
In machine learning, we often find ourselves in new situa-
tions where we have only a few annotated data to build a
reliable learning model. This often happens when we meet

with new domains and encounter new tasks. In such cases,
instead of manually labeling more data, which incurs great
costs, an alternative method is to look to related auxiliary data
for help. These data may have a different probability distribu-
tion or may even be represented in a different feature space.
However, there may still be much useful knowledge that we can
extract from these auxiliary data to improve the learning per-
formance in the new domain. In our view, transfer learning
aims at solving exactly these types of problems, by learning in
one task domain and applying the knowledge to another. In the
machine-learning and data-mining fields, researchers have con-
sidered a variety of related approaches, including multitask
learning for classification (Thrun and Mitchell 1995; Schmid-
huber 1994; Caruana 1997), learning theory–based transfer
learning (Ben-David and Schuller 2003) and text and multime-
dia classification (Daumé and Marcu 2006; Dai et al. 2007a,
2007b; Blitzer, McDonald, and Pereira 2006; Blitzer, Dredze, and
Pereira 2007; Raina et al. 2007). 

A major challenge in transfer learning is to identify the com-
mon knowledge between auxiliary or source tasks and apply
such knowledge to new or target tasks of interest. Such common
knowledge can be explicit or implicit and can be represented in
more or less sophisticated ways depending on the nature of the
problem. Much transfer learning work has been done in the past
for classification and regression tasks as reviewed in a recent sur-
vey article by Pan and Yang (2010). In these learning tasks, the
knowledge to be transferred is mostly declarative in nature, and
can be as simple as the data instances or features themselves. By
identifying parts of the source-domain data that we can “reuse”
in the target domain, these methods typically find parts of a
domain that are shared with the target domain. Then, some
data instances along with their associated labels are added to the
target domain to enable an expansion of the target domain
training data. Variations of these methods have been explored
in the literature, such as semisupervised learning or active learn-
ing. For other tasks, such as those that go beyond classification
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n Transfer learning aims to solve new learning
problems by extracting and making use of the
common knowledge found in related domains.
A key element of transfer learning is to identify
structured knowledge to enable the knowledge
transfer. Structured knowledge comes in differ-
ent forms, depending on the nature of the learn-
ing problem and characteristics of the domains.
In this article, we describe three of our recent
works on transfer learning in a progressively
more sophisticated order of the structured
knowledge being transferred. We show that
optimization methods and techniques inspired
by the concerns of data reuse can be applied to
extract and transfer deep structural knowledge
between a variety of source and target problems.
In our examples, this knowledge spans explicit
data labels, model parameters, relations
between data clusters, and relational action
descriptions. 



and clustering, we may have more sophisticated
forms of knowledge to transfer, where the trans-
ferred knowledge can take the form of procedural
or problem-solving knowledge such as that used in
an automated planning task. 

In this article, we select three of our recent proj-
ects to illustrate three different levels of complexi-
ty in the structured knowledge to be transferred.
Starting with a data-level reuse view, we first con-
sider transfer learning in an indoor location-esti-
mation task based on WiFi signals, which we mod-
el as a classification task in the work of Zheng and
colleagues (Zheng et al. 2008). Here we build a
“bridge” through a hidden Markov model struc-
ture and associated parameters. We use the source-
domain data to tune some key model parameters
in order to “reconstruct” the target domain train-
ing data for classification in a new time period. We
will see that the knowledge being transferred is rel-
atively simple, and the objective is to improve the
classification accuracy. In the second example,
which gives an overview of the work of Li, Yang,
and Xue (2009), we move on to consider a more
complex form of knowledge for reuse, where we
consider how to solve the data-sparsity problem in
collaborative filtering, which is a problem that
occurs widely in many areas such as social network
analysis and product recommendation. While it is
difficult to make accurate recommendation when
data are very sparse, we might be able to find some
related auxiliary domains where the data are rela-
tively dense. We can then identify some common
relationship between parts of the data to help
learning in the target domain. In a final example,
through the work of Zhuo and colleagues (Zhuo et
al. 2008), we illustrate how to transfer the proce-
dural knowledge between different domains in
acquiring action models for automated planning,
where transfer learning helps reduce the manual
model-construction effort in a target domain. In
this work, the knowledge to be transferred relates
the preconditions to postconditions of actions,
which is a key ingredient in a problem-solving
task. By incorporating the structured knowledge
on the relations in different domains, we can learn
new actions in the target domain with less effort. 

We note that in all three of our examples, the
structure of the knowledge to be transferred ranges
from simple to complex. Despite the apparent dif-
ferences between the learning tasks, we show that
optimization methods can be applied to extract
and transfer structural knowledge that ranges from
explicit data labels and model parameters to rela-
tions between data clusters and relational action
descriptions. In our examples, the classification
tasks are less structured than the procedural tasks,
although in general, classification or declarative
knowledge reuse is not inherently less structured
than procedural or problem-solving tasks. 

Transfer Learning in 
WiFi Localization 

Structured knowledge can be found in many
machine-learning tasks. In WiFi-based human and
object tracking and location estimation problems,
domain knowledge is inherently structural in the
sense that knowledge depends on the temporal,
spatial, topological relationship between different
data instances as well as attributes. To illustrate, we
first explain what WiFi localization is. 

Accurately locating a mobile device in an indoor
or outdoor environment is an important task in
many AI and ubiquitous computing applications.
While global positioning systems (GPSs) are wide-
ly used outdoors, GPS signals are found to be easi-
ly blocked by a building’s walls in indoor environ-
ments. In such cases, alternative solutions for
indoor localization need to be found to support
the growing location-based services, such as navi-
gation, mobile social network services,

1
and home-

based healthcare such as is discussed in Pollack
(2007). WiFi localization can be modeled as a clas-
sification task, as shown in figure 1. When a
mobile device is closer to a wireless access point
(AP) in the WiFi environment, it can detect a high-
er received signal strength (RSS). At different loca-
tions, a mobile device can detect different signal
strength values from various APs. We can then
build a mapping from the detected signal strengths
to the locations. Such a mapping function can be
modeled as classification or regression learning
tasks. 

In this work, we exploit a hidden Markov mod-
el (HMM) to capture the temporal and topological
structures of the problem domain, in which we
take into account both the user dynamics and the
environmental factors. Once trained, an HMM is
able to predict the user locations based on the cur-
rently received RSS signals. However, a difficulty is
compounded by the fact that the signal distribu-
tion changes as a function of time (see figure 2).
This is a problem, since to obtain a high level of
accuracy, more data have to be manually labeled
again in a new time period, which is both expen-
sive and impractical. What we hope to do is to
transfer as much previously obtained knowledge as
possible. To solve the problem, we assume that the
structure of the HMM and some key parameters
stay constant while some parameters must change
across time periods. While this is a relatively sim-
ple form of structural knowledge transfer applica-
tion for classification prediction, we will see that
for solving this problem it is very effective. In the
following, we give an overview of our solution in
Zheng et al. (2008). 

Our high-level transfer learning idea is shown in
figure 3. First, we model the prediction problem as
a classification problem on a set of discrete loca-
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tion grids. At time 0, we collect RSS data with loca-
tion labels over the whole area. This step is time
consuming, but is done only once. Based on this
data, we train an HMM model with parameters 0
= (0, A0, 0) for localization at time period 0. In an
HMM model, 0 is a collection of signal values and
location label pairs, which is called a radio map. A0
is the transition matrix that describes the way the
user moves; it is a probability transition matrix
mapping from one location state to another. 0 is
a probability distribution showing where a user is
most likely located; it is the prior knowledge on
the likelihood of user locations. In a WiFi localiza-
tion problem, 0 often changes over time because
the signal strength varies depending on a large
number of environmental factors, such as the
number of people around, the temperature and
humidity, and so on. A0 can also change over time,
because at different time periods, people may con-
duct different activities. For example, at noon, peo-
ple are more likely to have lunch at a canteen,
while during working hours, people are more like-
ly to move within an office area. Therefore, both 0
and A0 need to be adapted to their new values as t
and At for a new time period t. Among the param-
eters, 0 can be seen as relatively constant over
time,2 since in many situations, basic human

behavior does not change dramatically in an
indoor environment. For example, a professor usu-
ally stays at his office longer than he walks in cor-
ridors during the day. 

Thus, at a new time period t, we will transfer the
HMM model and parameters (0, A0, 0) as follows: 

At time 0, we select some locations to put some
sniffing WiFi readers, which we call “reference
points.” These reference points are used to collect
up-to-date RSS values with known location labels.
The intuition is that, if we know how the signals
change in some reference-point locations, we may
use this knowledge to roughly predict the RSS val-
ues of other locations. Our solution here is to use a
multiple linear regression model to capture the
temporal predictive correlations between the RSS
values at the reference points and those at other
locations. We first learn a set of regression coeffi-
cients k = {k

ij} that encode the signal correlation
between n reference-point locations and one non-
reference-point location k. Based on the regression
formula, when we know the RSS values at the ref-
erence locations, we exploit a linear interpolation
to rebuild the radio map  at time t. The regression
weights  can be learned with time 0’s data, which
are assumed to be constant over time. 

Given an initial HMM 0 =(0, A0, 0) as the base

Articles

SUMMER 2011   97

Figure 1: WiFi Localization as Classification into Location Grids. 
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model, at a new time period t, we improve 0 by
applying the regression analysis as mentioned
above and obtain a new HMM t =(t, A0, 0). At
time t, if we collect some additional unlabeled user
traces by simply walking around the environment,
we can further improve the new model. Since these
trace data encode the knowledge of user transition
behaviors and the current time period’s signal dis-
tributions, they can be used to transfer the local-
ization model to t

new =(t
new, At, 0) by an expecta-

tion-maximization (EM) algorithm. 
To test our model, we set up an experimental

environment in an academic building equipped
with 802.11g wireless networks at Hong Kong Uni-
versity of Science and Technology. The area is 64
meters  50 meters, including five hallways. It is
discretized into a space of 118 grids, each measur-
ing 1.5 meters  1.5 meters. Our evaluation metric
is based on classification accuracy, which is calcu-
lated as the percentage of correct predictions over
all predictions. In our problem, a random guess
would result in only 1 percent accuracy. We col-
lected labeled WiFi data at three time periods:
08:26 am, 04:21 pm and 07:10 pm. We used the
08:26 am data to build the base model and carry
out adaptation at other time periods. At each loca-
tion grid, 60 samples were collected. We randomly
split 2/3 of the data as training and the other 1/3
as testing. Additional unlabeled traces are collect-
ed for building the HMM at each time period. 

We first test the localization accuracy over dif-
ferent data distributions without adaptation. The
results are shown in figure 4. We use the 08:26 am
data to build the base model 0, and then apply 0
to predict the labels for test data traces of the three
time periods. As shown in figure 4a, the localiza-
tion accuracy of 08:26 am data is the highest, at 92
percent.3 This high accuracy is due to the fact that
the test data follow the same distribution with the
training data. As time goes by, the signals become
more noisy and changing, and the performance
drops. At 04:21 PM, the busiest time in the work
area, the noise level reaches the highest because of
many people walking around at that time. During
this period, the accuracy thus drops to the lowest
point of about 68 percent, which is unsatisfactory.
This observation implies a need for transferring the
localization model over different data distribu-
tions. 

We compared our model, denoted as TrHMM, to
a number of state-of-the-art baseline models. The
most notable of these models is the Radar system
in Bahl and Padmanabhan (2000), which is based
on a k-nearest-neighbor algorithm. We also com-
pared our model to two other systems, Landmarc
in Ni et al. (2003) and LeManCoR in Pan et al.
(2007), which are weighted k-nearest-neighbor and
semisupervised learning systems, respectively. We
used 10 percent of the locations as reference points
and 5 unlabeled traces for adaptation in TrHMM
and LeManCoR. We ran the experiments 5 times
and reported the confidence intervals. The results
are shown in figures 4b and 4c As we can see, the
TrHMM system consistently outperforms the oth-
er methods over time, especially when the number
of reference points is small. We have varied many
other parameters, and the relative performance of
various systems stay the same: TrHMM greatly out-
performs others in all cases (Zheng et al. 2008). 

To encourage more research in this area, we
made the data set available.4 In Yang, Pan, and
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Figure 2: RSS Variations over Time at a Fixed Location. 
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Zheng (2008) we give a detailed description of the
learning tasks. 

To summarize, in this section, we have consid-
ered transfer learning for a classification task in a
WiFi localization problem. The knowledge to be
transferred here corresponds to explicit structured
knowledge (that is, HMM model structure) and
some associated parameters. Even though the sys-
tem performs relatively well in the tested domains,
it still relies on the availability of several reference
points located in various locations for the purpose
of collecting up-to-date data. When the new
ground-truth data are very sparse, such as when we
try to measure a large geographical area, the sys-
tem will encounter problems in its adaptation. A
possible solution for this problem is to identify
deeper knowledge that can be transferred from
other time periods or geospatial locations. 

Transfer Learning for 
Collaborative Filtering 

In the previous section, we discussed an approach
to transferring the model structure and the associ-
ated parameters from one setting to another, as the
data distribution changes over time. In this sec-
tion, we consider a more sophisticated problem,
when the relations between two sets of entities at
a group level can be transferred from one domain
to another. We aim to explore such structural
knowledge for solving a collaborative filtering
problem. 

Recommender systems make product sugges-
tions to users based on their past ratings and selec-
tions. A major technique in making recommenda-
tions is collaborative filtering, or CF (Resnick et al.
1994; Sarwar et al. 2001), which aims to find simi-
lar users and items to help make the recommenda-
tion. A typical representation employed is a user-
item rating matrix, where each entry represents
how a user has rated an item. The accuracy of CF
methods depends on the density of a rating
matrix. In many real-world recommender systems,
users often rate only a very limited number of
items. Thus, the rating matrix is often extremely
sparse, resulting in poor recommendation per-
formance. This sparsity problem has been a major
bottleneck for many current CF methods. 

In a transfer learning setting, we may borrow
useful knowledge from another rating matrix from
a different but related CF domain. Consider the
scenario of launching a new book-rating service.
Due to a lack of visitors in the beginning, the rec-
ommendations based on CF may be very inaccu-
rate. Now, suppose that we already have a dense
movie-rating matrix available on a popular movie-
rating service. Is it possible to establish a bridge
between the two rating matrices and transfer use-
ful rating patterns from the movie-rating matrix,

so that we may obtain higher performance in rec-
ommending books? 

Intuition tells us that this is possible, since
movies and books are somewhat related. Transfer
learning can be beneficial if we identify the right
knowledge to transfer. While individual users may
be different between the target and auxiliary
domains, groups of such users may include adults
and teenagers, and students and office workers.
The tastes of these user groups for item groups may
be consistent across domains. If we can establish
the correspondence between the groups, we can
then alleviate the data-sparsity problem by using
the auxiliary domain knowledge. The central the-
sis here is that we can transfer the informative and
yet compact group-level rating patterns from the
auxiliary rating matrix to help fill in some missing
values in the target task. In terms of structured
knowledge to be transferred, this group-level pref-
erence or rating knowledge is more sophisticated
than the explicitly expressed HMM structure and
parameter knowledge in the last section, as the
group-level correspondence must be learned and
the relationship being transferred concerns rela-
tions between groups of individuals rather than
individual instances. 

We refer to the target task as a p  q book-rating
matrix that has a sparse structure Xtgt, which has
very few observed ratings. Using this matrix to
make recommendations, we may only obtain poor
prediction results with CF. To solve this problem,
we consider an available auxiliary domain that is
related to the target learning task, which is a dense
m  n movie-rating matrix Xaux. We refer to the col-
lection of group-level rating patterns to be trans-
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Figure 3. Model Transfer from Time 0 to Time t.
The triangles denote reference points in the area.
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ferred as a “codebook, “ which is a k  l (k < m, k <
p, l < n, l < q) matrix that relates user groups to item
groups. By assuming the group-level rating pat-
terns in Xtgt to be similar to Xaux, we can recon-
struct the target rating matrix by expanding the
codebook. An example of a codebook can be found
in figures 5 and 6. The user groups I, II, and III can
be students, professors, and workers, respectively.
Likewise, the item groups A, B, and C can be come-
dies, dramas, and documentaries, respectively. The
codebook then states facts such as “professors gen-
erally prefer to watch documentaries.”

To learn the codebook, our first step is to com-
pute the user and item groups in the auxiliary rat-
ing matrix Xaux. To this end, we need to simulta-
neously cluster the rows (users) and columns
(items) of Xaux. This can be done through various
coclustering algorithms, with which we can com-
pute the codebook by averaging all the ratings in

each user-item cocluster as an entry (see figure 5).
Through the codebook, we can then transfer the
user-item rating patterns from Xaux to Xtgt by
expanding the codebook.

By assuming that there exists an implicit corre-
spondence between the user/item groups of the
auxiliary task and those of the target task, we can
reconstruct Xtgt by expanding the codebook
through duplicating certain rows and columns in
the codebook. The duplication of the i-th row/col-
umn in the codebook means that there is a set of
users/items in Xtgt that behave in a similar way to
their corresponding group prototypes in Xaux. The
reconstruction process of Xtgt expands the code-
book as it reduces the differences between the
observed ratings in Xtgt and the corresponding
entries in the reconstructed rating matrix, based
on some loss function. An example of the target
rating matrix reconstruction is illustrated in figure
6. We use a user-cluster membership matrix and an
item-cluster membership matrix to expand the
codebook learned from Xaux. We denote the cluster
index by a single “1” in each row of the user-clus-
ter membership matrix and each column of the
item-cluster membership matrix. The two mem-
bership matrices in figure 6 are optimal since the
reconstructed ratings have no difference than the
observed ratings in Xtgt. We can then fill the miss-
ing ratings in Xtgt with the corresponding entries
in the reconstructed target rating matrix. We pro-
vide more algorithmic details in Li, Yang, and Xue
(2009). 

To test the idea, we have conducted a series of
experiments to test the codebook transfer (CBT)
algorithm. The auxiliary data include EachMovie,5

which is a movie-rating data set comprising 2.8
million ratings (scales 1–6) by 72,916 users on 1628
movies. Another domain is the MovieLens6 data,
which is used as the target CF task. The MovieLens
domain is a movie-rating data set comprising
100,000 ratings (scales 1–5) by 943 users on 1682
movies. We randomly select 500 users with more
than 40 ratings and 1000 movies (rating ratio 11.6
percent). Another target task we have tested on is
the Book-Crossing

7 
dataset, which is a book-rating

data set comprising more than 1.1 million ratings
(scales 1–10) by 278,858 users on 271,379 books.
We randomly select 500 users and 1000 books with
the most ratings (rating ratio 3.02 percent). We also
normalize the rating scales from 1 to 5. 

In the experiments, we compare CBT to several
baseline state-of-the-art methods, including PCC,
which is the Pearson correlation coefficient–based
method; CBS, which is a scalable cluster-based
smoothing (Xue et al. 2005); and WLR, which is a
weighted low-rank approximation (Srebro and
Jaakkola 2003) method. The last two methods use
clusters and matrix factorizations, respectively, to
fill in missing values. The evaluation metric we

Articles

100 AI MAGAZINE

Figure 4. Experimental Results on WiFi Localization. 
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adopt is the often-used mean absolute error (MAE):
it |ri – ˜ri|)/|T|, where T denotes the set of test rat-
ings, ri is ground truth, and ˜ri is predicted rating. A
smaller value of MAE means a better performance. 

We show the comparison results in table 1,
where we can see that our codebook-based method
outperforms all other baseline methods on both
target datasets. In these domains, CBT is more effec-
tive in alleviating the sparsity problem by transfer-
ring useful knowledge from the dense auxiliary rat-
ing matrix. More details on the experimental
results can be found in Li, Yang, and Xue (2009). 

To summarize, in the codebook-based knowl-
edge transfer (CBT) approach for CF, we transfer
group-level rating patterns as an implicit form of
structured knowledge. The knowledge is trans-
ferred in the form of a codebook, which relates
user groups to item groups. We can then strength-

en the recommendation performance by expand-
ing the codebook. Experimental results show that
codebook transfer can clearly outperform several
state-of-the-art baseline methods. 

Transferring Structured 
Knowledge for Planning 

In the previous two sections, we introduced two
forms of structured knowledge transfer, that is,
knowledge transfer in terms of HMM structure and
parameter knowledge and user-item ratings at a
group level. In this section, we will introduce a
higher level of structured knowledge transfer,
which is described in terms of the relations
between state conditions and actions. The problem
is centered on knowledge acquisition in automat-
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ed planning, where traditionally people have
resorted to manual labor to encode action models
in each task domain in order to enable a planning
system to generate plans to achieve goals. In its
simplest form, these action models describe the
conditions of when an action applies and the con-
sequences of applying the action in a planning
domain, in terms of preconditions and postcondi-
tions using a set of literals. Our goal is to learn a
good collection of action models from a small
number of observed plan traces in a target domain
by making use of the action model structures in a
related source domain through transfer learning. 

Table 2 describes the actions in two domains,
one for block-stacking tasks and another for
describing the actions of a truck driver. In the sec-
ond action, the action board-truck has precondi-
tions such as (at ?truck ?loc), and a postcondition
(driving ?driver ?truck). Traditionally, these pre-
and postconditions are specified by human
experts, so that plans such as the ones shown in
table 2 can be generated. However, it is often
expensive or even infeasible to rely on human
experts to generate action models in a new plan-
ning domain. Thus, it is desirable to automatically
or semiautomatically acquire action models based
on observations of plans in these domains. 

We now introduce our action-model learning
algorithm t-LAMP (Zhuo et al. 2008), which stands
for transfer learning action models from plan
traces and is based on the observation that many
planning domains share some common knowl-
edge on action models that can be reused. t-LAMP
accomplishes transfer learning by exploiting a
source planning domain where some action mod-
els may have similar functions as those in the tar-
get domain. For example, suppose that we wish to
learn a logical model for the action “board-truck,”
which should describe the state changes when a
truck driver moves into the driver seat. This action
is one of many in a transportation planning

domain known as the driverlog domain, where the
objective is to plan sequences of moves for a num-
ber of items to be transported from one location to
another under a variety of constraints. 

Taking a closer look at the action “board-truck,”
we note that it is intended to mean that the driver
“?driver” enters a truck “?truck” in a location
“?loc,” where “?x” means x is a variable. If this driv-
er “?driver” wants to enter “?truck,” then the driv-
er seat of “?truck” is required to be empty. This is
represented by the precondition “(empty ?truck).”
We note that this relationship is similar to the
action of “stack” from the block-stacking domain,
which involves a robot arm moving blocks from
one stack of blocks to another. The action “stack”
in this domain requires that the block “?y” be clear
beforehand (that is, the precondition “(clear ?y)” is
satisfied) for the block “?x” to be stacked on block
“?y.” Intuitively, the action “board-truck” is similar
to “stack,” because the driver and the driver seat in
the driverlog domain can be considered as similar
to a block. Thus, knowing how to represent the
“stack” action in the block-stacking domain is help-
ful for the task of learning a model of the action
“board-truck.” By observing this analogy between
the domains, we can reduce the number of training
examples significantly. 

In the past, many researchers have developed
approaches to acquire various knowledge for auto-
mated planning. For example, in Benson (1995),
and Lorenzo and Otero (2000), inductive logic pro-
gramming (ILP) approaches are developed to learn
action models given the positive and negative
examples of states just before an action occurs.
These so-called preimages of actions are critical
input to the ILP algorithms. In contrast, t-LAMP
does not require all states before an action be
known, nor does it require negative examples.
Instead, it relies on the observed sequences of
actions to be available at input time. Moreover,
unlike these ILP approaches, t-LAMP can transfer
the action-model knowledge from other domains.
Another related work is by Shahaf, Chang, and
Amir (2006), who developed an algorithm for
simultaneously learning and filtering, or SLAF, of
action models. This work is mostly based on logi-
cal encoding of the action models and plan traces
in the same domain. Other systems such as GIPO
(Simpson, Kitchin, and McCluskey 2007) rely on
humans to author action models and planning
domain knowledge, in which our automated solu-
tion can provide some initial solutions for human
experts to edit. 

Our transfer learning problem is described as fol-
lows. In the target domain, we are given a set of
action names and predicates, together with their
associated parameter lists. We are also given the
parameter types of the predicates and actions. In
order to help learning, we also have a set of plan
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Target Data Method MAE 

MovieLens PCC 0.930 

 CBS 0.874 

 WLR 0.915 

 CBT 0.840 
Book-
Crossing 

PCC 0.677 

 CBS 0.664 

 WLR 1.170 

 CBT 0.614 

Table 1: MAE on the Two Target Datasets.
(Average over 10 splits.) 



traces T that are observed through various sensors
(see the input part of table 2). Some state informa-
tion is also observed along the plan traces. t-LAMP
is built based on our previous system, ARMS (Yang,
Wu, and Jiang 2007), which acquires action mod-
els from a large number of observed plan traces.
ARMS converts these plan traces, as well as a col-
lection of background knowledge, into weighted
satisfiability formulas. It then uses a MAXSAT algo-
rithm to satisfy as many constraints as possible,
which results in a plausible action model. A draw-
back of the ARMS system is that, when the number
of traces is small and the intermediate state infor-
mation is sparse, ARMS will suffer from too much
noise, unless we provide many plan traces and
intermediate states. In t-LAMP, this problem is alle-
viated by introducing a different but similar plan-
ning domain, where the action models bear some
similarity to that in the target domain. In the t-
LAMP system, we consider as part of our input a
source domain where some action models are
known; these are known as the source action mod-
els. Let the set of all action schemas (that is, action
names together with parameters) that occur in T
be A. t-LAMP outputs the preconditions and
effects of each action schema in A that it learns.
An example of the input and output is shown in
table 2. We wish that the inclusion of the source
domain can help us improve the quality of learn-
ing with less collected state or plan trace informa-
tion in the target domain. In the transfer learning
scheme, the knowledge structure that is being
transferred corresponds to the action models,
including the pre- and postconditions.

t-LAMP learns in the following steps. It first
encodes the plan traces as conjunctions of states
and state transitions. It then generates all possible
candidate formulas that satisfy the planning
domain constraints listed in formulas F1–F3 in the
target domain. Other formulas can be added to
make the solution space tighter and the learned

actions respect the domain constraints. To enable
transfer learning, it also encodes the action models
of a source domain as a set of formulas and builds
mappings between the formulas from the source
domain to the candidate formulas from the target
domain. Once all these formulas are ready, it final-
ly optimizes the weights of the candidate formulas
and generates the final action models in the target
domain. Below, we give more details of each step. 

In the first step, t-LAMP encodes the plan traces
as propositional formulas. States and state transi-
tions will be encoded. To do this, we introduce a
new parameter in predicates in a way similar to sit-
uation calculus (Levesque, Pirri, and Reiter 1998),
so that the transition from the state s1 to the state
s2 can be represented by (at d1 l1 s1) �¬(driving d1
t1 s1) �¬(at d1 l1 s2) � (driving d1 t1 s2). In addi-
tion, the fact that the action (board-truck d1 t1 l1)
causes the transition can be represented by a
propositional variable (board-truck d1 t1 l1 s1).
Thus, the transition function (s1, (board-truck d1
t1 l1)) can be represented as (board-truck d1 t1 l1 s1)
� (at d1 l1 s1) � ¬(driving d1 t1 s1) � ¬(at d1 l1 s2)
� (driving d1 t1 s2). In this way, we encode a plan
trace as a collection of propositions. 

In the next step, t-LAMP generates candidate
formulas that describe all target-domain action
models. If there are M grounded predicates in the
domain, then the space of potential action models
will be exponential in M, since every subset of M
can be a potential set of preconditions and post-
conditions of an action model A. While this space
can be very large, we can effectively impose addi-
tional constraints to limit the search. These
domain-knowledge constraints are described as
formulas F1 to F3, which are designed to ensure
the correctness of the learned action models. For
example, the second requirement, F2, shows that
the negation of a literal, as part of the effect of an
action, must have its corresponding positive liter-
al satisfied before the action is performed. 
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Input: predicates, action schemas and plan traces from driverlog:  

predicates:          (at ?obj - locatable ?loc - location) (empty ?t - truck) ...  

action schemas: (board-truck ?driver - driver ?truck - truck ?loc - location) ...  

plan trace 1:       (at t1 l1) (at d1 l1) (empty t1)(link l1 l2),  

                               (board-truck d1 t1 l1) (drive-truck t1 l1 l2 d1), (at t1 l2) (driving d1 t1) 

plan trace 2: ...  

...  

Input: action models from the source domain blocks 

action model: stack(?x - block ?y - block)  

                     preconditions: (and (holding ?x) (clear ?y))  

                     effects: (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y)))  

  

O      

          

p            

e             
.   

Table 2. Example of the Learning Problem (Input/Output). 



Formula F1
(The effect of an action must hold after the execution of
this action.) If a literal p is an effect of some action
a, then an instance of p is added after a is executed. 

Formula F2
(The negative effect of an action must have its corre-
sponding positive counterpart hold before the execution
of this action.) Similar to F1, a literal p’s negation is
an effect of some action a, which means an instance
of p is deleted after a is executed, but it exists before
the execution of a.

Formula F3
(The precondition of an action will be the subset of the
state before the execution of this action.) A formula f
(can be a single literal, or with quantifiers) is a pre-
condition of a, which means that the instance of f
holds before a is executed. 

The most important step of t-LAMP is to encode
the possible mappings between the two domains
to enable knowledge transfer. In this step, we ask
the question “is an action A in the source domain
similar to action B in the target domain in such a
way that it might ease our learning of B?” While
there are potentially many possible mappings
between A and B in the two domains, in reality
such mappings are limited due to a domain char-
acteristic: the mapped actions are required to have
similar correspondences of preconditions and
postconditions, and the parameters of these pre-
and postconditions must correspond to each oth-
er as well. For example, when mapping “(clear ?y)”
of the domain blocks and “(empty ?truck)” of the
domain driverlog, the types of “?y” and “?truck,”
block and truck, respectively, are mapped, and this
mapping will be used to constrain the mappings of
other predicates. In general, given N predicates in
the source domain and M predicates in the target
domain, the number of mappings between predi-
cates from the two domains can be estimated by L
 N  M, where L is the number of mappings
between two sets of parameters of predicates. 

The mapping building process can be considered
as a way to make inferences on analogy between
the domains. Reasoning by analogy has a long tra-
dition in artificial intelligence (Falkenhainer, For-
bus, and Gentner 1986), where t-LAMP can be seen
as going through a scalable matching process to
draw analogy between two planning domains to
maximize the knowledge to be transferred through
action encodings. By building the mappings, we
bridge the source domain and the target domain to
transfer the structured knowledge in the form of
action models. The remaining task for us is to
choose the best mapping from the final set of
propositional formulas. We can attach weights to
these formulas to describe their criticality in final
solution. This set of formulas can be considered as
an input to a global satisfiability problem, which
can be solved using a weighted MAXSAT problem.

Once a MAXSAT problem is set up, a variety of
optimization packages can be applied (Borchers
and Furman 1997; Richardson and Domingos
2006). MAXSAT attempts to use local search to find
a plausible solution to a global constraint-satisfac-
tion problem, where the constraints are taken as
input. A limitation of this approach is that no new
predicates are invented in the process of search,
which is future work to be considered. 

To evaluate t-LAMP, we collected some plan
traces, which are observed action sequences, from a
number of planning domains: blocks8 and driverlog.9

These traces are generated by creating plans from
some given initial and goals states using given
action models and the FF planning algorithm.10 As
an evaluation metric, we define error rates of our
learning algorithm as the difference between our
learned action models and the handwritten action
models, where the latter are considered as the
“ground truth” in a domain, such as IPC-2. If a pre-
condition appears in our learned action models’
preconditions but not in the hand-coded action
models’ preconditions, the error count of precondi-
tions, denoted by E(pre), increases by one. If a pre-
condition appears in some human-generated action
models’ preconditions but not in our learned action
models’ preconditions, then the count of E(pre) is
incremented by one. Likewise, the error counts of
effects are denoted by E(eff). Furthermore, we
denote the total number of all the possible precon-
ditions and effects of action models as T(pre) and
T(eff), respectively. The error rate of a learned action
model is defined as R(a) = 1/2 (E(pre + E(eff)/T(pre) +
T(eff)) where we assume that the error rates of pre-
conditions and effects are equally important, and
the error rate R(a) is within the [0, 1] range. 

Table 3 shows the reduction in error rates of t-
LAMP in transferring from a block-stacking domain
to the truck-driving domain, where the percentage
is calculated by comparing the error rates of action
models learned by t-LAMP to that obtained from
models learned by ARMS (Yang, Wu, and Jiang
2007) (see column two of the table), which does
not use transfer learning. In the experiments we did
not compare to other systems such as ILP algo-
rithms, because they typically require a different set
of inputs. From the table, we can see that the error
rates are generally reduced when we apply transfer
learning to acquire the action models. More exper-
imental results are shown in Zhuo et al. (2008),
which also support our conclusion here. 

In summary, our experiments show that in most
cases, the more plan traces are available, the lower
the error rates will be. This observation is consis-
tent with our intuition. The learned action models
form a rough outline of the action’s structure,
which can be directly used as input to an auto-
mated planning system or as initial action models
for a human knowledge engineer to adapt from. In
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the latter case, we have been collecting
evidence on using the result of t-LAMP
in helping with knowledge engineer-
ing and showing the reduction in man-
ual labors. More work is needed in this
area, but our initial tests have been
encouraging. 

Conclusion and 
Future Work 

In this article, we give an overview on
three research works that transferred
progressively more sophisticated struc-
tured knowledge from a source domain
to a target domain to facilitate learn-
ing. The simplest of these is a classifi-
cation problem, which is demonstrat-
ed through a WiFi localization
problem. In this problem, the struc-
tured knowledge to be transferred
includes an HMM structure and some
key parameters. The benefit is derived
from higher classification accuracy in a
new time period for localization with-
out incurring too much relabeling of
the data. However, the transfer learn-
ing is confined to reconstructing the
target domain labeled data by means of
the source domain data, and to learn-
ing the HMM model parameters. This
transfer learning task is relatively sim-
ple to accomplish in the scale of intel-
ligent endeavor. The next example
involves learning clustering-level rela-
tions to transfer between recommen-
dation domains, which involves find-
ing and aligning the clusters for
transfer. The structured knowledge to
be transferred here involves relations
among groups of people and items.
The last example showed how transfer-
ring action model knowledge from
domain to domain can help learn bet-

ter action models. Structured knowl-
edge represents action models that
relate actions to pre- and postcondi-
tions. This is the most sophisticated
form of knowledge transfer among the
three examples, and the learning task
involves reusing procedural knowledge
rather than declarative knowledge. Our
conclusion is that structured knowl-
edge transfer can be useful in a wide
range of tasks ranging from data and
model-level transfer to procedural
knowledge transfer, and that optimiza-
tion methods can be applied to extract
and transfer deep structural knowledge
between a variety of source and target
problems. 

There is much to be done in transfer
learning of structured knowledge. Even
through we discussed three successful
cases of structured knowledge transfer,
an important open problem is how to
identify good source domains to trans-
fer from for given target domains. One
solution is to study how best to charac-
terize the nature of knowledge transfer
between two domains from the view of
data and knowledge compression
when we consider the source and tar-
get domains together. When two
domains can be compressed well, they
typically share some structural compo-
nents. Another direction is to come up
with a good quantitative measure of
similarity between different domains at
declarative and procedural levels of
learning. For some learning problems,
we may be able to identify some inter-
mediate domains where the shared
knowledge structures may overlap. 
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Number of Plan Traces 
Used in Training 

Error Rates of ARMS Error Reduction by 
t-LAMP 

20 0.346 10.1 percent 

40 0.302 8.9 percent 

60 0.203 24.6 percent 

80 0.139 21.6 percent 

100 0.078 20.5 percent 

Table 3: Reduction in Error Rates in the Learned Action Models in the 
driverlog Domain Using Knowledge Transfer from the block-stacking Domain. 

Notes
1. For example, see http://foursquare.com. 

2. However, a changing 0 can be seen as an
extension. 

3. The error distance is 3 meters, which
means that predictions within 3 meters of
the true location are counted as correct
ones.

4. See www.cse.ust.hk/˜qyang/ICD-
MDMC07. 

5. See www.cs.cmu.edu/˜lebanon/IR-
lab.htm.

6. See www.grouplens.org/node/73.

7. See www.informatik.uni-
freiburg.de/˜cziegler/BX. 

8. See www.cs.toronto.edu/aips2000. 

9. See planning.cis.strath.ac.uk/competi-
tion. 

10. See members.deri.at/ joergh/ff.html .
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