
Articles

70 AI MAGAZINE

Effectively transferring previously learned knowledge to a
new domain is one of the hallmarks of human intelli-
gence. This is the objective of transfer learning, in which

transferred knowledge guides the learning process in a broad
range of new situations. In near transfer, the source and target
domains are very similar and solutions can be transferred almost
verbatim. In far transfer, the domains may appear quite different
and the knowledge to be transferred involves deeper shared
abstractions. Thus transfer learning can be viewed as a compro-
mise between the delayed generalization of instance- or case-
based reasoning and the early generalization of classical
machine learning.

We have explored the use of analogy as a general approach to
near and far transfer learning in domains ranging from physics
problem solving to strategy games (Klenk and Forbus 2007; Hin-
richs and Forbus 2007). Using the same basic analogical mech-
anism, we have found that the main differences between near
and far transfer involve the amount of generalization that must
be performed prior to transfer and the way that the matching
process treats nonidentical predicates. We present here two
extensions of our analogical matcher, minimal ascension and
metamapping, that enable far transfer between representations
with different relational vocabulary. Evidence for the effective-
ness of these techniques is provided by a large-scale external
evaluation, involving a substantial number of novel distant
analogs.

Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Transfer Learning through
Analogy in Games

Thomas R. Hinrichs and Kenneth D. Forbus

n We report on a series of transfer learning
experiments in game domains, in which we use
structural analogy from one learned game to
speed learning of another related game. We find
that a major benefit of analogy is that it reduces
the extent to which the source domain must be
generalized before transfer. We describe two
techniques in particular, minimal ascension
and metamapping, that enable analogies to be
drawn even when comparing descriptions using
different relational vocabularies. Evidence for
the effectiveness of these techniques is provided
by a large-scale external evaluation, involving a
substantial number of novel distant analogs.

Articles

SPRING 2011 71

This article presents an overview of our transfer
learning work in game learning, including both
techniques for learning the initial source games
and the extensions to analogical matching that
enable transfer across increasingly different games.
We begin with a description of analogical transfer
and the constraints it entails. We then describe the
use of near transfer in Freeciv, an open-source strat-
egy game. Next, we present a series of experiments
with far transfer in games defined in the general
game playing (GGP) framework. We describe
metamapping and minimal ascension and meas-
ure their impact on far transfer.

Analogical Transfer
We treat transfer learning as fundamentally a prob-
lem of finding a good analogy between the source
and target and using that correspondence to trans-
late symbolic representations of learned knowl-
edge from the source to the target. The problem of
analogical transfer is then to find a good mapping
between a source and target that may have very
different surface representations and to effectively
employ the transferred knowledge to learn more
quickly.

We base our approach to mapping on a well-
established cognitive theory, structure mapping
(Gentner 1983). Structure mapping describes how
two cases can be aligned on the basis of common
structure, a matching process that appears to be at
the heart of human analogical processing and sim-
ilarity judgments. This analogical matching
process creates one or two mappings, each consist-
ing of correspondences that specify how state-
ments and entities in the two structured descrip-
tions being compared align, that is, “what goes
with what.” Mappings also include candidate
inferences that represent how information may be
projected from one description to the other and a
numerical score that estimates the structural qual-
ity of the match. The principles of structure map-
ping are described amply elsewhere, but for this
article, a key constraint is tiered identicality. That
is, by default, correspondences are only drawn
between identical predicates. Nonidentical match-
es are considered only when they are part of some
larger relational structure that could then be trans-
ferred. Minimal ascension (Falkenhainer 1988) is
one way of relaxing identicality, by allowing
matches between two statements if their predicates
share a close common superordinate. As described
later, we found it necessary to augment minimal
ascension with a new technique, metamapping, to
handle far transfer, where none of the domain
predicates were identical.

Our implementation of structure mapping is the
Structure Mapping Engine, or SME (Falkenhainer,
Forbus, and Gentner 1989). It is stable, scales well

(Forbus, Ferguson, and Gentner 1994), and is inte-
grated with our other planning and reasoning
facilities (Forbus, Klenk, and Hinrichs 2009).

Structure mapping depends on symbolic, struc-
tured representations. We use as a starting point
the Cyc knowledge base,1 in order to define con-
cepts, individuals, and relationships between
them. Although Cyc contains over 3 million asser-
tions, it is only the facilities for defining represen-
tations that we use in these experiments, such as
the vocabulary for representing a hierarchy of
predicates, set relations, and constraints on types
of arguments to predicates. We use these to define
representations of game concepts and terms to
support qualitative and analogical reasoning.

Near Transfer in Freeciv
In our first set of experiments, we examined direct,
instance-level transfer across relatively similar sit-
uations in Freeciv,2 an open-source strategy game
(see figure 1). We wanted to show that analogical
transfer could result in improved learning per-
formance without modification or significant
domain generalization. Freeciv is a turn-based
strategy game in which players build and grow civ-
ilizations with the ultimate goal of taking over the
world. Although there are many decisions and
strategic aspects to playing the full game, we
focused on the subtask of allocating resources for
growing cities. What this meant in practice was
choosing which tiles in a city to cultivate, mine, or
fish to produce needed resources. Such a controlled
task made it easier to measure and evaluate trans-
fer.

The transfer task was to apply experience
learned in growing one city to more rapidly learn
to grow another city with different configurations
of resources. Without prior experience, the system
learned through trial and error to, for example,
avoid farming the desert and to allocate workers to
more productive types of tiles. Performance on this
task was measured as the total city food production
at the end of 50 turns. The transfer learning metric
was the score on the initial game with transfer
learning versus without.

Figure 2 outlines the direct transfer algorithm
for the Freeciv task. The domain learner builds up
a case library of resource allocation decisions and
resulting city food production. It bootstraps this
library using explicit experimentation strategies
that guide stochastic resource allocation decisions
to ensure variation (step 6). The transfer mecha-
nism uses analogical retrieval (Forbus, Gentner,
and Law 1995) to decide which cases to consider
for transfer (Step 8). Decisions with poor outcomes
are also recorded as nogoods, and retrieved by the
same mechanism to avoid reexploring bad deci-
sions during experimentation (step 6).

Articles

72 AI MAGAZINE

The initial results showed a pronounced benefit
in the initial game, but this was not a robust effect:
Improvement was highly sensitive to the particular
source and target cities. Learning curves were not
stable until we began transferring negative exem-
plars as well (step 5), which is not common practice
in case-based reasoning. With negative exemplars,
we achieved a statistically significant 36 percent
improvement in performance on the initial game.
On subsequent trials, the benefit of transfer dimin-
ished as the learning curves with and without
transfer converged rapidly. This is due largely to the
simplicity of the task, rather than the similarity of

the source and target. These Freeciv experiments
are reported in more detail in Hinrichs and Forbus
(2007). They show that structure mapping’s models
of analogical mapping and retrieval can be used to
do transfer learning “out of the box.” Far transfer
requires some extensions, as described next.

Far Transfer of
GGP Game Strategies

A central goal of transfer learning research is to
extend the limits of cross-domain, far transfer,
where there is little or no surface similarity

Figure 1. Freeciv.

Articles

SPRING 2011 73

between source and target. To better explore this,
we needed games for which controlled variants
could be easily generated and that could be played
to completion in a reasonable amount of time. The
general game playing framework (Genesereth,
Love, and Pell 2005) satisfied these requirements.
The benefits of GGP are that the games are gener-
ally simpler, can be played in their entirety, and
more easily permit controlled modifications. In
GGP, games are encoded in a game definition lan-
guage (GDL), which is essentially a restricted form
of Prolog with a small vocabulary of game-specific
terms such as legal, next, and goal (see figure 3). The
GDL encodes a relational net, which concisely rep-
resents a finite state machine, that is, games are
restricted to finite, discrete, synchronous deter-
ministic simulations. We focused on piece-moving
games in which there is either no opponent, or
simple deterministic agents in a two-dimensional
spatial grid, to simplify doing automated experi-
ments. Entire games were played to completion,
rather than limiting transfer to a single subtask.

The output of the learning process is a set of
strategies for winning the game. We represent
learned game strategies as hierarchical task net-
works, or HTNs (Erol, Hendler, and Nau 1994).
HTNs are hierarchical plans that reduce complex
tasks to sequences of simpler subtasks, terminating
at ground primitive actions to be performed by the
agent. HTNs provide two important benefits: They
are an explicit symbolic representation of plans that
can be composed or concatenated, and their hierar-
chical nature makes it possible to transfer partial
knowledge. Missing or incorrectly transferred sub-
tasks can be relearned without rejecting the entire
network. By transferring HTN tasks to a new game,
that game can be learned with less trial and error.

Test Games
We employed three families of games defined in
the GGP game definition language3 (see figures 4–
6). Variations of these prototypes were generated
by systematically modifying initial configurations,
number of elements, identities of objects, and
behavioral rules.

In Escape, an explorer must cross some number
of obstacles to reach an exit. To win, the player
must combine resources to make bridges and rafts,
or break through walls. Falling into the water is
lethal. In Wargame, a soldier must kill terrorists in
order to leave the maze. To win, the player must
learn to acquire and shoot various weapons and
avoid coming into contact with the terrorists. In
Micro-Rogue, a hero must evade or destroy various
monsters to acquire a magic amulet and escape the
dungeon. To win, the player must apply various
offensive and defensive weapons and magical arti-
facts such as potions and scrolls, whose effects are
not initially known.

Although these games have a number of simi-
larities, they differ in some important ways: Escape
focuses on combining resources and recognizing
adjacency relationships, Wargame emphasizes
action at a distance and the directional nature of
shooting, while Micro-Rogue distinguishes offen-
sive from defensive weapons, and target-specific
effects of actions.

The remainder of this article describes our meth-

Figure 2. Direct Transfer in Freeciv.

Input: initial saved game state with one city
Output: case library of execution traces
1: while city population > 0 and # turns < 50 do
2: for task learnable tasks do
3: md choose decision method (task)
4: if md = decide experimentally then
5: Transfer nogoods from failed similar cases
6: Decide randomly, avoiding nogoods
7: else if md = decide analogically then
8: precedent = retrieve similar successful case
9: Adapt and replay precedent plan
9: else if md = decide strategically then
10: Execute canned plan
11: Add decision case to case library

Figure 3. Example GDL Encoding of a Portion of a Micro-Rogue Game.
Terms in bold are GDL primitives.

(item weapon1)
(weapon weapon1)
(init (location weapon1 weapon))

; next rules compute the next state:
(<= (next (wielding ?weapon))
 (weapon ?weapon ?weapon1)
 (pickedUp ?weapon))

; legal rules enable actions:
(<= (legal hero (move ?dir))
 (not (currentlyAsleep hero))
 (true (location hero ?xOld ?yOld))
 (direction ?dir)
 (nextCell ?dir ?xOld ?yOld ?xNew ?yNew)
 (traversable ?xNew ?yNew))

; terminal rules end the game:
(<= terminal
 (true (carrying amulet))
 (atExit))

Articles

74 AI MAGAZINE

ods for performing and measuring far transfer in
GGP games. Our approach involves stages of game
analysis, experimentation, and solution analysis,
where learning source and target games differ only
by the knowledge provided through analogical
transfer. Figure 7 provides a roadmap for this
process, which we discuss in the following sections.

Source Domain Learning in GGP
Before describing the transfer experiments, we first
need to describe the mechanism for learning the
source games. Far transfer implies transferring
more abstract knowledge, such as game strategies
that are likely to help win sooner. For GGP, this
required learning explicit and general composi-
tional strategies rather than just accumulating cas-
es. As with the Freeciv experiments, we again
adopted an experimental learning approach, but
with a greatly expanded repertoire of experimental
learning strategies.

While the underlying GGP representation can
be viewed formally as a finite state machine, peo-

ple — the most efficient transfer learners we know
of — do not generally reason at that level. Abstract
concepts that people apply to such situations,
including identifying spatial relations and contin-
uous parameters like health, provide a more effi-
cient search space than working with the underly-
ing state machine. Consequently, our domain
learner starts with a static analysis of the game, cre-
ating a declarative understanding of it that allows
experimentation at the level of actions and effects,
threats and hazards, and progress towards goals.
This initial understanding of the game is extended
by experimentation to pursue learning goals and
dynamic analysis of game traces to perform credit
assignment (see figure 8). We discuss each in turn.

Static Analysis
The static analysis phase recognizes important
concepts implicit in the GDL encoding. This has
two purposes. First, the experimentation strategies
rely on background knowledge about games in
general, for example, path planning and quantity

Figure 7. Source Game Learning in GGP.

Static
Analysis

Analogical
Transfer

Analogical
Transfer

Dynamic
Analysis
Dynamic
Analysis

Plan & Run
Experiments
Plan & Run

Experiments

Play
Game
Play

Game
Input Game

in GDL

Dynamic
Analysis
Dynamic
Analysis

Prior learned game(s)
(transfer condition)

(post-mortem)

Candidate
HTNs

Predicate
classi�cations

and
relations

Learning Goals and
Nogood Constraints

Learned subtasks and
entity classi�cations

Output
Winning
Strategy

HTN

Figure 4. Escape. Figure 5. Wargame. Figure 6. Micro-Rogue.

Articles

SPRING 2011 75

planning. Applying this knowledge requires the
static analysis to extract the representations of
coordinates, movement operators, directions,
quantities, and potential influences on quantities.
The second purpose is that these more abstract rep-
resentations provide a more effective language for
analogical mapping and for experimentation.

Aside from eight predefined predicates, such as
next, legal, goal, and so on, the GDL description of
a game is arbitrary and, in some experiments, even
the initial inputs are completely obfuscated (for
example, “xyblurp” might mean “pickup” or
“hammer”). To avoid unintended interactions
with our knowledge base contents, the analysis
routine renames every predicate with a game-spe-
cific prefix, and the relationship between the orig-
inal names and the modified versions are not avail-
able to the rest of the learner. Using different
predicates in the source and target this way is a
major challenge for analogy, making every pair of
GGP games an example of far transfer.

Elaborating the representation involves classify-
ing the GDL game predicates to determine which
correspond to actions, which are types, quantities,
spatial coordinates, ordinal relations, and so forth.
Figure 9 shows some example elaborated represen-
tations produced by static analysis. By looking at
the collection of rules, static domain analysis first
establishes some of the simple algebraic properties
of predicates, such as whether or not they are func-
tional, take ordinal or nominal values, are transi-
tive, and/or cyclical. Then, given the assumption
of a spatial game, it identifies the most likely can-
didate predicates for a coordinate system and
determines whether the game is a piece-moving or
marking-type game based on whether tokens are
conserved. These classifications of predicates great-
ly constrain the search space for learning strategies
through experimentation.

Static analysis then proceeds to examine the goal
and terminal conditions of the game. This top-
down analysis attempts to separate out terminal
conditions that lead to a loss from those achievable
conditions that define a win. If the top-level goal
can be rewritten as a conjunction of subgoals, the
achievement of those goals can be a measure of
progress in a simple hill-climbing strategy. Of
course, game goals are often nonmonotonic and
the learner falls back on more blind search when
the subgoals cannot be achieved independently. In
retrospect, the goal analysis is probably the weakest
part of the source game learner and could be
strengthened by considering alternative heuristics
for progress, such as planning graph reachability
heuristics (Bryce and Kambhampati 2007).

Learning by Experiment
Based on the results of static analysis, the domain
learner conducts experiments to satisfy explicit

learning goals for knowledge acquisition (step 8).
The primary learning goals are to learn the affor-
dances of different entities in the game, the effects
of an action, the applicability conditions of an
action, and to learn how to decompose a goal into
subgoals. The experiments are specified by plans
that use high-level actions, such as going to an
entity to find out what happens, trying a primitive
action to see what it does, or achieving conjunc-
tive subgoals in different orders. This constitutes a

Figure 8. Source Game Learning in GGP.

Figure 9. A Portion of the Elaborated Structural Representation.

Static analysis classifies game-specific predicates such as weapon and aug-
ments the case description. Predicate names have been simplified here for
clarity.

Input: Game rules and initial state encoded in GDL
Output: Elaborated game representation with winning
strategies encoded as HTN methods

1: Translate GDL Cyc representation
2: Perform static analysis to elaborate representation
3: while game not mastered and # trials < 10 do
4: until terminal state(game) do
5: if winning strategy known then
6: Execute strategy
7: else if applicable learning goal exists then
8: plan and execute learning experiment
9: else
10: Decide randomly while avoiding nogood states
11: Execute planned turn, update game state
12: Learn action models from completed experiments
13: Perform post-mortem analysis
14: Post learning goals & nogoods (loss)
15: Extract winning strategy (win)

(typePredicate weapon)
(parameterPredicate weaponStrength)
(statePredicate carrying)
(pieceMovingGame move)
(spatialLocationPred location)
(locationAttributeRepresentation location)
(entity weapon1)
(ggpQuantityPred health)
(actionPrimitive hero quaff)
(in�uencedBy
 ((MeasurableQuantityFn health) hero)
 (GameDistanceFn hero hobgoblin1)))

Articles

76 AI MAGAZINE

search through a higher-level space than the raw
state machine representation and is more efficient
at driving exploration.

For example, the hero in Micro-Rogue might go
to the snake to find out what it does. This is invari-
ably fatal, but does teach a valuable lesson. It
might try reading the scroll when that becomes
legal, in order to discover the effect on quantities
and relations in the game.

Initially, experiments are performed bottom-up
to learn action effects and preconditions of
actions. When those action-level learning goals are
satisfied, it then focuses on learning goals that
decompose the performance goal of the game and
tries to develop a winning strategy. In addition to
driving exploration this way, the experiments also
serve to focus explanation and credit assignment,
as described later.

Dynamic Analysis
Dynamic analysis is the ex post facto review of an
execution trace to empirically assign credit or
blame. This happens both during gameplay (step
12) and in a postmortem analysis after the game is
won or lost (steps 13–15). It regresses through the
game execution trace to explain an effect and con-
struct a plan to achieve the effect or posts a nogood
constraint to avoid it. Preference heuristics seek to
explain as much as possible in terms of the player’s
actions or other agents’ actions. In the absence of
immediately preceding actions, it seeks explana-
tions in terms of simple spatial configurations,
such as colocation, adjacency, or cardinal direc-
tions. As part of this process, some entities may be
classified as, for example, obstacles, threats, or haz-
ards.

The execution trace contains not only the
explicit low-level actions and state changes, but
also the experiments being pursued. Knowing the
experiment that was pursued provides an opera-

tional task for achieving the effect. For example,
everything else being equal, if it becomes legal to
shoot the gun after going to the gun, then that
becomes a task for achieving the precondition of
shooting.

After winning a game, the learner walks back
through the execution trace to construct a high-
level HTN plan for winning the game in terms of
previously learned subtasks. It applies the prefer-
ence heuristics and replaces particular coordinates
and directions with general spatial relations and
relative directions. It simplifies the strategy by
removing tasks whose outcome is never used, such
as achieving preconditions of actions that are nev-
er taken.

Figure 10 shows the representation of a typical
learned HTN method from a Micro-Rogue game. In
this example, the method expands the winGame
task to a sequence of subtasks with an empty (true)
precondition. The structural vocabulary of such
plans is derived from Cyc (that is, precondition-
ForMethod, methodForAction, actionSequence).
Other predicates, such as achieve, winGame, run-
Sequence, and gotoLocationOf are specific to our
learner. True is a built-in predicate from GDL. The
remaining predicates and entities are specific to the
particular game and are simplified here for clarity.

Execution Flexibility
The learned HTNs need to be flexible enough that
they are not overly sensitive to initial conditions or
other specifics of the source game and don’t need to
be planned in detail from start to finish. We achieve
this in two ways: by interleaving planning and exe-
cution on each turn and by learning high-level
tasks with default conditional expansions.

When the game player executes a plan, it runs
code associated with the primitive actions at the
leaves of the HTN. Usually, these are game actions
that perform a turn in the game. However, some
primitives may store information in the knowledge
base or even reinvoke the planner after executing
a turn. This last operator, called doPlan, is key to
supporting flexible execution. It allows the agent
to plan at a high level and defer detailed planning
of later turns until more information is available.

The domain learner incorporates this deferred
planning in the plans it produces. This is straight-
forward because it really only learns three kinds of
high-level HTN tasks: tasks to achieve a state, tasks
to achieve the preconditions of an action, and top-
level tasks to win an entire game. These achieve-
ment tasks have default methods that do nothing
if the state or precondition is already satisfied
(essentially a conditional plan). Learned sequences
of these “achieve” tasks are themselves wrapped in
a task called runSequence that encapsulates each
subtask in doPlan. This makes the sequence execute
incrementally by replanning after each step, in

Figure 10. A Typical Learned HTN Method.

(preconditionForMethod (true)
 (methodForAction (winGame hero)
 (actionSequence
 (TheList
 (runSequence
 (achieve (true (carrying weapon1)))
 (achieve (true (carrying armor1)))
 (achieve (true (health snake1 0)))
 (achieve (true (carrying amulet)))
 (gotoLocationOf hero exit)))))

Articles

SPRING 2011 77

order to accommodate unforeseen effects of
actions and adversarial responses.

The “achieve” tasks also guide the process by
which an overly specific sequence of actions is
turned into a hierarchical network of subtasks.
When constructing a new HTN from an execution
trace, if a subsequence is recognized as achieving
the precondition of a primitive, that sequence is
replaced with the (achieve (PreconditionFn <prim-
itive>)) task. If a sequence is recognized as achiev-
ing one of the conjuncts of the overall game per-
formance goal, it is replaced with the (achieve
<state>) task. This makes the task hierarchical. One
benefit of this is that if some action method does
not transfer correctly, it can be rejected and
relearned in the new game without necessarily
rejecting the entire network.

Flexibility also stems from replacing some con-
stants with variables, a process known as lifting.
Specific coordinates are replaced with descriptions
relative to entities, so that, for instance, an action
to go to location 5,5 might be lifted to (LocationFn
exit). Exit is an entity that will be analogically
mapped and translated to the appropriate target
entity, whereas specific coordinates cannot be.
When an expression cannot be lifted without
ambiguity, it is left unchanged until new experi-
ments can resolve the ambiguity.

The learned HTNs are not guaranteed to be opti-
mal. They may execute subtasks in an inefficient
order or include unnecessary detours, such as pick-
ing up the gold in Micro-Rogue. The strategy learn-
er uses heuristics to minimize this by omitting
tasks that achieve preconditions that are never exe-
cuted and by preferring strategies learned after at
least three trials. By the third trial, it will have dis-
charged some action-learning goals and a winning
sequence will be less likely to have unnecessary
actions in it. We define mastery as being able to
win by following the learned strategy, not by sim-
ply repeating the exact sequence of actions.

This doesn’t guarantee that the strategy will be
lifted to its fullest generality, nor that the transfer
process will correctly map all the entities, or that
the strategy is even applicable in the target
domain. Nevertheless, if enough constituent sub-
tasks can be successfully transferred, it will result
in learning the target domain faster than starting
from scratch, if the underlying domains are in fact
similar in how they operate.

To summarize, the static analysis of the rules and
focused experimentation strategies typically allows
the agent to master games within ten trials. It pro-
duces compositional strategies, which is important
because source-target pairs are not isomorphs:
Only some of the strategies might be applicable to
a new game. For more detail on the domain learn-
ing, see Hinrichs and Forbus (2009).

Target Domain Learning in GGP
Target domain learning uses the same basic process
as source domain learning except that in the trans-
fer condition it takes as input one or more previ-
ously learned source games (see figure 7). After per-
forming static analysis on the target game, it
performs analogical mapping and transfer to pro-
pose HTN strategies from the source. When given
multiple source domains, it attempts to compose
the top-level strategies by concatenating their sub-
tasks and trying them in both orders.

Because transfer is a defeasible inference, it
records the provenance of transferred strategies.
Transferred strategies that fail in the new domain
are removed and replaced by learning goals. We
discuss minimal ascension and metamapping next,
and then describe the mechanics of the transfer
algorithm.

Matching Nonidentical Predicates. Far transfer
requires finding correspondences between non-
identical predicates. The tiered identicality con-
straint of structure-mapping theory allows non-
identical matches when needed to enable mapping
a larger relational structure. That is, consider two
statements S1 and S2. By structure mapping’s struc-
tural consistency constraint, they can only align if
their arguments can be aligned. Suppose that s1
and s2 are corresponding arguments of S1 and S2,
respectively. It is worth relaxing identicality for s1
and s2, because if they can be made to match, a
larger structure (that is, S1 and S2, and anything
above them) might be made to match. The insight
is that higher-order predicates, such as logical con-
nectives, argument structure, planning and dis-
course relationships, and so on, are typically the
same across a wide variety of domains. For exam-
ple, while the contents of plans to win a particular
game will involve relationships specific to that
game, the relationships that describe the precon-
ditions and consequences of tasks in the planner
are the same for all games. Thus overlaps in high-
er-order structure provide a tight focus on what
nonidentical matches involving lower-order struc-
ture should be considered. This is far more efficient
than exploring the entire space of possible non-
identical predicate matches, given just the two ini-
tial descriptions. In essence, it reframes the prob-
lem as confirming whether or not a proposed
nonidentical predicate correspondence should be
allowed, rather than finding such correspondenc-
es a priori. We use two techniques: minimal ascen-
sion and metamapping. We discuss each in turn.

Minimal ascension (Falkenhainer 1988) operates
during SME’s initial stage of finding local match
hypotheses, sanctioning nonidentical correspon-
dences locally (see figure 11). It exploits hierarchi-
cal relationships between predicates. Let S1 and S2
be statements that SME has deemed useful to align,
due to their being corresponding arguments in

Articles

78 AI MAGAZINE

some larger potentially mappable structure. Fur-
ther let P1 be the predicate of S1 and P2 be the pred-
icate of S2. Minimal ascension allows aligning S1
and S2 if P1 and P2 have a close common superor-
dinate. This corresponds to their having a com-
mon ancestor in the predicate abstraction hierar-
chy with a limited depth (= 2). For example,
(genlPreds scroll ggpTypePredicate) means that the
scroll predicate is a specialization of the more gen-
eral ggpTypePredicate. The static analysis routines
automatically classify relationships in a game
description as instances of more general classes of
predicates. These derived genlPreds relationships
partition potential matches, through the advice
that they provide to minimal ascension.

Metamapping can, in one sense, be viewed as a

generalization of minimal ascension. Minimal
ascension only uses one kind of information about
predicates, their genlPreds relationships. Meta -
mapping uses all available structural information
about predicates to find which predicates are most
alike, in terms of their structural properties (see fig-
ure 12). By structural properties, we mean what
features they have, and what relationships hold
between them and other predicates. In essence, a
metamapping treats predicates like entities. The
correspondences found by comparing the structur-
al information about predicates are additional sug-
gestions about possible nonidentical predicate
matches that can then be applied to the original
mapping. Most knowledge bases include such
information about their predicates as part of their

Figure 11. Minimal Ascension.

Scroll and potion are game-specific predicates. Static analysis determines that they define types and adds the genlPreds
link to the parent predicate ggpTypePredicate, supporting the mapping between nonidentical predicates.

Source Target

ggpTypePredicate ggpTypePredicate

genlPreds genlPreds

(scroll scroll1) (potion potion1)

Figure 12. In Metamapping, the Game-Specific Action Predicates Read and Quaff Match Because
They Are Treated as Entities Embedded in a Larger Relational Structure Constructed during Static Analysis.

Here, the structure represents the qualitative relation that the health quantity of the hero entity can be affected in some
fashion by reading (or quaffing) something.

(actionPrimitive quaff)

(in�uencedByAction
 (HealthFn hero)
 (does hero
 (quaff ?potion)))

(actionPrimitive read)

(in�uencedByAction
 (HealthFn hero)
 (does hero
 (read ?scroll)))

Source Target

Articles

SPRING 2011 79

definitions. Here, since the predicates are entirely
new, the structural information we rely on is that
produced by the static domain analysis, as illus-
trated in figure 9. Predicate names have been sim-
plified for clarity: for example, location is actually
Mrogue-8-1-targetLocation.

Minimal ascension and metamapping are both
defeasible heuristics that depend on relational
structure to distinguish alternative correspondenc-
es. We initially assumed that the horn clauses in
the game definitions could provide some of this
structure, since they encode much of the meaning
of predicates and entities. We found that this does
not work well and that SME becomes swamped
with irrelevant matches. Instead, the case used for
analogy consists solely of the (nonrule) statements
in the game description plus the elaborated state-
ments from static analysis.

To measure the accuracy of minimal ascension
and metamapping, we examined by hand the non-
identical predicate alignments for all of the 41
source/target (S/T) pairs used in the external eval-
uation scenarios described below. As shown in
table 1, overall accuracy for minimal ascension was
75 percent, while overall accuracy for metamap-
ping is 59 percent. This is not too surprising, given
that minimal ascension operates over both the
relational structure present in the original game
descriptions and the structure derived from static
analysis, while metamapping only operates on the
derived structure. Since the two techniques treat
predicates quite differently, they sometimes pro-
vide overlapping or conflicting results. When they
conflicted, the correspondence provided by mini-
mal ascension was almost always the correct one.
Thus the substitution process prefers mappings
from minimal ascension when available. While
minimal ascension is more accurate, metamapping
has better coverage, and so the two techniques are
complementary.

The Far Transfer Algorithm
Figure 13 describes the analogical transfer algo-
rithm. The base and target are the game represen-
tations, which typically consist of 500 to 1000
assertions each. Pr is the set of predicates to be
transferred. In this case, it is the predicates used to
represent the learned types and relationships (for
example, threat, or obstacle) and HTN strategies (for
example, preconditionForMethod). The static do -
main analysis, described earlier, reifies the predi-
cates in the domain as entities (for example, figure
9). Including these statements about predicates
means that the SME mapping computed in step 2
includes the metamapping as well as the domain
mapping itself. (They cannot interfere because the
metamapping treats the predicates as reified enti-
ties, as opposed to functors.) Step 3 extracts the rel-
evant candidate inferences by selecting only those

which involve learned knowledge. Step 4 is
required because the knowledge to be transferred
must be expressed in the predicate vocabulary of
the target domain. Step 5 operationalizes the can-
didate inferences.

Candidate inferences can include analogy
skolems, defined as entities whose existence is
hypothesized in the target through inference, but
whose actual identify is unknown. Figure 14 pro-
vides an example, where the target statement must
include something like PositiveChange from the
base. The process of skolem resolution figures out
what such entities are. The general problem of
skolem resolution remains one of the frontiers of
analogical reasoning research. Here we use a set of
rules that are appropriate for GGP. Specifically, we
replace variables with variables, and integer con-
stants with the same integer constants. Global con-
stants, such as PositiveChange or CardinalDirec-
tion, resolve to themselves. Finally, skolems of
locations are resolved relative to any entities in

Table 1. Accuracy of Mapping Nonidentical Predicates.

#
S/T

Minimal Ascension Metamapping

correct % correct %

Escape 14 76 94% 190 72%

Rogue 10 158 72% 83 43%

Wargame 10 75 82% 28 74%

Differing 7 7 24% 20 42%

Overall 41 316 75% 321 59%

Figure 13. The Far Transfer Algorithm.

Input: base, a representation of the source game
 target, a representation of the target game
 Pr, a set of predicates relevant for transfer
Output: CI, a set of translated candidate inferences
1: Elaborate base and target with structural information from
 static domain analysis
2: M best mapping of SME applied to base and
 target, using minimal ascension
3: CI {c CandidateInferences(M) | predicate(c) Pr}
4: Translate non-identical predicates in CI into target
 vocabulary, preferring predicate alignments from minimal
 ascension over metamapping where available.
5: Resolve skolems in CI

Articles

80 AI MAGAZINE

those locations and the locations of their corre-
sponding entities in the target.

Far Transfer Experiment
To show that far analogical transfer improves
learning performance, an external evaluation was
conducted. A set of experimental scenarios was
developed by an independent evaluator that
included one or more source (training) games and

a target game. The final games were not provided
until the beginning of testing, when our system
was frozen.

Each target game was learned twice, first with-
out prior learning on the source game (the no-
transfer condition) and then again after learning
the source game (the transfer condition). Transfer
was measured in these experiments by a normal-
ized regret score, which characterizes how much
improvement transfer makes. Figure 15 provides

Figure 15. Example Learning Curve.

Regret measures the difference in area under learning curves normalized by the bounding box.

0

20

40

60

80

100

0 1 2 3

Trials

G
am

e
Sc

o
re

Regret = 46.7%

with transfer
without transfer

Figure 14. A Candidate Inference Is the Plausible Projection of
Learned Knowledge from the Source Game to the Target.

The predicates and entities in the source expression are
translated to the target vocabulary using the structure mapping.

(primitiveAchieves
 (directionOfChange
 (HealthFn hero)
 (skolemFn PositiveChange))
 (quaff potion1))

Source Target

(primitiveAchieves
 (directionOfChange
 (HealthFn hero)
 PositiveChange)
 (read scroll1))

Articles

SPRING 2011 81

an example. The horizontal axis shows the trial
number, stopping when the no-transfer condition
first wins a game, or after 10 trials, whichever
comes first, while the vertical axis is the maximum
game score reported so far at the end of each trial.
The regret score is the difference in area under the
two learning curves, normalized by the area of the
bounding box. A higher regret score means higher
performance was attained sooner under the trans-
fer condition, that is, transfer was beneficial. Neg-
ative regret scores indicate negative transfer, that
is, the prior experience confused or impeded target
learning.

The games within a scenario were designed to
test how well transfer occurred with particular rela-
tionships between the source and target games
(DARPA 2005). Transfer condition type C required
composing elements of two source domains. Game
pairs in type A shared common abstractions. In
type N, source and target contained different num-
bers of elements. The type V condition used games
with different vocabularies of predicate and entity
names. Finally, transfer condition D drew source
and target games from entirely different game
domains.

Figure 16 shows results over the entire set of sce-
narios, broken down by game domain and transfer
type. Each bar represents the average regret over 1–
3 scenarios. Note that there were no common
abstraction (A) scenarios for Micro-Rogue (that is,
this is a lack of data, not a zero regret score). The
data presented here represents 34 target scenarios,
consisting of 329 target game trials. The average
regret over all 34 scenarios was 27.38, indicating a
clear benefit from transfer learning.

Where did it do well and where did it do poor-

ly? As shown in figure 16, the regret scores were
positive for all transfer types tested, though there
was a sharp drop off for transfer across different
game types (D). The main problem with the differ-
ing experiments was that, in an effort to ensure
that there was some common strategy that could
be transferred, the source games were modified
slightly in ways that tended to break source learn-
ing. For example, source game 2 introduced a “fire-
ball” scroll to a Micro-Rogue-like scenario that was
intended to be similar to a grenade. Because our
learning agent didn’t have learning goals and
experiments for learning about thresholds in time
and space, it could not master that source game. In
general, the source games for the differing scenar-
ios were much harder than for other transfer types,
thus conflating difficulty of learning with transfer
distance. Ultimately, only one out of the eight dif-
fering source games was mastered, so there was
nothing to transfer for seven of them. When the
source game could be mastered, the transfer
process worked remarkably well, as evidenced by
the results in the differing vocabulary condition
(V), where games were structurally isomorphic, but
predicates and entities were completely renamed.

In addition to limitations of the source learning,
the other problem we saw was the occasional cross-
mapping of predicates between source and target.
For example, in some Micro-Rogue games, armor in
the source game was mapped to weapon in the tar-
get. This happened whenever there was no struc-
tural reason to prefer one mapping over another,
in this case, because there were no wield or putOn
actions. The abstract nature of the games and
impoverished perceptual representation made
such cross mappings more likely, but did not usu-
ally cause problems in execution.

Figure 16. Regret Scores by Transfer Type.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

C A N V D

R
eg

re
t

Transfer Type

Escape
Rogue
Wargame
Average

Articles

82 AI MAGAZINE

Related Work
Other researchers in transfer learning have
approached the problem differently. For example,
Peter Stone’s group has focused on reinforcement
learning and transferring evaluation functions
(Banerjee and Stone 2007), including using their
own version of SME for near transfer on domain
pairs of their own choosing (Liu and Stone 2006).
ICARUS also treats transfer as an analogy problem,
using a domain-specific matcher incorporating
structure-mapping principles (Shapiro, Könik, and
O’Rorke 2008). Their matching process walks a
solution trace, reexplaining it in terms of target
domain concepts in order to build up a table of
correspondences. A different approach is to treat
transfer as a problem of speedup learning, employ-
ing chunking in Soar to reduce search time.4 Tamar
(Mihalkova, Huynh, and Mooney 2007) describes
a predicate mapping technique for Markov logic
networks, using three source/target pairs, each
involving a smaller number of relationships per
pair than the games described here. We suspect
that metamapping could be used to replace their
exhaustive cross-predicate initial step for improved
efficiency.

Two cross-domain analogy efforts are also very
close to this work. The most similar cross-domain
analogy work is that of Falkenhainer’s (1988)
Phineas system, which used SME to map distant
domain theories based on correspondences derived
from mapping observed behaviors. Klenk and For-
bus (2007) use SME to map distant domain theo-
ries based on mapping worked solutions to prob-
lems. Like them, we use minimal ascension to help
find nonidentical predicate alignments. Our source
of overlapping knowledge is different, that is, the
automated domain analysis, and our metamap-
ping technique is also novel.

A related approach to learning HTNs is described
by Hogg, Munoz-Avila, and Kuter (2008). Their
algorithm, HTN-MAKER, takes classical planning
operators and successful plan traces to construct
hierarchical task networks. It has the benefit of
being formally defined and can be shown to be
complete and correct. Our source domain learner,
however, addresses a somewhat different learning
task in which the effects of actions and the behav-
iors of adversaries are incompletely known. Our
approach therefore is necessarily more heuristic
and defeasible in nature.

Conclusions
A central problem in transfer learning is handling
far transfer, where the representational vocabulary
used in the domains can differ significantly. We
have described a new technique, metamapping,
which exploits both minimal ascension and struc-

tural information about predicates to attain rea-
sonably accurate cross-domain mappings. The
experiment was an important milestone in far
transfer research, since it marks one of the first
times that an analogical transfer system has suc-
cessfully operated over novel representations pro-
vided by an external organization, and on more
than a handful of source/target pairs. Thus it pro-
vides strong evidence for the utility of this tech-
nique.

There are several future directions that we plan
to explore. First, we want to test the transfer algo-
rithm and metamapping over a broader range of
types of domains, and over different styles of
domain learning. Of particular interest are when
substantial background knowledge is involved,
which we suspect will greatly improve the traction
that metamapping provides. Second, our system
currently handles inaccuracy in transfer by com-
pletely discarding transferred knowledge that is
found to be inaccurate through experimentation.
A better approach might be repairing the mapping,
so we plan to investigate strategies for diagnosing
and repairing mapping failures. Third, for some
domain pairs, a mapping may only be possible
with a more complex transformation than substi-
tutions (for example, coordinate transformations,
reification, etc.) Yan, Forbus, and Gentner’s (2003)
theory of rerepresentation looks promising for
handling such situations, but it has not to our
knowledge been embodied in any performance-
oriented system. Finally, the problem of retrieval
in transfer learning needs to be addressed. Except
for Falkenhainer (1988) and Klenk and Forbus
(2007), all far transfer learning experiments that
we are aware of provide the source domain as an
input. Retrieving a relevant source from a broad
corpus of experience will be a necessary capability
for any realistic robust transfer learning system.
Importantly, retrieval in far transfer is known to be
extremely difficult for people, much more difficult
than mapping once a source has been found. It
could be that the reasons people are limited in this
way will apply to any intelligent system, or it could
be that, given different engineering constraints,
better-than-human solutions for retrieval could be
found. This is an exciting open question for trans-
fer learning research.

Acknowledgements
This research was performed under the DARPA
Transfer Learning Program. We would like to thank
David Aha and Matthew Molineaux for their work
in evaluating the system and Jeff Usher for pro-
gramming assistance.

Notes
1. See research.cyc.com.

2. See freeciv.wikia.com/wiki/Main_Page.

Articles

SPRING 2011 83

3. Prototype versions of these games were developed by
transfer learning researchers: Escape by John Laird’s
group at University of Michigan, Wargame by the ISLE
group at Stanford, and Micro-Rogue by Hinrichs at
Northwestern and David Aha at NRL.

4. Personal communication with John Laird in 2008.

References
Banerjee, B., and Stone, P. 2007. General Game Learning
Using Knowledge Transfer. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence, 672–
677. Menlo Park, CA: AAAI Press.

Bryce, D., and Kambhampati, S. 2007. A Tutorial on Plan-
ning Graph-Based Reachability Heuristics. AI Magazine
28(1): 47–83.

Defense Advanced Research Projects Agency (DARPA).
2005. Transfer Learning Proposer Information Pamphlet
(PIP) for Broad Agency Announcement 05-29. Washing-
ton, DC: United States Department of Defense.

Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Planning:
Complexity and Expressivity. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, 1123–1128.
Menlo Park, CA: AAAI Press.

Falkenhainer, B. 1988. Learning from Physical Analogies:
A Study in Analogy and the Explanation Process. Ph.D.
diss., Department of Computer Science, University of Illi-
nois at Urbana-Champaign. Technical Report UIUCDCS-
R-88-1479.

Falkenhainer, B.; Forbus, K.; and Gentner, D. 1989. The
Structure Mapping Engine: Algorithm and Examples.
Artificial Intelligence 41(1): 1–63.

Forbus, K.; Ferguson, R.; and Gentner. D. 1994. Incre-
mental Structure Mapping. In Proceedings of the 16th
Annual Meeting of the Cognitive Science Society, 313–318.
Wheat Ridge, CO: Cognitive Science Society.

Forbus, K.; Gentner, D.; and Law, K. 1995. MAC/FAC: A
Model of Similarity-Based Retrieval. Cognitive Science
19(2): 141–205.

Forbus, K.; Klenk, M.; and Hinrichs, T. 2009. Companion
Cognitive Systems: Design Goals and Lessons Learned So
Far. IEEE Intelligent Systems 24(4)(July/August): 36–46.

Gentner, D. 1983. Structure-Mapping: A Theoretical
Framework for Analogy. Cognitive Science 7(2): 155–170.

Genesereth, M.; Love, N.; and Pell, B. 2005. General
Game Playing — Overview of the AAAI Competition. AI
Magazine 26(2): 62–72.

Hinrichs, T., and Forbus, K. 2007. Analogical Learning in
a Turn-Based Strategy Game. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence, 853–
858. Menlo Park, CA: AAAI Press.

Hinrichs, T., and Forbus, K. 2009. Learning Game Strate-
gies by Experimentation. Paper presented at the IJCAI-09
Workshop on Learning Structural Knowledge from
Observations. Pasadena, CA, July 12.

Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowl-
edge Engineering Required. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, 950-956.
Menlo Park, CA: AAAI Press.

Klenk, M., and Forbus, K. 2007. Cross-Domain Analogies
for Learning Domain Theories. In Analogies: Integrating

Multiple Cognitive Abilities, Volume 5-2007, ed. Angela
Schwering. Osnabrück, Germany: Institute of Cognitive
Science.

Liu, Y., and Stone, P. 2006. Value-Function-Based Transfer
for Reinforcement Learning Using Structure-Mapping. In
Proceedings of the 21st National Conference on Artificial
Intelligence, 415–420. Menlo Park, CA: AAAI Press.

Mihalkova, L.; Huynh, T.; and Mooney, R. 2007. Mapping
and Revising Markov Logic Networks for Transfer Learn-
ing. In Proceedings of the 22nd AAAI Conference on Artificial
Intelligence, 608–614. Menlo Park, CA: AAAI Press.

Shapiro, D.; Könik, T.; and O’Rorke P. 2008. Achieving Far
Transfer in an Integrated Cognitive Architecture. In Pro-
ceedings of the 23rd AAAI Conference on Artificial Intelli-
gence, 1325–1330. Menlo Park, CA: AAAI Press.

Yan, J.; Forbus, K.; and Gentner, D. 2003. A Theory of
Rerepresentation in Analogical Matching. In Proceedings
of the 25th Annual Meeting of the Cognitive Science Society.
Wheat Ridge, CO: Cognitive Science Society.

Thomas R. Hinrichs is a research associate professor at
Northwestern University. He received his B.S. from Cor-
nell University and his Ph.D.from from Georgia Tech in
1991. His research interests include plausible reasoning,
machine learning, and cognitive architectures. His email
address is t-hinrichs@northwestern.edu.

Kenneth D. Forbus is the Walter P. Murphy Professor of
Computer Science and Professor of Education at North-
western University. He received his degrees from MIT
(Ph.D. in 1984) and is a Fellow of the Association for the
Advancement of Artificial Intelligence, the Cognitive Sci-
ence Society, and the Association for Computing
Machinery.

2012 Spring Symposium Series
Proposals Solicited

AAAI is currently accepting proposals for the 2012
Spring Symposium Series, to be held at Stanford Uni-
versity, California, March 26–28, 2012.

Approximately eight symposia on a broad range of
topics within and around AI will be selected for the
2012 Spring Symposium Series. All proposals will be
reviewed by the AAAI Symposium Committee,
(Chair: Chad Jenkins, Brown University; Cochair:
TBD; and Associate Chair: Alan Schultz, Naval
Research Laboratory). Symposium proposals should
be submitted as soon as possible, but no later than
April 15, 2011. The Call for Proposals is available at
www.aaai.org/Symposia/Spring/sss12.php.

Please submit your symposium proposals by elec-
tronic mail (no postal submissions), and inquiries
concerning symposia, to Chad Jenkins, Brown Uni-
versity, cjenkins@cs.brown.edu.

