tra-
ditionally, the oil & gas industry has relied on
physical models to generate expected data for
many sensor values, such as the pressure down in
the hole with the drill bit. These physical models
are essential tools in planning a well, and much
research in the industry has been directed toward
making real-time versions of these models that are
continuously updated and tuned with data from
the well. This is a challenge because it involves
such issues as inverse modeling of fluids, taking
single point measurements of pressure and flow
and working out the fluid dynamics of the whole
system. Further complications arise as the physical
properties of the formation are not completely
understood in many cases, and differences in
equipment cause differences in sensor responses.
Still, drilling specialists are able to interpret the
data to understand what is going on in the opera-
tion. In this situation, we are interested in investi-
gating a data-driven AI approach to modeling the
heuristics used by domain experts, rather than the
use of full physical models. This approach has
proved highly successful.

Our initial approach to the problem was to use
instance-based reasoning and other machine-
learning approaches to predict problems directly.
This very quickly proved difficult. First, there are
relatively few examples of serious incidents. An
incident such as stuck pipe, where the drill string
gets stuck and part of the well has to be redrilled,
can happen a few times a year. It is therefore nec-
essary to have a system that is able to learn from
very few examples, ideally a single case. The data
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dimensionality and dynamics increase the difficul-
ty of the task. Although there may not be more
than 10 to 20 parameters to monitor, it is not pos-
sible to detect symptoms of these problems with-
out taking the dynamics into account, often look-
ing at trends and the frequency of occurrence of
events over the last 12 to 24 hours. Learning such
dynamics directly from sensor data would be
extremely difficult even with an abundance of cas-
es, but to do so with only a few examples is clearly
not feasible. The approach we have taken is to use
a two-stage approach. First, pattern matching
agents are used to identify symptoms in the data
by forming abstractions over the sensor data, then
CBR is used to identify whether this set of symp-
toms has caused problems in similar situations in
the past.

The pattern-matching agents making up the first
step of this process are designed so that each agent
seeks to identify one type of symptom that the
domain experts have identified as important in
diagnosing a particular problem. For instance, one
type of symptom that can be predictive of stuck
pipe is the pack off (plugging of the wellbore
around the drill string) symptom. The process of
creating these agents is a classical knowledge-
acquisition process seen in expert systems in gen-
eral. The domain experts are typically able to pro-
vide some pointers on what to look for and can
easily identify examples, but the expert is typical-
ly not conscious of all the heuristics he or she uses
in identifying the pattern. Thus, the creation of
agents that reliably identify symptoms is an itera-
tive process where the agent is tested on as much
data as possible, and the results are studied by the
knowledge-acquisition engineer and the domain
expert together in order to improve it for the next
iteration. The abstraction provided by the pattern-
matching agents provides an abstraction where
machine learning can be performed even with rel-
atively few instances. Our main reason for choos-
ing case-based reasoning during this stage is that
DrillEdge is a decision support system used by
domain experts, and we need to be able to provide
not only an answer but also explanatory support
for that answer. In DrillEdge we have even chosen
not to make the prediction of the system explicit.
DrillEdge simply displays all the most similar cases
(if any is sufficiently similar) and sorts the cases by
the prediction they imply. This allows us to present
DrillEdge as an automated search tool that will
bring relevant cases to the attention of the user
whenever a situation develops, rather than a clas-
sical style expert system that provides a prediction
or a diagnosis. This has helped in presenting
DrillEdge as a tool rather than a threat to the
expertise of the user.

Symptom Recognition
Several methods of symptom recognition are being
and have been tested. So far we have settled on two
stable and reliable methods: rudimentary mathe-
matical modeling and deviation from expected
trend.

Rudimentary mathematical modeling is
able to describe the following type of symp-
toms: formation hardness, soft formation, and
hard stringers. Advanced models provide good
understanding of the underlying physical process-
es, but they can be computationally very expensive
and highly dependent on data quality and on the
assumptions. Therefore, in many occasions, it is
better to use simple models by just focusing on
selected effects. A simple or a rudimentary model,
as opposed to an advanced model, is characterized
by selecting only the most obvious influencing
parameters and by ignoring unimportant effects.
Such models do not explain or model every aspect
of the process but are limited to those parameters
that are important for the specific deviation from
the normal background level. A simple model of
formation hardness is exemplified below: 

ROP = C1 · DR · WOBC2 · RPMC3 (1) 

Here, ROP is rate of penetration, DR is drilling
resistance, WOB is weight on bit, and RPM is rota-
tions per minute. Testing this equation for roller-
cone bits has shown that best results were found
when C2 and C3 were equal to 1.5 and 1 respec-
tively. C1 is taking into account all effects not
explicitly included in the previous equation, like
bit type, bit characteristics, hydraulics, pore pres-
sure, and so on. These effects are assumed constant
after drilling has started.

FH = C1 · DR = ROP/(WOB1.5 · RPM) (2)

If formation hardness, FH, is above a certain
threshold value recorded over a drilled distance of
less than 2 meters, then hard stringers and soft for-
mation are triggered and marked in the real-time
drilling data.

We have selected the problem of interpreting
repeatedly mechanical resistance during the trip-
ping operation to introduce deviation from expect-
ed trend, illustrated by the two symptoms overpull
and took weight. Tripping out is to remove the drill
pipe from the hole to replace a dull drill bit, for
example, while tripping in is to run the drill bit
back to the bottom of the hole. Overpull is when
the weight on the hook carrying the whole drill
string suddenly gets higher when tripping out, and
a took weight is when the weight of the whole drill
string suddenly gets lower when tripping in. To be
able to detect the event overpull when tripping out
on the basis of this method we need first to estab-
lish a normal HKL (hook load) value.
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Case-Based Reasoning
While the heuristic mathematical models identify
the symptoms observed while drilling, the CBR
engine compares the current drilling situation
with past drilling situations stored in the case base
in order to find out whether the current situation
develops into a problematic one. Thus the CBR
engine is diagnosing the current situation and this
encompasses finding out which type of problem is
being observed. The past drilling situations stored
in the case base are selected because they represent
problems experienced in the past that the operator
wants to avoid. However, the role of a case is not
only to classify the current situation, but also to
provide experience and best practices for how to
handle the situation. Also, the outcome of the past
situation is known, and it indicates what might
happen in the current situation if the problem
develops and corrective action is not taken.

Symptoms of drilling problems typically happen
around the drill bit, and the drill bit can be placed
anywhere in the well. As the drill bit is not at the
bottom of the well at all times but often is pulled
up from the bottom when cleaning the hole or
completely out of the hole when a change of tools
is required, the position where a symptom is
observed is essential. Some sections of the well
(that is, vertical parts) might be particularly prob-
lematic, and in such sections the symptoms typi-
cally cluster together. Also, the exact time a symp-
tom has been observed is important, as it is
essential for the operator to know whether the rig
is experiencing problems right now. So, both the
location in the well and the time when a symptom
was observed are important.

Some problematic situations are characterized
by symptoms occurring in the same section where
previous symptoms were observed, while other sit-
uations are characterized by symptoms occurring
repeatedly over the last couple of hours. In some
situations the operators should be warned that
they are pulling through a section in which prob-
lems were experienced earlier.

However, symptoms of problems are not the
only features that characterize a problematic oil
well drilling situation. Some problematic situa-
tions are characterized by the design of the bottom
hole assembly that is used, such as which drill bit,
the number of and the placement of stabilizers,
and whether a mud motor is used or not. Others,
again, are related to a specific formation or its com-
position. Also the type of drilling fluid that is used
and its composition might be relevant, as some
drilling fluids react with the formation, which can
cause swelling of the well making it thinner. The
problems experienced in vertical wells might be
quite different from the ones experienced in one
with a horizontal trajectory. Considering the fact
that paths of wells are getting more and more com-

plex, some wells have trajectories that curve more
than 90 degrees from the vertical (going upward
rather than downward), the trajectory of the well
is important too. Hence, the context in which the
symptoms occur is an important factor when dif-
ferentiating between problematic situations, espe-
cially when trying to identify possible root causes.

Cases have two parts: The case description and
the case solution. The case description is used by
the computer to compare the two cases while the
case solution is an experience transfer from one
human to another. All the above-mentioned fea-
tures are parts of the case description. The problem
solution part is a textual description intended for
humans, and it has four subparts. A problem
description part that describes the operation they
were performing in the specific situation, a symp-
toms part that describes the symptoms they were
experiencing, a response action that describes the
actual actions they took in this situation to rectify
the problem, and a recommended action, based on
a postanalysis, that describes what should have
been done. The problem description can easily
contain pointers and links to best practices or inci-
dent reports that are stored in different software
systems. Cases are captured and written by drilling
experts that are trained in recognizing problemat-
ic situations with symptoms that can be identified
by DrillEdge.

Cases are represented in tree structures and
stored as XML files. The root node of the case con-
tains two main sections, the problem description
and the problem solution. Sections might contain
other sections or leaf nodes. For example, the prob-
lem description contains the formation, drilling
fluid, bottom hole assembly, well geometry, and
symptoms. The formation section contains the for-
mation name and the formation composition
(lithology), while the drilling fluid section con-
tains properties describing the drilling fluid that is
used, such as mud weight and whether it is oil
based or water based. The bottom hole assembly
describes the design of the bottom hole assembly.
Important features are how long it is, which drill
bit is used, the number of stabilizers, and their
positions. The section well geometry represents
target depth of the current section and the depth
of where the section started. The sequence section
is a special kind of section that contains events,
and events are representations used for symptoms.
Events have different types corresponding to the
type of symptoms they represent. The symptoms
section contains two sequence sections. One rep-
resents the distribution of events over a given
depth around the drill bit, while the other repre-
sents the events distributed over a limited time
period. The end of the time sequence is the time
the drill bit was located at a given depth, and the
start of the time sequence represents the time the
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current situation started. The ranges above and
below the drill bit in the depth sequence indicate
the section of the well that is relevant for the situ-
ation in the opinion of the expert that built the
case.

The degree of similarity between two cases is
found by comparing the root nodes in the case
trees. The similarities of root nodes are aggregated
into section similarities, and section similarities are
combined recursively until the similarity of the
root nodes is found. The similarity of the root
nodes is the resulting similarity of the case com-
parison. Root nodes can be of different types, like
integers, doubles, enumerations, and sequences.
For each type of node a set of similarity measures
can be configured for comparison. For example,
not all numeric features are compared using the
same type of similarity measure. Both standard

similarity measures (Richter 2008) and custom-
made similarity measures, which are domain spe-
cific, are used to compare features.

The CBR process continuously compares the
current situation with cases stored in the case base.
Figure 1 illustrates the reasoning process. For each
time step, the real-time data parameters are inter-
preted, and if symptoms of problems are identified,
events are fired. The current situation is represent-
ed by both important events and contextual infor-
mation. Events are stored in the case as depth and
time sequences sorted on the distance from the
drill bit and distance from the current time, respec-
tively. The CBR system searches for and retrieves
cases from the case base and compares them to the
current case. The comparison result is sorted on
similarity. All past cases with a degree of similarity
above a given threshold are visualized on a GUI
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element, the radar, to alert and advise the user of
past historic cases that are similar to the current sit-
uation. By investigating the similar situations the
user is advised on what others did and what should
have been done in similar situations in the past. A
new case is created by the drilling engineer if the
current situation is not covered by any cases stored
in the case base or if other advice applies to this sit-
uation. New cases are typically quality assured
through peer review by a group of domain experts.
The system learns when new cases are added to the
case base.

Related Work
Several researchers and companies have tried out
case-based reasoning methods for oil drilling assis-
tance. Very few systems have reached deployment,
however, and no other system than DrillEdge, to
our knowledge, links online data streams to past
cases for real-time decision support in an ongoing
drilling process. Partly based on a previous study
(Shokouhi, Aamodt, and Skalle 2010), we discuss
related work where CBR methods are applied to an
ongoing oil drilling operation as well as applica-
tions in related drilling domains, such as well plan-
ning, reservoir engineering, and petroleum geolo-
gy.

An application of CBR in planning of a drilling
operation was described by the Australian research
organization CSIRO (Kravis and Irrgang 2005). The
system, Genesis, can use multiple cases at varying
levels of generalization. Mendes, Guilherme, and
Morooka (2001) developed an application of CBR
in offshore well design. A genetic algorithm (GA)
was used to determine the proper trajectory of the
well, starting out from a set of solutions that form
the initial population. The cases retrieved through
CBR constitute the initial population. Perry et al.
(2004) developed a case-based system for drilling
performance optimization. Project documents,
well summary documents, and technical lesson
documents are three levels of documents in the
knowledge base hierarchy.

Popa et al. (2008) applied CBR to determine the
optimum cleaning technique for filter failures. A
small subset of historical cases was taken from the
database to evaluate the proposed solution with
the actual results. According to the similarity
assessment, 80 percent of the cases were correctly
assigned to the successful cleaning method.
Bhushan and Hopkinson (2002) developed a CBR
system to search for reservoir analogs in the plan-
ning of new fields. A knowledge-sharing tool,
called the Smart Reservoir Prospector (SRP), was
developed.

A CBR framework was developed by Schlum-
berger to assess the applicability of seven lift meth-
ods for land, platform, and subsea wells (Sinha,

Yan, and Jalali 2003). Abel, Silvaa, Campbell, and
De Rosc developed a CBR system to support the
interpretation and classification of new rock sam-
ples (Abel, Reategui, and Castilho 1996). To pro-
vide petrographic analyses, the system achieves its
reasoning power through the set of previous cases
combined with other domain knowledge. Later the
system was introduced into a real corporate envi-
ronment (Abel et al. 2005).

Research related to the DrillEdge system, but not
part of it, has been done as joint work between Ver-
dande Technology, Statoil, and our university
groups. One line of research has been to study the
effects of including an explicit model of general
domain knowledge with the cases, as done in the
earlier Creek system (Aamodt 2004). Shokouhi et
al. (2009) utilized a newly developed version of
Creek to integrate case-based and model-based rea-
soning (MBR) for oil drilling. Abdollahi et al. stud-
ied the problem of uncontrolled release of forma-
tion fluids into the well through the lifecycle of a
well. It was shown that predefined rules could suc-
cessfully be integrated with CBR to obtain causes of
well leakages (Abdollahi et al. 2008).

DrillEdge
DrillEdge has a client-server architecture in which
the server is a distributed system running on large
computing clusters like the Amazon Elastic Com-
puting Cloud (ECC) while the clients run on regu-
lar desktop machines.

Architecture
As depicted in the leftmost part of figure 2, the
process view of the architecture can be illustrated
as a layered architecture with four layers. The low-
est level is data acquisition in which data are
acquired from the data sources. Data sources can
be both manually updated when starting to moni-
tor an operation and updated automatically in real
time. The second lowest level is data interpretation
where patterns are recognized and symptoms are
flagged by software agents. The symptoms are fed
into the case-based reasoning engine, which rec-
ognizes broader patterns, not focusing on a small-
er set of parameters, but the complete situation.
Finally, at the topmost level the data and findings
are visualized for the users.

The middle part of figure 2 depicts a client-serv-
er view of the architecture. Each machine in the
cluster is indicated by a gray, squared box that runs
services, which are drawn as white boxes with soft
corners. Different kinds of services are provided by
the server cluster. The main service is the operation
service, and it is responsible for the three lowest
levels of the processes view, which are related to
one real-time drilling operation. In the illustration
two machines run a total of four operations desig-
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nated with an O and a subscript for its ID. Other
services are the license service, which ensures that
the operator is not running more operations than
it has licenses for and is designated L, and the man-
agement service, designated M, which manages the
setup and configuration of operations. Clients, on
the right, communicate with services through a
front-end server, whose only task is to ensure that
the services get the right messages. All communi-
cation between the server cluster and the clients is
done using HTTP.

The rightmost part of figure 2 shows the archi-
tecture of the operation service. The operation
service includes a WITSML (Wellsite Information
Transfer Standard Markup Language) client that
requests data from a WITSML server and is respon-
sible for storing the received data in the appropri-
ate data structure. Some data are stored in a depth
table while others are stored in a time table. The
agents fetch data from the data structures to per-
form their calculations. Some of the agents com-
pute new values each time step, for example, trend
agents, while others store data only when they find
new symptoms. The CBR engine is also imple-
mented as an agent. It is however dependent on
the calculations from all the other agents, so it will
not execute until all other agents have done their
calculations for a given time step.

Client
The intention behind the client is that it should be
easy to use and self-explanatory. Users can choose
between several different tabs that visualize data in
different manners, like parameters plotted against

time or depth, the static properties that the opera-
tion is configured with, or an overview. The two
main tabs are the time tab and the overview tab.
Figure 3 shows screen captures of the two tabs with
the overview tab on the left and the time tab on
the right. The screen shots are included in order to
illustrate the structure of the screens and not their
detailed contents.

The overview provides three main types of infor-
mation: the depth view, the radar, and the case
solutions. The depth view visualizes the drill bit in
the hole, and it shows the current depth and the
formation layers and their lithology. Both rotation
of the drill bit and mud flow are animated to make
it easier for the users to understand the current
activity. Also, events are plotted according to depth
so if the drill bit is pulled through a section of the
well that was problematic to drill, this can be seen
from the depth view. The most important GUI ele-
ment on the overview screen is the radar, and this
is emphasized by the amount of screen real estate
it occupies. Past cases are plotted on the radar
according to how similar they are to the current
situation. The more similar a case is to the current
situation the closer to the center of the radar the
case is located; if a case is 100 percent similar, it
will be in the center. All cases that are less similar
than a threshold will not be plotted on the radar.
A threshold of 50 percent has shown to ensure that
only relevant cases are brought to the attention of
the user. The radar is divided into different sectors
according to the problem area the cases in the case
base are representing, such as lost circulation and
mechanically stuck pipe. When clicking on a case on
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the radar, the case solution will appear on the right
describing the past situation, the problem, and rec-
ommended actions.

The time tab provides a list of available parame-
ters that can be dragged over to the parameter
graph columns so that the values will be drawn as
graphs with time flowing downwards. Events are
drawn in the event column so that users can see
exactly when symptoms appeared. As event names
use common terminology for the users, they can
easily look at the corresponding parameters to see
whether they agree with the symptoms. Case
graphs can be drawn for each case in the case base,
and they show the similarity degree of the cases at
every time step. Thus the case graphs convey the
history of how the current situation has developed
seen through the lens of the past cases stored in
the case base.

Development and Cost
The development of DrillEdge was based on
research performed at the Norwegian University of
Science and Technology (NTNU), more specifically
within the AI and Drilling Engineering research
groups (Skalle, Sveen, and Aamodt 2000; Aamodt
2004). In 2006, the Norwegian Research Council’s
Petromaks program in conjunction with Statoil,
the largest Norwegian oil company, provided fund-
ing for a two-year project to develop a pilot system

for studying whether case-based reasoning and
related technologies could be used to detect and
predict drilling problems. This project funded the
two first years of commercial development, pro-
viding approximately $3 million to fund 14 man-
years of development over these two years. At the
end of this period, in 2008, a prototype of
DrillEdge was finished, although another 6 man-
years of development were required before the first
customer version was released in 2009, placing the
total development cost (excluding marketing, but
including all overhead) at around $4.5 million.
Since then, development has continued both to
broaden the types of drilling problems that can be
detected, but also to develop features such as
administrator tools, email alerts, support for cloud
deployments, and so on. Today, the DrillEdge
development team consists of 12 full-time devel-
opers and testers.

Commercial Deployment
Drilling for oil and gas is very expensive, especial-
ly in offshore locations. In the North Sea, a single
6000 meter well can cost $100 million to drill. The
industry also recognizes that there are significant
savings possible here — depending on the well
complexity, the average nonproductive time (NPT)
can be as much as 30 percent. Some of this NPT is
unavoidable, for example, waiting out especially
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Figure 3. Two Different Screens from the DrillEdge Client.

The overview screen is on the left side and the time view is shown to the right.



bad weather, but DrillEdge is currently able to
address problems causing about half of this down-
time. At the time of writing, there are 1190 off-
shore rigs in the world, about 70 percent of which
are operational at any time.1 These rigs have an
average day rate (cost for the operator company to
rent the rig) of $144,000 per rig. Provided that the
NPT can be reduced by 5 percent across the off-
shore rig fleet, this translates to a cost saving of
over $2.1 billion per year. In addition, there are
more than 3000 rotary land rigs in operation in the
world, a number that is increasing rapidly due to
the drilling for shale gas in the United States (there
are about 2000 rotary land rigs in the United States
alone, an increase of about 300 over the last year)
(Baker Hughes, inc. 2012). These rigs have lower
NPT and day rates than offshore rigs, but we are
interested in real-time drilling data to improve effi-
ciency and consistency of drilling.

DrillEdge is in use by Shell in its Real-Time Oper-
ating Centers in the United States, where it has
been used on many of the most challenging wells
drilled by Shell across the world in the last six
months. It is also installed as a core part of the real-
time monitoring infrastructure in the national oil
company of Oman, PDO. At the time of this writ-
ing, DrillEdge monitors more than 20 rigs in Oman
alone. In September 2011, Verdande Technology
signed a partnership with Baker Hughes, a major
oil service company, which means Baker Hughes
will use DrillEdge as a key component in its real-
time monitoring services as sold to operators, start-
ing in 2012. In addition, Verdande Technology
also executed successful pilot installations for more
than 15 oil operators during 2011.

Case Studies
DrillEdge has been used successfully for analyzing
data for several customers both in pilot tests and
commercial deployment. Two of the case studies
that have been made are summarized below. In
each of them DrillEdge analyzed several sets of his-
torical data. The tests were performed blindly; Ver-
dande Technology was not informed beforehand
of which or when the operator had experienced
problems. Nor was any information about the out-
come given.

Case Study: Stuck Pipe
A major service company wanted to minimize the
risk of stuck pipe events for their clients in Latin
America and around the world. DrillEdge was
employed in a postwell historical analysis to deter-
mine if the losses and ballooning events could
have been recognized in advance.

A project was launched to evaluate the potential
of DrillEdge technology to recognize the stuck pipe
problems. Time and depth-based data from several

prior land drilling operations in Latin America
were employed in a rigorous testing routine. Over-
pull events, erratic torque, and pack offs were
thought to be key contributors to the stuck pipe
scenarios. Cases were built in DrillEdge and these
cases were associated with other data, such as BHA,
trajectory, mud properties, and the formation. Well
drilling data was then streamed while DrillEdge
technology monitored it for precursor events. Tests
were highly successful with the DrillEdge technol-
ogy consistently predicting stuck pipe incidents 6
to 8 hours prior to their occurrence. While drilling,
this window was deemed sufficient to proactively
address a stuck pipe risk. The success of this proj-
ect set the stage for further testing in live field tri-
als from RTOCs.

Case Study: Lost Circulation
A major operator encountered costly NPT due to
mud losses and subsequent hole ballooning.
DrillEdge was employed in a postwell historical
analysis to determine whether the losses and bal-
looning events could have been recognized in
advance.

Using a combination of information including
pit volumes, well and drill string geometry, ROP
and lag times, the DrillEdge system was able to rec-
ognize changes in volume that were not account-
ed for by the drilling process. In a historical analy-
sis of a well with known problems related to mud
losses and hole ballooning, DrillEdge first saw indi-
cations of losses three days before the customer
experienced total losses. During this time, a series
of loss events was detected, combined with hole
ballooning at connections. Had DrillEdge been
employed on this well, the risk associated with
these problems could have potentially been better
assessed, leading to remedial actions based on
company best practices that could have reduced
costly NPT.

Challenges
We face mainly three challenges in our work. These
are revising the symptom recognition agents, the
time used to find and capture a proper case, and
the real-time demands on the similarity compari-
son.
The symptom-recognition agents recognize pat-
tern signatures for the different symptoms by ana-
lyzing the change of several parameters in the
WITSML data streams. Several factors affect the
symptom signatures, such as the depth, the hole
diameter, and the tools used. Hence, when enter-
ing new markets the conditions can change sig-
nificantly, and thus the symptom-recognition
agents need to be revised. Our goal is to avoid
regional customization of agents, which makes the
agent development considerably more difficult.
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Building good cases that capture significant sit-
uations and provide proper advices require more
work than first anticipated. Finding the data con-
taining problematic situations and quality assur-
ance of the data in regard to data frequency and
missing parameters are very time consuming, as
companies have not really used the stored data
before. After finding and assuring the quality of
the data, experts analyze it and assure that it con-
tains symptoms supporting the claimed problems.
Then, the symptom analysis is performed before
experts can start identifying where the cases
should be captured. Captured cases need to be
quality assured to check how early and whether
they actually would create relevant alarms for the
problems. Building one case requires around 40
man-hours on average by a drilling expert trained
in identifying proper situations.

Providing decision support in real time puts con-
straints on the case comparison. We have found
that sequence matching is the bottleneck, and we
are currently studying methods for speeding up
the sequence comparison (Gundersen 2012).

Conclusion and Future Work
In this article, we have presented DrillEdge, a soft-
ware system for supporting decisions in real time
when performing oil well drilling operations.
DrillEdge has been developed since late 2006 and
has been commercially deployed for more than
two years on more than 200 wells. We show how
AI methods such as case-based reasoning, pattern
matching, and agent systems have helped large oil
well drilling operators to prevent doing the same
mistakes over and over again.

Verdande Technology is currently expanding
into new industries and offers solutions in finance
and health care in addition to oil well drilling. In
contrast to the oil well drilling domain, in which
five minutes reaction time is sufficient, financial
services are very focused on low latency, and this
requires further improvement of the case-based
reasoning engine.

Note
1. See the RIGZONE 2012 offshore rig day rates (www.rig-
zone.com).
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