
Although the terms creative and humor are both very broad
in what they can cover, there is little doubt that the construc-
tion of humor is generally regarded as creative, with the most
successful creators of humor sometimes being hailed as “comic
geniuses.” This suggests that the task of getting a computer to
produce humor falls within the area of computational creativi-
ty, and any general theory of creativity should have something
to say about humor.

This article reviews some of the work in computational
humor, makes some observations about the more general issues
that these projects raise, and considers this work from the view-
point of creativity, concluding with an outline of some of the
challenges ahead.

The Place of Humor within AI
The use of humor is a major factor in social and cultural life
throughout the world, influencing human behavior in various
ways (as well as giving rise to the whole industry of comedy).
Despite this, the cognitive and emotional processes involved in
creating or responding to humor are still unexplained. Thus
humor constitutes a complex but baffling human behavior, inti-
mately related to matters such as world knowledge, reasoning,
and perception; on the face of it, this should be an obvious tar-
get for AI research. After all, the remit of artificial intelligence,
since its very beginning, has been to make computers behave in
the ways that humans do. The proposal for the historic Dart-
mouth Conference in 1956, often taken as the founding event
in AI, argued:

… that every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a machine can be

Articles

FALL 2009 71Copyright © 2009, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Can Computers
Create Humor?

Graeme Ritchie

n Despite the fact that AI has always been
adventurous in trying to elucidate complex
aspects of human behavior, only recently has
there been research into computational model-
ing of humor. One obstacle to progress is the
lack of a precise and detailed theory of how
humor operates. Nevertheless, since the early
1990s, there have been a number of small pro-
grams that create simple verbal humor, and
more recently there have been studies of the
automatic classification of the humorous status
of texts. In addition, there are a number of
advocates of the practical uses of computation-
al humor: in user interfaces, in education, and
in advertising. Computer-generated humor is
still quite basic, but it could be viewed as a form
of exploratory creativity. For computational
humor to improve, some hard problems in AI
will have to be addressed.

made to simulate it. (Charniak and McDermott
1985, 11)

Despite this, “intelligence” was rather narrowly
understood as being primarily about reasoning and
about acquiring concepts (learning). Emotional
aspects of human behavior were not deemed a suit-
able matter for AI research until about 1990, and
mainstream work in AI completely ignored humor
for the first 35 years or so of the field’s existence.
Two major encyclopedias in AI and cognitive sci-
ence (Shapiro 1992, Wilson and Kidd 1999) have
no sections or index entries for “humo(u)r,” and
there is no sign of this topic in the table of con-
tents of a more recent reference work (Dopico,
Dorado, and Pazos 2008). Of course, it could be
argued that the creation of humor is not truly
“intelligence,” but it is certainly a complex and
subtle form of human behavior, with both cogni-
tive and emotional aspects, the mechanisms for
which are far from obvious. AI no longer avoids
the topic of humor completely, but computational
modeling of humor is still at an early stage, with
few established precepts or results. In assessing the
state of the field, it is important to realize that this
subarea of AI has received few resources and rela-
tively little effort. Hardly any computational
humor projects have received external funding
from mainstream grant-awarding bodies (probably
the largest examples are those described by Stock
and Strapparava [2003] and by Manurung et al.
[2008]).

Where’s the Theory?
The centuries preceding the birth of AI witnessed
discussions of humor by such famous names as
Cicero, Kant, Schopenhauer, and Freud (see Mor-
reall [1987] and Attardo [1994] for historical
reviews) so it might seem that the starting point for
computational work should be the current theory
of humor. Why should AI researchers try to rein-
vent what these great minds have provided?
Unfortunately, it is not as simple as that. Although
there are many books and articles on humor from
the perspective of philosophy and literature (and—
more recently—of psychology), none of that has
resulted in agreement about a theory of humor.
Nor is it the case that there are several competing
theories to choose from, if “theory” means a
detailed, precise, coherent, empirically grounded
set of principles that explain the known phenom-
ena. Although the published works on humor pro-
vide stimulating ideas about what factors may be
involved in humor, they do not provide the level
of detail, or the clear definition of concepts, that
would be required to formulate a computer model.
In view of this lack of a directly usable framework,
researchers have applied conventional AI method-
ologies to the problem of humor, developing mod-

els that are very limited in their scope, but that can
at least be implemented. Such programs typically
make little or no use of theories of humor. Occa-
sionally, computational humorists will acknowl-
edge some theoretical framework, but it can be
hard to see how the actual details of the imple-
mentations follow from the theoretical ideas cited.
An exception to this trend is the program of Tin-
holt and Nijholt (2007), which uses a mechanism
derived from the Raskin (1985) criterion for a text
being a joke; this is discussed in more detail later
on.

Humor-generating programs are typically
designed by examining some extremely small area
of humor, abstracting some structural patterns
from existing examples (for example, jokes found
in joke books), formulating computationally man-
ageable rules that describe these patterns, and
implementing an algorithm to handle these rules.

Does this mean that computational projects
cannot contribute to wider theories of humor?
Opinions are divided on this. The implementors of
the existing programs might argue that even very
small studies can throw up interesting insights into
the nature of humor, gradually chipping away at
the mystery and slowly extending the scope of the
investigation to wider and more general areas; this
position is espoused by Ritchie (2004). Sceptics
would argue that these tiny implementations are
overly narrow and based on extremely ad hoc
mechanisms, which means that they tell us noth-
ing about any other forms of humor. The latter
position has been vigorously expressed by Raskin
(1996, 2002), who argues that only by adopting
linguistically general and theoretically based con-
cepts can computational humor progress.

Humor in Language
Humor out in the everyday world appears in many
forms: visual gags, physical slapstick, funny sound
effects, unexpected twists in situation comedies,
and so on. However, it is very common for humor
to be conveyed in language: funny stories, witty
sayings, puns, and so on. A great deal of academic
research into humor has focused on humor
expressed in language, and this is not surprising, as
there are some very good reasons for concentrat-
ing on this genre. Even without the added compli-
cations of vision, physical movement, and so on,
verbally expressed humor still displays a very rich
and interesting range of phenomena to study, and
the surrounding culture provides a wide variety of
established genres for textual humor, with lavish
quantities of data available for study (for example,
joke books, collections of aphorisms). This means
not only that there is a plentiful supply of data, but
also that the examples are attested, in the sense that
the researcher knows that the particular texts are

Articles

72 AI MAGAZINE

recognized by society as actually being instances of
humor. Data (that is, examples of humor) are
much easier to record and pass around in the form
of texts. In contrast, complete depictions of acts of
slapstick (particularly if not performed for the cam-
era) are harder to set down. Moreover, there are rel-
atively good formal models of the more obvious
aspects of language, because linguists have devel-
oped a wealth of terminology and concepts for
describing the structure of chunks of text (spoken
or written). This means it is much easier to provide
a detailed account of the contents of a humorous
passage.

These advantages apply even more strongly
when it comes to the computational treatment of
humor, as it is important to be able to represent the
data in machine-readable form, and it is helpful to
have some formal model of the structure of the
data items. All the working humor programs dis-
cussed here handle textual humor only; there are
almost no computer programs dealing with non-
textual humor (but see Nack [1996] and Nack and
Parkes [1995] for another approach).

Even within verbally expressed humor, there is a
further subclassification routinely made by humor
scholars: humor created by the language form itself
(often called verbal humor) and humor merely con-
veyed by language (often called conceptual or refer-
ential humor). Attardo (1994) cites many authors,
as far back as Cicero, who have made this distinc-
tion. Verbal humor depends directly on the lin-
guistic features of the words and phrases used:
puns, use of inappropriate phrasings, ambiguities,
and so on. Such humor relies on the particular
characteristics of one language, and so may be dif-
ficult or (usually) impossible to translate. In con-
trast, conceptual or referential humor involves all
sorts of events and situations and may be con-
veyed in any medium: cartoons, video, text,
speech, and so on. Where a textual joke depends
on referential humor, it can generally be translat-
ed into another language without distorting or los-
ing its humorous properties.

Verbal Humor
Traditional symbolic AI can be seen as an attempt
to reduce some complex behavior (game playing,
reasoning, language understanding, and so on) to
the manipulation of formal relationships between
abstract entities. Computational humor programs
are no exception. They are all based on the
assumption that the humorous items under con-
sideration can be characterized by a statement of
various formal relations between parts of those
items or some underlying abstract entities. The
interesting question is: what sorts of entities and
relations are involved? The earliest humor-gener-
ating programs (see Ritchie [2004, chapter 10] for
a review) were founded on the observation that

some very simple types of wordplay jokes (puns)
rely on linguistic properties that are structural and
relatively close to the “surface” (that is, actual
words and grammatical units) rather than being
“deeper” (for example, abstract concepts of incon-
gruity or of social appropriateness).

Probably the earliest actual joke generator is that
of Lessard and Levison (1992), which built very
simple puns such as this one, in which a quoted
utterance puns with an adverb:

“This matter is opaque,” said Tom obscurely.

The next stage of development was punning riddles,
which began emerging from computer programs
in 1993. A punning riddle is a short joke that con-
sists of a question and a one-line answer, with
some sort of wordplay involving the answer.
Another very small text generator by Lessard and
Levison (1993) produced examples such as the fol-
lowing:

What kind of animal rides a catamaran?

A cat.

Around the same time, the joke analysis and pro-
duction engine (JAPE) program (Binsted 1996; Bin-
sted and Ritchie 1994, 1997) was constructed. It
could spew out hundreds of punning riddles, one
of the better ones being:

What is the difference between leaves and a car?

One you brush and rake, the other you rush and
brake

JAPE was a conventional rule-driven program,
implemented in Prolog, using a relatively small
number of pattern-matching rules to compose the
riddle structures and using a conventional diction-
ary based on WordNet (Miller et al. 1990; Fellbaum
1998) to supply words and two-word phrases. The
large size of the dictionary (more than 100,000
entries) meant that JAPE could generate a vast
number of texts, although only a few of them were
good jokes, and many were incomprehensible
(Binsted, Pain, and Ritchie 1997).

A few years later, Venour (1999) built a pun gen-
erator that could construct simple two-word phras-
es punning on a preceding setup sentence, as in
the following:

The surgeon digs a garden. A doc yard.

Another small-scale pun generator was that of
McKay (2002), whose program could build simple
one-line puns like the following one:

The performing lumberjack took a bough.

All the early pun generators were programmed
without reference to any general plan of how a
punning program should be constructed (since
there was no precedent), and there was no obvious
commonality in their components. The architec-
ture adopted by the JAPE program, however, has a
relatively clean modular structure (and formed the
basis for a later, larger system, System to Augment

Articles

FALL 2009 73

Nonspeakers Dialogue Using Puns (STANDUP)
[Manurung et al. 2008]). With hindsight, this
architecture could be used quite naturally to pro-
duce the output of the other simple pun builders.

Although most computer-generated verbal
humor consists of puns, there has also been a non-
punning system that may lie on the boundary of
verbal and referential humor: the HAHAcronym
program (Stock and Strapparava 2003, 2005). This
system can perform two tasks: given an existing
acronym (for example, DMSO, for defense modeling
and simulation office), it computes alternative words
with these initials to form a whimsical phrase (for
example, defense meat eating and salivation
office). Alternatively, given two words that indicate
some concept, it finds an English word pertinent to
the concept whose letters are the initials of a
phrase also (humorously) relevant to the concept.
For example, {fast, processor} yields TORPID, for
Traitorously Outstandingly Rusty Processor for Inad-
vertent Data processing.

Referential Humor
On the whole, computational humor has concen-
trated, so far, on verbal humor, although there
have been a few small forays into referential
humor. Bergen and Binsted (2003) examine a sub-
class of joke based on exaggerated statements on
some scale, such as the following, and Binsted,
Bergen, and McKay (2003) briefly allude to imple-
menting a generator of such jokes.

It was so cold, I saw a lawyer with his hands in his
own pockets.

Stark, Binsted, and Bergen (2005) describe a pro-
gram that can select (from a short list of options)
the most suitable punchline for a joke of the type
illustrated as follows:

I asked the bartender for something cold and filled
with rum, so he recommended his wife.

However, this appears to be a very small imple-
mentation that works on one or two examples
using a very specific knowledge base.

Tinholt and Nijholt (2007) describe a small pro-
totype system for generating jokes in the form of
deliberately misunderstood pronoun references
(see also Nijholt [2007]). Such humor is exempli-
fied by the following exchange within a Scott
Adams cartoon:1

“Our lawyers put your money in little bags, then we
have trained dogs bury them around town.” “Do
they bury the bags or the lawyers?’

(The actual cartoon has a further punchline:
“We’ve tried it both ways.”) Tinholt and Nijholt’s
process works as follows. If a pronoun occurs with-
in a text, a general antecedent-finding program
(Lappin and Leass 1994) fetches all candidate
antecedents, including the proposed correct one.
The correct antecedent is compared with each of

the others to find an incorrect candidate that is
“opposed” to the correct one. Two potential refer-
ents are deemed to be opposed if they have most of
their properties in common according to Concept-
Net (Liu and Singh 2004) but also have at least one
property with opposite (antonymous) values. If
these criteria are met, the program generates a
pseudoclarificatory question asking which of these
two potential antecedents is involved in the rela-
tion mentioned in the text. Tinholt and Nijholt
tested this method on chatterbot transcripts and
story texts, comparing its identification of joke
opportunities with a manual annotation of the
texts. They state that it was “still quite susceptible
to errors” so that it was “unfeasible to use the sys-
tem in existing chat applications,” but opine that
this method “does provide future prospects in gen-
erating conversational humor.”

Could a Computer
Learn to Make Jokes?

A dominant paradigm in AI at present is that of
machine learning (in various forms). This raises
the question: could a learning program develop
joke-making skills? There are certainly plenty of
positive instances (jokes) to use for training.

Mihalcea and Strapparava (2006) carried out a
number of studies in which various machine-learn-
ing and text-classification methods were applied to
large quantities of textual data, both humorous
and nonhumorous. The aim was to see whether it
was possible to evolve classifiers (of various kinds)
that distinguish humorous texts from nonhumor-
ous. They used a collection of one-liner jokes
found on the web and four nonhumorous datasets:
Reuters news titles, proverbs, ordinary sentences
from a large corpus of English (the British Nation-
al Corpus [Leech, Rayson, and Wilson 2001]), and
“commonsense” statements from a knowledge
base (Singh 2002). Using certain stylistic features
(alliteration, antonymy, adult slang), their pro-
gram automatically constructed a decision tree for
each pair of humorous data and nonhumorous
data sets (that is, there were four different compar-
isons). The accuracy of the classification learned
varied from 54 percent (humor versus proverbs) to
77 percent (humor versus news titles). They also
tried using aspects of the content of the text, with
two other classifier techniques (naïve Bayes, sup-
port vector machine), obtaining broadly similar
results in the two cases: accuracy of 73 percent for
humor versus ordinary sentences, and 96 percent
for humor versus news titles. Combining the sty-
listic and content features hardly improved per-
formance at all. Mihalcea and Pulman (2007) dis-
cuss these results, concluding that certain features
show up as more salient in the computed classifi-
cations: human-centered vocabulary, negation,

Articles

74 AI MAGAZINE

negative orientation, professional communities,
and human weakness.

Mihalcea and Strapparava’s experiments suggest
that humorous texts have certain gross textual
properties that distinguish them from other texts,
to the extent that it might well be possible to have
a program guess, with much better accuracy than
chance, whether a text was a joke or not. While
this is interesting, there is some way to go before
such findings can give rise to a humor-creation sys-
tem (and this is not what Mihalcea and Strappara-
va were proposing). It is possible to imagine some
form of “generate-and-test” architecture, or an evo-
lutionary algorithm, into which a text classifier
might be fitted. Even if such an arrangement could
be made to work, it would be quite hard to argue
that this demonstrates creativity of any depth.

The main problem is that the automatic classi-
fiers detect correlations (loosely speaking) between
certain features and humor but do not determine
causality from features to humor. A text could be
replete with the types of feature listed by Mihalcea
and Pulman without being funny.

The Methodology of
Humor Generation

Although it is exciting to think of humorous pro-
grams as being models of creative or witty humans,
perhaps even displaying a “sense of humor,” there
is a less glamorous, but potentially very helpful,
perspective on the relationship between computa-
tion and humor research. Most of the generating
programs built so far have not been embedded in
some larger cognitive model, do not function in an
interpersonal context, and perform no specific
application task (although Tinholt and Nijholt’s
pronoun misunderstander attempts to move out-
side these limitations). Instead, they simply follow
symbolic rules to produce output. In this way, they
function as testbeds for whatever formal models of
joke structure are embodied in their implementa-
tion. Just as there was once a vogue for “grammar-
testing” programs that checked the consequences
of a linguist’s proposed formal grammar (Friedman
1972), a joke generator tests the implications of a
formal model of joke mechanisms. Although the
programs do not yet connect to general theories of
humor, this testbed role would be very valuable
where the implementation was based on a pro-
posed theory.

When testing a formal model, the program can
be run under laboratory conditions, since it is not
intended as a simulation of a human joke teller in
a real context. Under these circumstances, certain
methodological principles follow (some of which
are more generally applicable to creative programs).

The first issue is the status of humorous input to
the program. If the system is some sort of learning

program, which takes in a collection of existing
humorous items and, by some process of general-
ization, manages to construct further humorous
items that are noticeably distinct from the original
input, then that is a significant achievement. (It is
also one of the types of situation that stimulates
interesting debates about ascribing creativity to
programs [Ritchie 2007]).

On the other hand, if the program merely recy-
cles the input items, perhaps with some superficial
rearrangement or packaging, then that is not very
interesting, as it casts no light on how humor can
be created. Hence, programs that do not aspire to
the kind of learning model just sketched should
not accept humorous items within their input.
This is because a program can embody a computa-
tional model of humor creation only if it con-
structs the humor from nonhumorous material.
The whole point of developing models of humor,
in the general tradition of reductionist science, is
to decompose the nature of humor creation into
some configuration of other (nonhumorous)
processes. Furthermore, there should not be some
module within the system whose function is to
create humor and that is a “black box,” in the
sense that its inner workings are not known, or not
documented, or not regarded as part of the pro-
posed model. If the reason that the program man-
ages to produce humor is because it has a box
inside it that (mysteriously) “creates humor,” that
would not illuminate the problem of humor cre-
ation. Instead, this would introduce a form of
regress, in which there is now a new problem: how
does that black box achieve its results?

This is subtly different from allowing the pro-
gram to have knowledge that is about how to cre-
ate humor, perhaps localized to one module. That
is completely acceptable: somewhere in the pro-
gram there must be a capability to form humorous
items. If the model is to cast light on the nature of
humor, it is essential to know what that knowledge
is and how it is used. This means that the builder
of the humor generator should be quite clear about
which parts of his system, or which of the knowl-
edge sources upon which the program relies, or
which interactions between modules are regarded
as central to creating the humor and which are
merely supporting facilities.

This is illustrated in the early pun generators.
These systems crucially had to find words that were
in a well-defined relationship, such as sounding
alike. These items are the core of the pun, but oth-
er text must be created around them to set up the
pun. Within certain constraints on the internal
coherence of the overall text, there could be many
such setups for the same central pun. For example,
given two core lexical items in which one sounds
similar to the start of the other, such as pylon and
pa, the answer for a punning riddle can be con-

Articles

FALL 2009 75

structed, “a pa-lon,” and the question for the riddle
can be framed by asking about some entity that
has properties of both the named concepts. This
can be done using other words that are semanti-
cally related to these two words, such as hyper-
nyms or synonyms, but the question can be
formed in various ways, such as “what kind of tow-
er is a dad?” “what do you get when you cross a tower
with a father?” “what do you call a tower with a fam-
ily?” and so on.

Hence the pun generators can be viewed as hav-
ing central modules that select suitable words and
set out the minimum needs for the setup, but there
are also basic text-building modules that supply
the surrounding context to meet that requirement.

Any purely supporting facilities should not only
be nonhumorous, they should, as far as possible,
be general purpose. That is, they should not be too
finely tuned for performing the supporting role in
the program, since there is a risk that such tuning
might stray accidentally into covert injection of
humorous content in a way that would obscure the
real contributions of the parts of the model.
Although the text-generation capabilities of past
pun generators are usually not wholly general text-
generation programs, they are not fine-tuned for
puns, in that there are conventional language-gen-
eration programs, for real practical applications,
that use equally crude and narrowly targeted rules
(Reiter and Dale 2000). Lessard and Levison, and
Venour, made use of a general text generator, Vin-
ci (Levison and Lessard 1992), and the the lexicon
used by Binsted was a wholly general-purpose dic-
tionary (Miller et al. 1990) containing the kind of
information that linguists would normally associ-
ate with words and phrases (grammatical cate-
gories, relations such as synonymy, and so on). It
might be that all the knowledge resources are “sup-
porting,” in the sense that the humor is created
entirely from the interaction of various types of
nonhumorous knowledge; in that case, the “recipe
for humor” would be in the interaction (as defined
by the program designer), and this should be made
completely explicit and open to scrutiny.

The testing of humor-creating programs is also a
matter worth reflecting upon, if such evaluations
are to illuminate the phenomenon of humor. The
pun generators summarized earlier do not have
any real notion of an “input parameter”—they
simply run with all their knowledge bases every
time. In such cases, there is no question of select-
ing values for the input (beyond the general
hygiene principles outlined above, concerning the
nature of the knowledge bases). However, if the
program can be run on specific data items—as in
the case of the HAHAcronym system—then any
trials of the system must have a rational and docu-
mented way of selecting the values used. For exam-
ple, the input values might be randomly selected

from the set of all possible values, or the data items
might be selected according to some principles,
such as featuring in certain linguistic sources in
some particular way (for example, frequency of
occurrence in a large collection of naturally occur-
ring texts). What should not be done, in the inter-
ests of objective testing, is for the parameters to be
selected in an ad hoc manner by hand, as there is
the risk of subjective estimates of “suitable values”
influencing the choice.

If a system produces only a small number of
items, then there is no problem about deciding
which of these to test: all of them can be tested,
giving an exhaustive assessment of the program’s
output. If, on the other hand, the system can pro-
duce large amounts of data then the next question
is: which output items are to be subjected to test-
ing? To avoid bias creeping in, some form of ran-
dom selection is probably necessary. If the testing
mechanism is constrained in some way (for exam-
ple, only certain other texts are available as control
items), it may be necessary to restrict the choice of
output data for compatibility with the available
control items, but the selection should be as objec-
tive as possible.

The most obvious, and still the best, way to test
humor output is with human judges. The exact
details of how to elicit judgments about the texts
from appropriate humans (for example, children
for child-oriented humor) need to be planned, but
this area is not mysterious, as this type of study is
routine within psychology. There should be con-
trol items alongside the program output items, the
order of presentation of items should be varied, the
mix of types of items should be balanced, the ques-
tions to the judges should be carefully phrased,
there should be a sufficiently large number of sub-
jects, and so on. There is thus no obstacle in prin-
ciple to assessing the quality of computer-generat-
ed humor, but most implementations have been
on such a small and exploratory scale (for exam-
ple, as student projects) that there have been few
thorough evaluations. Probably the fullest and
most systematic testing was the evaluation of the
JAPE program (Binsted, Pain, and Ritchie 1997).

Practical Applications
Science is not the only motivation for computa-
tional modeling of humor: there is also engineer-
ing. From an early stage, there has been the idea
that computer-generated humor might be of prac-
tical use. It is clear that AI is a long way from the
automated writing of comedy scripts or writing
gags for comedians, but there have been some pro-
posals for the use of humor for real-world tasks.
Strapparava, Valitutti, and Stock (2007) describe
some explorations of the possibility of using com-
putational pun making in the “creative” develop-

Articles

76 AI MAGAZINE

ment of an advertising campaign, but as yet that
area is unexploited. The two main types of appli-
cation that have been advocated and at least ten-
tatively explored are friendlier user interfaces and
educational software.

Binsted (1995) considered whether a natural lan-
guage user interface for a computer system would
be more congenial if the system could make use of
humor to lessen the impact of inadequacies in its
performance (for example, lack of factual knowl-
edge, poor language understanding, slow
response). She suggested a number of types of
humor that might work: self-deprecating humor
(the system mocking its own failings), wry obser-
vations (for example about the system’s lack of
speed), whimsical referring expressions. Stock
(1996) developed this theme and, in passing, men-
tioned the possible application areas of advertising
and “edutainment.”

These two essays were essentially speculative
and preceded the experimental results of Morkes,
Kernal, and Nass (1999), who found that users
reacted more positively to a computer in which the
user interface contained examples of humor (not
computer generated, sadly). Nevertheless, Binsted
and Stock raise some valid general points. The
humor will probably be more effective if it is attrib-
uted to some sort of quasi-human agent that is not
synonymous with the entire computer system. In
that way, frivolous wisecracks can be seen as sepa-
rate from the main task, and any failings of the
computer system are not associated with the pur-
veyor of humor, and vice versa—poor attempts at
humor are not seen as symptoms of a useless over-
all system. Conversely, if there are independent
reasons for having a lifelike artificial agent as part
of the interaction, then imbuing it with humorous
skills will help to make it more lifelike and likeable
(Nijholt 2002). Humorous remarks that are of poor
quality, or are contextually inappropriate, will be
counterproductive, being likely to irritate rather
than engage the user. This is particularly pertinent
to the argument for implementing humorous
interfaces at the moment, because the current state
of computational humor makes it extremely hard
to generate automatically humor that is of good
quality and moderate relevance. This means that
the arguments in favor of having humor-capable
interfaces are in some contrast to the abilities of
the field to provide humor generation of a suffi-
cient quality to make implementation a reality.

It is often argued that the use of humor within
education can have beneficial effects, although the
empirical evidence is mixed (Martin 2007, chapter
11). The idea that computational humor might be
used in interactive teaching software was men-
tioned in passing by Binsted (1996), and Stock
(1996) alludes to the scope for edutainment. This
motivation is also invoked by McKay (2002) and

by Binsted, Bergen, and McKay (2003), although
neither provides a design for a real tutoring system.
Since existing computational humor is mostly con-
cerned with language, it is relatively plausible to
argue that a program that manipulates textual
items for humorous effect may well help a student
to learn about language. For example, a simple pun
is usually based on similarity of sound, often uses
ambiguity, and may rely on the fact that two dif-
ferent words mean the same. Thus a schoolchild
who encounters such a pun may absorb some
understanding of the workings of the language,
while being motivated by the “fun” aspect of the
experience. It is also possible to automate the
explanation of why a particular text qualifies as a
pun; for example, McKay (2002) shows how his
pun generator could outline the links behind the
jokes. Such explicit pedagogy, sweetened by the
amusing material, might be quite effective.

One educationally motivated joke-generation
system is STANDUP (Manurung et al. 2008), in
which the ideas of Binsted’s JAPE were reimple-
mented as the core of an interactive, child-friend-
ly, robust, and efficient riddle generator.

The aim was to create a “language playground”
for children with complex communication needs
(that is, impairments of motor or cognitive ability
that impede normal language use). The system was
evaluated by a number of children with cerebral
palsy who had limited literacy and conversational
skills. Overall, the children were greatly engaged
by being able to interact with the software and
build simple puns and appeared to become more
lively and communicative (Black et al. 2007;
Waller et al. 2009). However, that study was small
and so it is hard to draw firm conclusions. The
STANDUP system is capable of producing literally
millions of different jokes, but the overall quality
of its output has not been tested.

As with user interfaces, the arguments in favor
of joking software tutors are plausible, but the state
of the art does not make it easy to build working
systems, let alone perform rigorous trials.

How Creative Are These Systems?
A central question remains: to what extent are
computational humor programs creative? By adopt-
ing a rather trivial notion of creativity, which
demands only the production of novel items (com-
pare Chomsky’s arguments that routine human
language use is inherently creative), then the ver-
dict is simple. But creativity means more than sim-
ply producing hitherto unseen material. It is not
possible to do justice here to the long-standing
debate about when a computer program can be
seen as creative (Boden 1998, 2003; Ritchie 2007;
Colton 2008), but a few humor-specific remarks are
in order.

Articles

FALL 2009 77

For humans, simply appreciating humor—of
which everyone is capable—is not usually regard-
ed as creative. Hence, even where a computer pro-
gram manages a first step toward appreciation
(namely, recognizing that an item is humorous), it
is hard to argue that the software is being creative,
no matter how effectively it performs this step.

Humans who produce novel humor (particular-
ly humor of a high standard) are usually deemed to
be creative, so perhaps humor-generating pro-
grams should have similar status. For programs,
the results so far show some promise in the area of
novelty, an important component of creativity.
Boden (2003) makes the useful distinction between
artifacts that are novel for the creator (for example,
where an inexperienced mathematician proves a
result, not realizing that it is already known in the
field), as opposed to results that are novel for the
whole culture (such as the development of cubist
art). The former type of achievement can lead to P-
creativity (“personal”), whereas the latter are candi-
dates for H-creativity (“historical”). Where do joke-
generating programs stand in this respect? Some of
the programs definitely produce jokes that have
not been seen before, so they have at least the min-
imum qualification for an accolade of H-creativity.
Unfortunately, these programs score very poorly
on the scale of quality, another factor that is regard-
ed as highly important for an overall verdict of
being creative. The created texts generally consist
of relatively feeble humor.

Whereas “novelty” could simply mean that the
specific created entity has not been encountered
before, there is a more demanding criterion, which
concerns the extent to which the created entity is
radically different from previous artefacts of this
kind; this could be labelled “originality.” Boden
has proposed that there are two qualitatively dif-
ferent forms of creativity, determined by the extent
to which the act of creation overturns previous
norms. The first, exploratory creativity, involves the
navigation of a structured space of possibilities,
forming new artifacts according to existing guide-
lines (perhaps abstract, unwritten, unacknowl-
edged). More striking results will come from trans-
formational creativity, in which the existing
structured space is significantly altered. From this
perspective, the joke machines can at best aspire to
exploratory creativity: they rely on a small set of
hand-crafted rules, and the joke texts are the
results of applying these rules in different combi-
nations or with different data values. However,
much human-created humor can also be viewed in
this way—it is rare for humor to cross established
boundaries or restructure the space of humorous
possibilities. Exploratory creativity, in this sense, is
not trivial, and can even reach high levels of qual-
ity. This means that there are still demanding stan-
dards for computer generation of humor to aim

for, even if the programs are exploring an already
structured space. In the current state of the art,
there is plenty of room for improvement within
this type of humorous creativity, without yet con-
sidering what it would mean to be radically origi-
nal (“transformational”). Humor generators
should show that they are proficient at walking
before they attempt to run.

The Challenges Ahead
Twenty years ago, computational humor was
unheard of, and—as noted at the start of this arti-
cle—little attention was being paid to humor with-
in AI. In such a setting, it was an interesting step to
set down the simple structural properties of certain
kinds of basic puns, and hence automatically con-
struct texts that had the gross attributes of jokes.
This showed that not all humor was beyond the
reach of AI and that there was an “abstract syntax”
to certain classes of joke. However, it is difficult to
argue now that building another pun generator
would, in itself, be a significant step forward,
unless it introduced some nontrivial step forward
in the direction of wider generality.

Even in the case of just verbal humor (wordplay,
and so on), there are two ways in which computer-
generated jokes such as puns could be more inter-
esting.

First, there is the issue of contextual relevance.
Although attempts at joke generation have implic-
itly been tackling the issue of “quality”—since the
aim is to create jokes that are as good as possible—
the joke generators are usually designed to create
single texts in isolation. That is, these are “self-con-
tained” puns, in which the central words or phras-
es are directly related to other words in the same
text. In none of these cases is an utterance created
that somehow links to a realistically complex con-
text of use. But such contextually related wise-
cracks are part of the essence of punning in every-
day life (at least in those cultures where punning
occurs freely). The existing pun generators are
competing with “canned” puns, such as those
found in some children’s comics, or—in Britain—
Christmas crackers, but have not begun to imitate
contextual wisecracking. Loehr (1996) presented a
preliminary study in using keyword matching to
select JAPE-generated jokes for insertion in a dia-
logue, but that was a very rough and basic trial that
did not really grapple with the complexities of
contextual relevance.

There might be some ways to widen the range of
computational punning (see Ritchie [2005] for
some suggestions), but at the moment the state of
the art is still limited. This has consequences for
the short-term prospects of using current software
in applications where impromptu and natural joke
making might provide an appearance of lifelike

Articles

78 AI MAGAZINE

behavior, as discussed earlier. Relevance of content
is just one of two criteria that Nijholt (2007) lists as
central to the contextually appropriate use of
humor; there is also the larger question of whether
it is acceptable to use humor at a particular stage of
the conversation. This latter issue is extremely dif-
ficult, requiring high-level cultural and social
knowledge, and goes far beyond the very low-lev-
el mechanical approach currently used in compu-
tational humor. It is still difficult for designers of
interactive computer systems to ensure that
human-computer interactions flow naturally when
all that is required is nonhumorous discourse. If
the interface is to allow spontaneous humor,
which may violate the norms of informative com-
munication, the task becomes even more compli-
cated.

The second possible improvement would be in
the quality of the humor. Although existing pro-
grams produce structurally well-formed puns, most
of the examples are not at all funny, and some
barely qualify as jokes (as opposed to unmotivated
ad hoc wordplay). If some abstract model could be
devised that resulted in a program consistently
producing genuinely funny output, that would be
a step forward not only for possible applications
but also for humor theory. That is, research must
go beyond mere structural well-formedness in
order to produce funny output consistently. What
might lead to such improvements in funniness? It
has often been argued that incongruity is a vital fac-
tor in humor, possibly combined with some resolu-
tion of that incongruity (Attardo 1994, Ritchie
2004), but there is still no formal and precise defi-
nition of what constitutes incongruity (or resolu-
tion). A typical dictionary explanation of incon-
gruity is “want of accordance with what is
reasonable or fitting; unsuitableness, inappropri-
ateness, absurdity; want of harmony of parts or ele-
ments; incoherence” (Little et al. 1969). The
knowledge representation techniques employed in
AI should be a fruitful framework for stating a
more precise and formal definition of incongruity
(and perhaps also “resolution”). If such a notion of
incongruity resolution could be shown empirical-
ly to result in humor (by using it in a joke genera-
tor), that would be a major advance.

One widely proposed account of humorous
incongruity has its origin in the AI of the 1970s,
when frames (Minsky 1975) and scripts (Schank
and Abelson 1977) were proposed as knowledge
structures for stereotypical situations and events.
The application of these ideas to humor comes in
the semantic script theory of humor, or SSTH (Raskin
1985), which in its more recent versions (Raskin
1996, 2002) continues to connect to this strand of
AI work through ontological semantics (Nirenburg
and Raskin 2004). The central idea of the SSTH is
that a text is a joke if it is associated with two

scripts (complex knowledge structures) that,
although having a large portion in common (an
overlap), also differ crucially in certain aspects (are
opposite). This could come about, for example, by
the text being ambiguous. The SSTH then provides
a list of what counts as “opposite.” The pronoun
misunderstander of Tinholt and Nijholt, discussed
earlier, is heavily influenced by the SSTH, in its
method for comparing linguistic structures for
humorous potential.

Any solution to the incongruity question,
whether from the SSTH or elsewhere, should help
to widen the focus of computational humor to
other forms of humor. As noted earlier, computer
generation of humor has largely concentrated on
“verbal” humor, because the crucial relationships
in the textual structures are primarily lexical, and
hence can be computed. However, referential
humor constitutes a very large proportion of the
humor that appears in our culture.

Even if there was a good definition of incon-
gruity (and its resolution), referential humor is still
vastly more challenging than simple punning.
Stock (1996) refers to fully developed humor pro-
cessing as being “AI-complete”—that is, a full com-
putational account of humor will not be possible
without a solution to the central problems of AI.
This view is echoed by Nijholt (2007). The prob-
lems become clear with even a superficial inspec-
tion of quite simple jokes, which typically involve
cultural and real-world knowledge, sometimes in
considerable quantities. Most referential humor
consists of short stories (ending in a punchline),
but AI has yet to produce a high-quality, fully auto-
matic story generator, let alone one that can per-
form subtle tricks of narrative. It is common to
observe that many jokes rely on ambiguity, but
current text generators have nothing like the
sophistication that would be needed to create
exactly the right ambiguities for humor. Subtle
manipulation of the audience’s expectations, indi-
rect allusions, and carefully timed revelations, all
of which are central to many jokes, require infer-
ence mechanisms of some sophistication. For
example, the following, consisting of just one
short sentence, requires considerable hypothetical
reasoning.

A skeleton walked into a bar and said: “I’ll have a
Budweiser and a mop, please.” (Tibballs 2000, No.
297, 49)

An even more vast and challenging aspect of
humor is still to be tackled by AI. Science fiction
might tell us that one crucial distinction between
computers and humans is that machines (or soft-
ware) can never have a sense of humor. It would be
hard to collect firm evidence for or against such a
view, given the lack of a single accepted definition
of “sense of humor” (Ruch 1996, 2007), but com-
putational humor is still far from addressing these

Articles

FALL 2009 79

deeper issues. Research still focuses narrowly on
the structural properties of the humorous items
(jokes, and so on) without considering any of the
human cognitive or emotional processes. There is
therefore an exciting but unexplored area: the
modeling of the effects of humor on the thoughts
and emotions of the recipient.

Acknowledgements
The writing of this article was partly supported by
grants EP/E011764/01 and EP/G020280/1 from the
Engineering and Physical Sciences Research Coun-
cil in the UK.

Note
1. www.dilbert.com.

References
Attardo, S. 1994. Linguistic Theories of Humour. Number 1
in Humor Research. Berlin: Mouton de Gruyter.

Bergen, B., and Binsted, K. 2003. The Cognitive Linguis-
tics of Scalar Humor. In Language, Culture and Mind, ed.
M. Achard and S. Kemmer. Stanford, California: CSLI
Publications.

Binsted, K. 1996. Machine Humour: An Implemented
Model Of Puns. Ph.D. dissertation, University of Edin-
burgh, Edinburgh, Scotland.

Binsted, K. 1995. Using Humour to Make Natural Lan-
guage Interfaces More Friendly. Paper presented at the
International Joint Conference on Artificial Intelligence
Workshop on AI and Entertainment, Montreal, Quebec,
21 August.

Binsted, K., and Ritchie, G. 1997. Computational Rules
for Generating Punning Riddles. Humor: International
Journal of Humor Research 10(1):25–76.

Binsted, K., and Ritchie, G. 1994. An Implemented Mod-
el of Punning Riddles. In Proceedings of the Twelfth Nation-
al Conference on Artificial Intelligence (AAAI-94). Menlo
Park, CA: AAAI Press.

Binsted, K.; Bergen, B.; and McKay, J. 2003. Pun and Non-
pun Humour in Second-Language Learning. Paper pre-
sented at the CHI 2003 Workshop on Humor Modeling
in the Interface. Fort Lauderdale, April 6.

Binsted, K.; Pain, H.; and Ritchie, G. 1997. Children’s
Evaluation of Computer-Generated Punning Riddles.
Pragmatics and Cognition 5(2): 305–354.

Black, R.; Waller, A.; Ritchie, G.; Pain, H.; and Manurung,
R. 2007. Evaluation of Joke-Creation Software with Chil-
dren with Complex Communication Needs. Communica-
tion Matters 21(1): 23–27.

Boden, M. A. 2003. The Creative Mind, 2nd ed. London:
Routledge.

Boden, M. A. 1998. Creativity and Artificial Intelligence.
Artificial Intelligence 103(1–2): 347–356.

Charniak, E., and McDermott, D. 1985. Introduction to
Artificial Intelligence. Reading, MA: Addison-Wesley.

Colton, S. 2008. Creativity Versus the Perception of Cre-
ativity in Computational Systems. In Creative Intelligent
Systems: Papers from the AAAI Spring Symposium, ed. D.
Ventura, M. L. Maher, and S. Colton. AAAI Press Techni-
cal Report SS-08-03. Menlo Park, CA: AAAI Press.

Dopico, J. R. R.; Dorado, J.; and Pazos, A., eds. 2008. Ency-
clopedia of Artificial Intelligence. Hershey, PA: IGI Global.

Fellbaum, C. 1998. WordNet: An Electronic Lexical Data-
base. Cambridge, MA: The MIT Press.

Friedman, J. 1972. Mathematical and Computational
Models of Transformational Grammar. In Machine Intelli-
gence 7, ed. B. Meltzer and D. Michie, 293–306. Edin-
burgh: Edinburgh University Press.

Lappin, S., and Leass, H. J. 1994. An Algorithm for
Pronominal Anaphora Resolution. Computational Lin-
guistics 20(4): 535–561.

Leech, G.; Rayson, P.; and Wilson, A. 2001. Word Fre-
quencies in Written and Spoken English: Based on the British
National Corpus. London: Longman.

Lessard, G., and Levison, M. 1993. Computational Mod-
elling of Riddle Strategies. Paper presented at the Associ-
ation for Literary and Linguistic Computing (ALLC) and
the Association for Computers and the Humanities
(ACH) Joint Annual Conference, Georgetown University,
Washington, DC, 15–19 June.

Lessard, G., and Levison, M. 1992. Computational Mod-
elling of Linguistic Humour: Tom Swifties. In Research in
Humanities Computing 4: Selected Papers from the 1992
Association for Literary and Linguistic Computing (ALLC)
and the Association for Computers and the Humanities (ACH)
Joint Annual Conference, 175–178. Oxford, UK: Oxford
University Press.

Levison, M., and Lessard, G. 1992. A System for Natural
Language Generation. Computers and the Humanities
26(1): 43–58.

Little, W.; Fowler, H. W.; Coulson, J.; and Onions, C. T.,
eds. 1969. The Shorter Oxford English Dictionary on Histor-
ical Principles, revised 3rd ed. London: Oxford University
Press.

Liu, H., and Singh, P. 2004. Commonsense Reasoning in
and over Natural Language. In Proceedings of the 8th Inter-
national Conference on Knowledge-Based Intelligent Informa-
tion and Engineering Systems (KES 2004), volume 3213 of
Lecture Notes in Computer Science, ed. M. Negoita, R.
Howlett, and L. Jain, 293–306. Heidelberg: Springer.

Loehr, D. 1996. An Integration of a Pun Generator with a
Natural Language Robot. In Proceedings of the Internation-
al Workshop on Computational Humor, 161–172. Enschede,
Netherlands: University of Twente.

Manurung, R.; Ritchie, G.; Pain, H.; Waller, A.; O’Mara,
D.; and Black, R. 2008. The Construction of a Pun Gen-
erator for Language Skills Development. Applied Artificial
Intelligence 22(9): 841–869.

Martin, R. A. 2007. The Psychology of Humor: An Integrative
Approach. London: Elsevier Academic Press.

McKay, J. 2002. Generation of Idiom-Based Witticisms to
Aid Second Language Learning. In The April Fools’ Day
Workshop on Computational Humor, 77–87. Enschede,
Netherlands: University of Twente.

Mihalcea, R., and Pulman, S. 2007. Characterizing
Humour: An Exploration of Features in Humorous Texts.
In Proceedings of the Conference on Computational Linguis-
tics and Intelligent Text Processing (CICLing), Lecture Notes
in Computer Science 4394, ed. A. F. Gelbukh, 337–347.
Berlin: Springer.

Mihalcea, R., and Strapparava, C. 2006. Learning to
Laugh (Automatically): Computational Models for

Articles

80 AI MAGAZINE

Humor Recognition. Computational Intelligence 22(2):
126–142.

Miller, G. A.; Beckwith, R.; Fellbaum, C.; Gross, D.; and
Miller, K. 1990. Five papers on WordNet. International
Journal of Lexicography 3(4). Revised March 1993.

Minsky, M. 1975. A Framework for Representing Knowl-
edge. In the Psychology of Computer Vision, ed. P. H. Win-
ton, 211–277. New York: McGraw-Hill.

Morkes, J.; Kernal, H. K.; and Nass, C. 1999. Effects of
Humor in Task-Oriented Human-Computer Interaction
and Computer-Mediated Communication: A Direct Test
of SRCT Theory. Human-Computer Interaction 14(4): 395–
435.

Morreall, J., ed. 1987. The Philosophy of Laughter and
Humor. Albany, NY: SUNY Press.

Nack, F. 1996. AUTEUR: The Application of Video Seman-
tics and Theme Representation for Automated Film Edit-
ing. Ph.D. dissertation, Lancaster University, Bailrigg,
Lancaster, UK.

Nack, F., and Parkes, A. 1995. Auteur: The Creation of
Humorous Scenes Using Automated Video Editing. Paper
presented at the International Joint Conference on Arti-
ficial Intelligence Workshop on AI and Entertainment,
Montreal, Quebec, 21 August.

Nijholt, A. 2007. Conversational Agents and the Con-
struction of Humorous Acts. In Conversational Informat-
ics: An Engineering Approach, ed. T. Nishida, chapter 2, 21–
47. London: John Wiley and Sons.

Nijholt, A. 2002. Embodied Agents: A New Impetus to
Humor Research. In The April Fools’ Day Workshop on
Computational Humor, 101–111. Enschede, Netherlands:
University of Twente.

Nirenburg, S., and Raskin, V. 2004. Ontological Semantics.
Cambridge, MA: The MIT Press.

Raskin, V. 2002. Quo Vadis Computational Humor? In The
April Fools’ Day Workshop on Computational Humor, 31–46.
Enschede, Netherlands: University of Twente.

Raskin, V. 1996. Computer Implementation of the Gen-
eral Theory of Verbal Humor. In Proceedings of the Inter-
national Workshop on Computational Humor, 9–20.
Enschede, Netherlands: University of Twente.

Raskin, V. 1985. Semantic Mechanisms of Humor. Dor-
drecht: Reidel.

Reiter, E., and Dale, R. 2000. Building Natural Language
Generation Systems. Cambridge, UK: Cambridge Universi-
ty Press.

Ritchie, G. 2007. Some Empirical Criteria for Attributing
Creativity to a Computer Program. Minds and Machines
17(1): 67–99.

Ritchie, G. 2004. The Linguistic Analysis of Jokes. London:
Routledge.

Ritchie, G. 2005. Computational Mechanisms for Pun
Generation. Paper presented at the Tenth European
Workshop on Natural Language Generation, Aberdeen,
Scotland. 8–10 August.

Ruch, W., ed. 2007. The Sense of Humor: Explorations of a
Personality Characteristic. Mouton Select. Berlin: Mouton de
Gruyter.

Ruch, W., ed. 1996. Humor: International Journal of Humor
Research 9(3/4).

Schank, R., and Abelson, R. 1977. Scripts, Plans, Goals and
Understanding. Hillsdale, NJ: Lawrence Erlbaum.

Shapiro, S. C., ed. 1992. Encyclopedia of Artificial Intelli-
gence, 2nd ed. New York: John Wiley.

Singh, P. 2002. The Public Acquisition of Commonsense
Knowledge. In Acquiring (and Using) Linguistic (and World)
Knowledge for Information Access: Papers from the AAAI
Spring Symposium. AAAI Technical Report SS-02-09. Men-
lo Park, CA: AAAI Press.

Stark, J.; Binsted, K.; and Bergen, B. 2005. Disjunctor
Selection for One-Line Jokes. In Proceedings of First Inter-
national Conference on Intelligent Technologies for Interactive
Entertainment, volume 3814 of Lecture Notes in Comput-
er Science, ed. M. T. Maybury, O. Stock, and W. Wahlster,
174–182. Berlin: Springer.

Stock, O. 1996. “Password Swordfish”: Verbal Humor in
the Interface. In Proceedings of the International Workshop
on Computational Humor, 1–8. Enschede, Netherlands:
University of Twente.

Stock, O., and Strapparava, C. 2005. The Act of Creating
Humorous Acronyms. Applied Artificial Intelligence 19(2):
137–151.

Stock, O., and Strapparava, C. 2003. HAHAcronym:
Humorous Agents for Humorous Acronyms. Humor: Inter-
national Journal of Humor Research 16(3): 297–314.

Strapparava, C.; Valitutti, A.; and Stock, O. 2007. Autom-
atizing Two Creative Functions for Advertising. Paper
presented at the 4th International Joint Workshop on
Computational Creativity, Goldsmiths, University of
London, London, UK. 17–19 June.

Tibballs, G., ed. 2000. The Mammoth Book of Jokes. Lon-
don: Constable and Robinson.

Tinholt, H. W., and Nijholt, A. 2007. Computational
Humour: Utilizing Cross-Reference Ambiguity for Con-
versational Jokes. In 7th International Workshop on Fuzzy
Logic and Applications (WILF 2007), Camogli (Genova),
Italy, volume 4578 of Lecture Notes in Artificial Intelli-
gence, ed. F. Masulli, S. Mitra, and G. Pasi, 477–483. Ber-
lin: Springer Verlag.

Venour, C. 1999. The Computational Generation of a
Class of Puns. Master’s thesis, Queen’s University,
Kingston, Ontario.

Waller, A.; Black, R.; O’Mara, D.; Pain, H.; Ritchie, G.; and
Manurung, R. 2009. Evaluating the STANDUP Pun Gen-
erating Software with Children with Cerebral Palsy. ACM
Transactions on Accessible Computing (TACCESS) 1(3). Arti-
cle 16. New York: Association for Computing Machinery.

Wilson, R. C., and Kidd, F. C., eds. 1999. The MIT Ency-
clopedia of the Cognitive Sciences. Cambridge, MA: The MIT
Press.

Graeme Ritchie has degrees in pure mathematics, theo-
retical linguistics, and computer science and has pub-
lished in various areas of AI and computational linguis-
tics over the past four decades. He has worked on models
of verbally expressed humor since 1993 and at present is
a senior research fellow in the Natural Language Genera-
tion group at the University of Aberdeen.

Articles

FALL 2009 81

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

