
One of the fundamental challenges of knowledge representation
originates from a simple observation that information available to us
more often than not is incomplete. Humans turn out to be quite effec-
tive at making decisions and taking actions when faced with incomplete
knowledge. The key seems to be the skill of commonsense reasoning,
based on our inherent preference to assume that things, given what we
know, are normal or as expected. This assumption allows us to form pre-
ferred belief sets, base our reasoning exclusively upon them, and ignore
all other belief sets that are consistent with our incomplete knowledge
but represent situations that are abnormal or rare.1 In this way, com-
monsense reasoning provides a handle on the complexity of the world
around us by eliminating unlikely alternatives. The challenge for knowl-
edge representation research has been to automate commonsense rea-
soning by finding formal ways to represent incomplete information and
to specify preferred belief sets.

Even a simple example shows that the problem is real. Let us consider
the task of representing different jobs at a university, relations among
them, and their duties. For instance, being a professor is one type of a
university job, and we want to model the fact that professors teach. Right
away we face a difficulty. Professors teach, but there are exceptions to
that rule. A more accurate statement is that professors normally teach.
How to model such normative statements and how to reason about them
is not at all obvious.

Classical logic, be it first-order or modal, is not the right solution. Giv-
en a base theory, a formal description of our knowledge as a set of formu-
las in the logic, there are no means to distinguish between its models. In
other words, a base theory, if expressed and interpreted in classical logic,
provides no information on which belief sets, the theories of models,
might be preferred for reasoning—all must receive an equal consideration
(see figure 1). This aspect of classical logic has several far-reaching conse-
quences. First, there are no concise ways to represent lack of knowledge.
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n We give an overview of the multifac-
eted relationship between nonmonoto-
nic logics and preferences. We discuss
how the nonmonotonicity of reasoning
itself is closely tied to preferences rea-
soners have on models of the world or,
as we often say here, possible belief
sets. Selecting extended logic program-
ming with answer-set semantics as a
generic nonmonotonic logic, we show
how that logic defines preferred belief
sets and how preferred belief sets allow
us to represent and interpret normative
statements. Conflicts among program
rules (more generally, defaults) give rise
to alternative preferred belief sets. We
discuss how such conflicts can be
resolved based on implicit specificity or
on explicit rankings of defaults. Final-
ly, we comment on formalisms that
explicitly represent preferences on prop-
erties of belief sets. Such formalisms
either build preference information
directly into rules and modify the
semantics of the logic appropriately or
specify preferences on belief sets inde-
pendently of the mechanism to define
them.



ones. Yet the ability to retract or revise previous con-
clusions is one of the essential features of common-
sense reasoning. Thus, a different breed of logics is
needed to formalize it. Such logics, called nonmo-
notonic, started to emerge in the late 1970s and ear-
ly 1980s (Reiter 1978, McCarthy 1980, Reiter 1980)
and have been studied extensively ever since (Marek
and Truszczyński 1993, Antoniou 1997).

The single common thread running through
nonmonotonic logics is that they distinguish
among belief sets and use only the preferred ones
in reasoning. That is, they have precisely the fea-
ture that is missing from classical logic. Particular
ways in which preferred belief sets are identified
differ. They may be as simple as a restriction of
models to minimal ones, as in circumscription
(McCarthy 1980) (see figure 2) or, more generally,
preference logic (Shoham 1987). They may be
more involved, using a new syntax for describing
rules premised on assumptions of consistency,
called defaults, and a semantics designed to inter-
pret defaults according to their intended meaning,
as in default logic (Reiter 1980) or its simpler ver-
sion, extended logic programming (Gelfond and
Lifschitz 1990; 1991). Finally, in some cases, they
exploit explicit user-provided preferences on
defaults or on properties of belief sets, as in many
variants of ranked default logic (Gelfond and Son
1998; Brewka and Eiter 2000), logic programming
with ordered disjunction (Brewka 2002), or
answer-set optimization (Brewka, Niemelä, and
Truszczyński 2003).

When one thinks about preferred belief sets in
the context of nonmonotonic reasoning, the term
preferred often has a different meaning than that
ascribed to it in decision theory. It refers to belief
sets “preferred” by agents in reasoning because
they give a most accurate picture of reality, and not
to belief sets consisting of elements we would like
to be true. To give an example, if we are normally
tired, we prefer to reason under that assumption
(we prefer realistic belief sets in which we are tired
as the basis for our reasoning). But being tired is
not our preference (in the decision-theoretic
sense). Nonmonotonic logics are mainly con-
cerned with identifying belief sets preferred for rea-
soning, assuming the world is as normal as possi-
ble. Nevertheless, some of the preference
tech  niques of nonmonotonic systems, and even
nonmonotonic logics by themselves, can be used
to model both types of preference, and we will see
examples of both types later in this article.2

In this article, we aim to give an overview of the
multifaceted relationship between nonmonotonic
logics and preferences. To make our discussion
more concrete, we select one particular nonmo-
notonic logic, extended logic programming (Gel-
fond and Lifschitz 1990). The choice is not coinci-
dental. Extended logic programming is a simple
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To represent the statement “professors normally teach” 
we might denote by p the property that somebody is a 
professor, and by t that she teaches. We might then 
consider using the implication

p → t
to represent the statement in question. 

If for some individual, we establish p (professor), then t 
(teaches) follows immediately. The problem is that the 
formula does not refer to normality; the representation 
becomes useless if the situation we deal with is abnormal 
(for instance, that particular individual is also a depart-
ment chair). 

Thus, we could introduce a notation ab to denote abnor-
mal situations, and represent our rule by the implication

p ∧ ¬ab → t.
The reading of this formula corresponds exactly to the 
statement we want to model. But now, to derive t, in 
addition to p (as before) we also need to establish ¬ab. To 
put it differently, given p and the formula p ∧ ¬ab → t, 
there are three possible models (which we represent as 
sets of true propositions): {p, t} and {p, ab} and {p, ab, t}. 
Since classical logic does not prefer any, t cannot be 
derived. A departure from reasoning sanctioned by classi-
cal logic becomes necessary!

Figure 1. Professors Normally Teach Example.

Let us consider the theory
 p

p ∧ ¬ab → t
discussed previously. Circumscription with respect to the 
propositional variable ab prefers models that are minimal 
with respect to ab, and reasons with respect to preferred 
models only. For the “professors normally teach” example, 
just one model is preferred:

{p, t}.
Thus, under circumscription, t follows.

Figure 2. Professors Normally Teach Example: Circumscription.

Second, classical logic is monotonic: while new infor-
mation may add to what we know, it does not sanc-
tion retractions of conclusions reached earlier. Or,
to put it differently, new information may eliminate
some models (belief sets) but never leads to new



fragment of default logic, yet it is rich enough to
retain most of the essential features of the latter. It
is one of the basic formalisms of answer-set pro-
gramming, a popular paradigm for computational
knowledge representation postulated in Niemelä
(1999) and Marek and Truszczyn ́ski (1999). More-
over, extended logic programming is arguably the
most successful nonmonotonic logic in terms of
implemented systems.3 Finally, it has been exten-
sively studied for possible extensions with explic-
itly specified preferences (Brewka and Eiter 1999;
Schaub and Wang 2003).

We organize the article as follows. The next sec-
tion provides a brief introduction to extended log-
ic programming and discusses how the basic non-
monotonic semantics of answer sets of extended
logic programs addresses the preference among
belief sets and, in particular, how it represents and
interprets normative statements. The following sec-
tion is concerned with the use of implicit specifici-
ty of defaults to resolve conflicts among them and
refine the notion of a preferred belief set. Conflicts
among defaults can also be resolved by ranking
them explicitly. This approach to the specification
of preferred belief sets is covered next. Formalisms
in which preference information is built into rules
directly offer yet another way to specify preferred
belief sets. We present one formalism that does just
that, logic programming with ordered disjunction
(Brewka 2002), whose semantics is based on the
semantics of extended logic programs. For the first
time, we encounter there a nonmonotonic reason-
ing system, which on the one hand defines belief
sets preferred for reasoning (through the mecha-
nism of ELP) and, in the same time, allows us to
specify elements we prefer to have in them directly
through ordered disjunctions. We follow with a dis-
cussion of formalisms that specify preferences on
belief sets directly, independently of the mecha-
nism to define them. A brief discussion and con-
cluding remarks close the article.

The Basic Approach: 
Assuming Normality

Assuming normality leads to preferences on belief
sets: those that describe normal or typical situa-
tions are preferred. As we noted in an earlier exam-
ple, one way to model normality is through mini-
mization of properties that are abnormal (see
figure 2). In fact, one might argue that all major
nonmonotonic logics and their semantics stem
from different ways to deal with that issue. We
illustrate this point using our nonmonotonic logic
of choice: extended logic programming (ELP).
Readers interested in a more detailed introduction
to logic programming and answer set semantics
may consult Gelfond and Lifschitz (1990), Gelfond
and Leone (2002), or Baral (2003).

Our discussion is restricted to the propositional
case, which is sufficient for the illustration of all
key ideas behind ELP. Figure 3 describes the syntax
of rules, basic building components of programs.
They involve the nonstandard negation connec-
tive not (in addition to the standard one, ¬).

A rule is meant to function as an inference rule.
However, the intended interpretation of not is dif-
ferent from that of ¬. If not(L) appears as a prem-
ise in the body of a rule, to regard it as satisfied we
must establish that L cannot be derived rather than
derive ¬L. Thus, the intuitive reading of a rule is:

conclude the literal in the head if the positive liter-
als in the body hold (have been derived) and no lit-
eral with a negative occurrence in the body can be
derived.

For example, given a program consisting of the
rules p and t ← p, not(ab), we should conclude t as
there is no way to derive ab, and so not(ab) holds
by default (even though ¬ab cannot be estab-
lished). In this way, ELP can model the “professors
normally teach” example. Another approach, not
making a direct use of abnormality, is discussed in
figure 4.

The intuition behind rules modeling normative
statements can be made precise and can be extend-
ed to the case of general rules. First, we note that
each program determines a class of sets of literals
that are consistent with it. These sets of literals are
formally defined as sets of literals closed under
rules of the program and can be regarded as mod-
els of belief sets determined by the knowledge
encapsulated by the program (figure 5).

Belief sets do not provide an intended interpre-
tation of not, as the example in figure 5 demon-
strates. Thus, the class of belief sets has to be nar-
rowed down to a subclass of preferred belief sets or,
more formally, answer sets, in order to capture the
intended meaning of not. For some programs,
defining answer sets is straightforward. If a pro-
gram contains no occurrences of not, minimiza-
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We assume a fixed set, say At, of propositional atoms. 
Atoms and their negations are literals.
A rule is an expression of the form

L0 ← L1,...,Lk, not(Lk+1), ..., not(Ln)

where Li are literals and not stands for the default nega-
tion (also referred to as negation as failure to prove). 

The literal L0 is called the head of the rule, the set {L1, ..., 
Lk, not(Lk+1), ..., not(Ln)} — the body. Literals L1, ..., Lk have 
positive and literals Lk+1, ..., Ln have negative occurrences 
in the body of the rule.

Figure 3. ELP Rules.



tion provides the right concept. Indeed, every pro-
gram without not has a unique least (and so min-
imal) belief set, and we accept this set as an answer
set (the only one) of not-free programs (see figure
6).

We use the case of not-free programs as a spring-
board to the general case. Given an arbitrary pro-
gram, we proceed as follows. First, we make an
assumption concerning the status of the default lit-
erals not(L) in the program by guessing the set of
those literals that are implied by the program. If L
is guessed to be derivable, not(L) is assumed false;
otherwise, not(L) is assumed true. Second, we ver-
ify the guess. To this end, we simplify the program
taking into account the logical values of the
default literals. In this way, we obtain a program
without not. If the answer set of this program (the

concept is well defined, as the program is “posi-
tive”) coincides with our guess, the guess is verified
and is accepted as an answer set of the program that
represents a preferred belief set (see figure 7).

In our discussion, we have stressed that nonmo-
notonic logics describe preferred belief sets, where
the term preferred means preferred for reasoning.
However, the basic mechanism of selecting pre-
ferred belief sets can also be used to model prefer-
ences that look more like typical decision-theoret-
ic ones. For instance, if somebody prefers coffee to
tea early in the morning, and tea to coffee at all
other times, this preference can be represented by
an ELP program consisting of the following two
rules: tea ← not(early), coffee ← not(tea). This pro-
gram has one answer set, {tea}, which reflects the
preference for tea in a typical situation (here, typi-
cal means “not early”). However, if extended with
the fact early, the resulting program has again just
one answer set, {coffee}, correctly reflecting the cor-
responding preference for a drink.

Handling Conflicts Implicitly: 
Preferring More Specific 

Information
In the last section we have seen how the use of not
in the body of ELP rules gives rise to the selection
of preferred belief sets, called answer sets in the
context of ELP. Other nonmonotonic formalisms
have similar mechanisms for selecting preferred
belief sets. For instance, Ray Reiter’s default logic
(Reiter 1980), of which ELP is a special case, is
based on a special kind of inference rules that are
able to refer to the consistency of formulas. They
are used to extend the set of beliefs of an agent. In
circumscription (McCarthy 1980) various strate-
gies for minimizing the extent of predicates can be
specified. A standard approach here is to minimize
abnormality predicates abi used to state that
objects are abnormal in certain aspects. Similar
mechanisms can be found in all nonmonotonic
formalisms. In each case the goal is the same,
namely to identify those belief sets in which every-
thing is as normal as possible.

This basic approach still faces a difficulty: there
are frequent cases where default rules support con-
flicting conclusions. One may thus end up with a
large number of preferred belief sets that need to be
narrowed down further.

In such a situation we can use preferences
among rules to resolve conflicts. Two options are
available: we can use preferences that are implicit
in the available information, or we can use explic-
it preference information that needs to be specified
by the knowledge engineer. We will deal with the
first option in this section.

Sometimes there is a natural way to solve con-
flicts among rules. Consider again the example in
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One way to express the statement that professors normally 
teach is to say that they teach if there is no explicit informa-
tion that they do not. That latter statement can be trans-
lated literally into an ELP rule:

t ← p, not(¬t).
If whenever an exceptional situation arises — a professor 
does not teach — there is information available to establish 
that, the rule seems indeed to be a correct representation of 
the normative statement it is supposed to model.

Figure 4. “Professors Normally Teach” in ELP.

A set U of literals is closed under a rule if:

1. U is inconsistent and contains all literals, or 

2. U is consistent and contains the head of the rule whenever 
it contains all literals that occur positively and does not 
contain any literal that occurs negatively in the body of the 
rule. 

Further, U is closed under a program if U is closed under every 
rule in the program. Such sets can be regarded as “consistent 
with the program.” 

For the “professors normally teach” example, we have the 
following belief sets: {p, t} and {p, ¬t}. The latter one does 
not capture the normality assumption and so, it is not 
preferred (there is no information that would imply ¬t so the 
situation is assumed to be normal).

Figure 5. Belief Sets or Sets Closed under Rules.



figure 7. Intuitively, the answer set in which the
person does not teach ({c, p, ¬t}) is more plausible
than the other one. This is because the conclusion
¬t in this answer set depends on more specific
information than the conflicting conclusion t in
the other answer set: department chair is used to
derive ¬t, professor to derive t, and since all depart-
ment chairs are professors, it is natural to prefer
information based on the former.

The notion of specificity—as an additional,
implicit way of selecting preferred belief sets—has
received considerable attention in the research
community. In its purest form this notion was
investigated in the context of nonmonotonic
inheritance networks, a graphical formalism for
representing simple defaults of the form a → b
(normally, a’s are b’s) and a � b (normally, a’s not
are b’s) . These defaults correspond to ELP rules b ←
a, not(¬b) and ¬b ← a, not(b), respectively. The
main research goal is to capture adequately the
notion of specificity and so, implicitly, that of a
preferred belief set.

In our teaching example this looks like a rather
simple task: department chairs don’t teach is more
specific than professors teach because department
chairs are professors (and not vice versa). However,
even in the context of simple inheritance networks
coming up with an adequate formalization of speci-
ficity turns out to be more difficult than it may
seem. What if, for instance, department chairs are
professors is not a strict rule, but yet another default
that may be defeated by more specific information?
In fact, as the title of an early paper (Touretzky,
Horty, and Thomason 1987) already indicates, for
complex examples there exist different “clashing”
intuitions leading to different formalizations, and it
is somewhat difficult to tell which one is most
appropriate in a particular case. For readers inter-
ested in more details we refer to John Horty’s excel-
lent overview article (Horty 1994).

An example of a rule-based system that implicit-
ly prefers more specific information is system Z
(Pearl 1990). It partitions a set of default rules R into
sets R0, R1,…. A rule is in R0 if adding its prerequi-
site to R does not lead to inconsistency. For the
consistency check the rules are treated like ordinary
implications. Similarly, a rule is in Ri if it is not in
any of the sets Ri–k, and adding its prerequisite does
not render R \ {R0,…, Ri-1} inconsistent. Intuitively,
this ranking gives higher priority to more specific
rules. A similar ranking is used in Sarit Kraus,
Daniel Lehmann, and Menachem Magidor’s ration-
al closure (Kraus, Lehmann, and Magidor 1990).

Handling Conflicts Explicitly:
Ranking Rules

Specificity is not always sufficient to resolve con-
flicts. Conflicting rules are not necessarily in speci-
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Department chairs (denoted by a propositional letter c) 
are professors. Deans (denoted by d) are not department 
chairs. If we also know d (an individual is a dean), we have 
the following program representing this knowledge:

d
p ← c

¬c ← d
The set {d, ¬c} is the only answer set of this program, 
being the least set of literals closed under it (the only other 
belief sets are: {d, ¬c, p} and the set of all literals).

Figure 6. Not-Free Programs.

Let P be a program. Let us consider a set of literals U (a 
guess needed to determine the logical values of default 
literals). The reduct PU of P with respect to U is obtained by 
removing from P all rules containing not(L) in the body, 
where L ∈ U, and by removing all default literals not(L) 
from the remaining rules. Clearly, the reduct PU contains 
no occurrence of not.

We now define U to be an answer set of P if U is an answer 
set of PU. One can show that answer sets of P are indeed 
belief sets of P. In fact, they are inclusion-minimal belief sets 
(the converse is not true in general). 

To illustrate the construction, let us consider the following 
knowledge. Department chairs are professors, professors 
normally teach, department chairs normally do not teach. 
Let us also assume c (we are reasoning about a depart-
ment chair). This knowledge can be formalized with the 
program P

c
p ← c

t ← p, not(¬t)
¬t ← c, not(t).

Consider now a set of literals U1 = {c, p, t} for which the 
reduct PU1 consists of the first two rules in P and the rule 
t ← p. For PU1, U1 is the inclusion-minimal belief set and, 
hence, an answer set of P. The program has also another 
answer set U2 = {c, p, ¬t} for which the reduct PU2 consists 
of the first two rules in P and the rule ¬t ← c.

Figure 7. Answer Sets: The General Case.

ficity relation, and there may be other reasons to
prefer one rule over another. For instance, rule
preferences may be based on considerations of reli-
ability, recency, or even authority, as in legal appli-
cations where rules representing federal law can



override rules representing state law. There may
even be a good reason to prefer a less specific rule
over a more specific one.

These additional, application-dependent pref-
erences among rules can be handled by extending
the underlying formalism and giving the knowl-
edge engineer the possibility to specify prefer-
ences explicitly. A knowledge base (KB) now con-
sists of a set of formulas or rules (depending on
the formalism used) together with a preference
relation on its elements. The preference relation
can be an arbitrary ordering, but to keep the dis-
cussion simpler let us assume it is a total preorder
(complete, transitive, reflexive). Such an ordering
yields a partitioning of the KB elements into pri-
ority levels.

If the KB is, say, a set of propositional formulas,
then it is not difficult to use the priority levels to
construct preferred belief sets: just pick a maximal
consistent subset of the most preferred formulas,
add a maximal subset of the formulas in the next
level consistent with the formulas chosen so far,
and continue like this until all levels have been
handled. This is exactly the preferred subtheory
approach proposed in Brewka (1989). In the cardi-
nality based proposal of Salem Benferhat and col-
leagues (Benferhat et al. 1993) also the number of
elements chosen each time is taken into account;
that is, a subset is added only if there is no consis-
tent subset with more elements.

Applying these ideas to ELP, that is, defining the
notion of a preferred answer set based on a priori-
tized logic program, is not as straightforward as it
looks. The teaching example does not pose much
of a problem. Assume we want to give lower pref-
erence to the information professors teach, that is,
all rules in figure 7 except t ← p, not(¬t) are in the
most preferred level, the latter rule is the single ele-
ment in a (less preferred) second level. We can use
the more preferred rules—which are not in conflict
with each other—to compute the answer set in
which the person does not teach ({c, p, ¬t}). Now
the rule in the second level is no longer applicable,
and the second, unintended, answer set is not gen-
erated.

In general, however, the following problem aris-
es in rule-based approaches: the explicit prefer-
ences may be at odds with the implicit rule appli-
cation ordering, which depends on the derivation
of rule preconditions. Assume we have two con-
flicting rules r1 and r2, and r1 is preferred over r2.
What if one of the preconditions of r1 can only be
derived using a rule r3 that is even less preferred
than r2? Should r1 still win in this case? In Brewka
and Eiter (1999) a positive answer to this question
is given, motivated by the view that r1 should be
applied if its missing precondition is accepted in
the final answer set anyway. To define the pre-
ferred answer sets correspondingly, a second reduc-

tion, dual to the Gelfond-Lifschitz reduction (see
figure 7), is used, which eliminates prerequisites of
rules rather than not- literals. Other approaches
have no preferred answer sets at all in such a situ-
ation. A detailed comparison of several approach-
es adding explicit preferences to ELPs can be found
in Schaub and Wang (2001). A method for “com-
piling away” explicit preferences using additional
control predicates in rules is described in Del-
grande, Schaub, and Tompits (2003).

Building Preferences into Rules
In the last section, we discussed how to take into
account preferences among rules. This approach
still has some shortcomings. First, our preferences
may depend on the current context: what is pre-
ferred under certain circumstances may not be pre-
ferred in other situations. Explicit preference
orderings decide preference among rules once and
for all and are not sufficiently flexible to take dif-
ferent contexts into account. Second, expressing
preferences among rules can be viewed as an indi-
rect way of expressing preferences on belief sets.
Sometimes it is more convenient or necessary to
express preferences directly in terms of the ele-
ments these belief sets contain. It is, in particular,
true if we aim to represent conditional preferences
differentiating between beliefs to be accepted
based on other beliefs already accepted or rejected.
If I believe a, then among other beliefs I might adopt, I
prefer b to c is a simple example of a generic condi-
tional preference. While we sometimes can handle
such preferences by means of basic nonmonoton-
ic logics (see our earlier tea-coffee example), in gen-
eral, even extended with rankings on rules, non-
monotonic logics do not offer intuitive ways to
model conditional preferences.

One way to deal with these limitations was pro-
posed in Brewka, Niemelä and Syrjänen (2004). To
express preferences among alternative beliefs,
ordered disjunction (first proposed in Brewka, Ben-
ferhat, and Berre [2004]) is used in the heads of
rules (the resulting programs are called logic pro-
grams with ordered disjunction, or LPODs). Ordered
disjunctions are of the form d = l1 × … × ln and say
two things: (1) at least one of the literals li must be
true, and (2) l1 is the best alternative, l2 is the sec-
ond best, and so on. For example, the rule read ×
walk ← rain reads: if it rains, I prefer to read at
home than to go out for a walk. 

LPODs are designed to do two things at once.
First, they determine the space of answer sets. To
this end we associate with an LPOD P a family of
extended logic programs and take their answer sets
as answer sets of P. Second, LPODs use preferences
encoded by ordered disjunctions in the heads of
individual rules and aggregate them into a global
preference relation on answer sets. Preferences
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encoded by ordered disjunctions can be decision-
theoretic (as in the aforementioned read versus
walk example) or reasoning preferences (as in the
example in figure 8).

We refer to Brewka, Niemelä, and Syrjänen
(2004) for the details concerning the definition of
the space of answer sets and explain only how
LPODs determine global preferences on answer
sets. We start by noting that satisfaction of an
ordered disjunction rule r with d = l1 × … × ln in the
head is no longer a binary property. It becomes a
matter of degree: if r’s body is satisfied and l1 is in
an answer set A then the satisfaction degree of r in
A is 1, the best possible degree. If the body is satis-
fied, l1 is not in A but l2 is, then the degree is 2 and
so on. Figure 8 provides an example.

In this manner, each rule ranks all answer sets
based on its satisfaction degree. Since each rule
provides its own ranking and we usually have
more than one rule with ordered disjunction, we
need a combination method that aggregates the
individual rankings into a global preference order
on the answer sets of the LPOD.

One can think of a variety of such combina-
tion methods. A rather cautious approach (in the
sense that many optimal answer sets exist) is a
Pareto-combination. Here an answer set A is at
least as good as answer set A′ just in case the sat-
isfaction degree of each rule in A is at least as
good (that is ≤) as its satisfaction degree in A′.
Other methods compare the sets of rules satisfied
to a particular degree in A and A′ and prefer A if
more rules have good satisfaction degrees, where
more can be interpreted in terms of set inclusion
or cardinality. Sometimes it is also useful to make
numerical calculations on the satisfaction
degrees for the comparison, for example, to just
sum them up.

Decoupling Belief Set 
Construction and Ordering

In all formalisms discussed so far, including
LPODs, the definition of the space of answer sets
(belief sets) and preferences on them are inter-
twined complicating the process of preference elic-
itation. One approach to facilitating the elicitation
process is to decouple the specification of the space
of belief sets from the description of preferences on
them. In addition to simplifying preference elici-
tation, that approach makes the overall setting bet-
ter aligned with practical applications. Indeed,
often what is possible is determined by external
factors (available resources, constraints of the envi-
ronment, design and engineering constraints for
products) while what is preferred is described inde-
pendently and by different agents (users, cus-
tomers, groups of customers). In the decoupled
approach typical applications are in product con-

figuration and constraint optimization and, there-
fore, instead of belief set (or answer set) a more
commonly used term is outcome or configuration.
We will adopt the first of these terms in this sec-
tion.

Answer set optimization (ASO) programs intro-
duced in Brewka, Niemelä, and Truszczyński
(2003) are based on such a decoupling. Here the
knowledge base is divided into two parts (P, Prefs)
where P is a set of constraints (such as ELP rules)
that define a collection of outcomes as answer sets
of P and Prefs is a set of preference rules of the form

C1 > ··· > Ck ← a1, …, an, not(b1) ,…, not(bm)

where the ais and bjs are literals and the Cis are
Boolean combinations over atoms called ranking
conditions. Such a rule intuitively reads: if an out-
come S contains literals a1, …, an and does not con-
tain any of the literals b1, …, bm, then C1 is pre-
ferred over C2, C2 over C3, …. Hence, a rule ranks
outcomes according to the satisfaction of the rank-
ing conditions in its head. Given a collection of
rules each outcome S can be assigned a satisfaction
vector based of the satisfaction degrees of the rules
in S and then outcomes can be ordered according
to their satisfaction vectors. See figure 9 for more
details. Figure 10 describes a configuration exam-
ple illustrating the ideas.

The notion of optimal outcomes (see figure 9) is
somewhat weak. In general, many optimal answer
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We represent the information from figure 7. This time, we use 
ab literals. In addition, we represent the following knowledge: 
assuming department chairs are abnormal professors (with 
respect to teaching) is more reasonable than assuming they 
are abnormal department chairs. However, if we speak about 
German (g) department chairs, then it is more reasonable to 
assume they are abnormal department chairs (because in 
Germany department chairs actually have to teach):

c
p ← c

t ← p, not(ab1)
¬t ← c, not(ab2)

ab1 × ab2 ← c, not(g)
ab2 × ab1 ← c, g.

The program has two answer sets: {c, p, t, ab2} and  {c, p, ¬t, 
ab1}. The latter is preferred since it satisfies the fifth rule to 
degree 1, the former satisfies this rule to degree 2 only (the 
last rule is inapplicable and thus irrelevant for determining 
preferred answer sets). If we add g, the preferred answer set is 
{c, p, t, g, ab2} because the last rule is now applicable and 
better satisfied in this set than in {c, p, ¬t, g, ab1}.

Figure 8. Programs with Ordered Disjunction.



sets may exist, and one often wants additional
means to express that one preference rule is more
important than another. This can be done by rank-
ing preference rules such that rules with lower rank
are preferred over rules with higher rank, see details
in Brewka, Niemelä, and Truszczynśki (2003).

Discussion
In this short overview we aimed to demonstrate
the intertwined relationship between nonmonoto-
nic logics and qualitative preferences.

First, nonmonotonic logics can themselves be
considered as logics “with qualitative preferences,”
allowing us to prefer some belief sets (theories of
their models) to others. All major nonmonotonic
logics, including preference logics, default logic,
autoepistemic logic and extended logic program-
ming, the formalism we discussed in more detail
here, can be viewed in this way.

However, nonmonotonic logics by themselves
are not flexible enough to represent a broad spec-
trum of preferences. Thus, additional principles,
like that of specificity, are sometimes used to
address the problem. In other cases, nonmonoton-
ic logics allow for explicit extensions by rule (for-
mula) orderings to expand their capabilities to rep-
resent preferred belief sets.

Nonmonotonic logics, whether with explicit

rule orderings or not, are not well designed for
modeling orderings on belief sets specified in terms
of preferences on their elements (or, to say it dif-
ferently, using them to represent typical decision-
theoretic preferences is often difficult or nonintu-
itive). In particular, they are not easy to use when
conditional preferences are to be represented. Log-
ic programs with ordered disjunction offer one
way to address the problem.

Another, and more drastic, way is to use the
basic mechanism of a nonmonotonic logic only to
specify the space of possible belief sets (now often
referred to as outcomes), and to describe prefer-
ences entirely outside of the logic in terms of pref-
erence rules. ASO programs illustrate that
approach, bringing us to the end of our story.

However, we note that ASO programs are by no
means the only game in town when preferences
are specified separately from the space of out-
comes. CP-nets (Boutilier et al. 1999) are another
such formalism (see Francesca Rossi, Brent Ven-
able, and Toby Walsh’s article “Preferences in Con-
straint Satisfaction and Optimization” in this issue
for an introduction to CP-nets). In fact, the
“decoupled” paradigm seems now to be a domi-
nant approach to qualitative preference represen-
tation and reasoning. Thus, we conclude with
comments pointing out the similarities and differ-
ences between ASO programs and CP-nets.

First, we note that CP-nets are concerned only
with a fixed space of all configurations that con-
tain for every variable exactly one value from its
domain. In contrast, ASO programs offer substan-
tial flexibility in defining the space of outcomes,
through their use of extended logic programs as
outcome-space generators. While hard constraints
were proposed as a way to expand CP-nets with the
capability of representing restrictions on out-
comes, extended logic programming (and other
formalisms based on nonmonotonic logics) seem
to be superior from the knowledge representation
point of view.

Next, unlike the original CP-nets, ASO prefer-
ence rules allow us to specify incomplete condition-
al preferences on domain values of a variable (no
information about preferences under some condi-
tions) and conflicting conditional preferences on
domain values of a variable (conflicting prefer-
ences under some conditions). These limitations of
CP-nets have been addressed by recent extensions
such as that in Wilson (2004). However, there is a
key difference in the way the two approaches
determine the preference ordering on the set of
outcomes. CP-nets specify conditions that allow
for direct comparisons of two outcomes by defin-
ing conditions under which we can transform one
into another by means of an improving flip. Then,
outcomes are compared by transitive closure of
that relation. On the other hand, preference rules
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Given a preference rule r and an outcome S, the satisfaction 
degree vS(r) of r in S is defined to be i if the body of r is satisfied 
by S, some ranking condition Ci is satisfied and i is the 
minimum index among the satisfied Cis. Otherwise the 
degree is I (irrelevant). For example, consider an outcome S = 
{ice-cream, beer, beef, soup} and a preference rule r

red ∨ beer > white ← beef.
Now the satisfaction degree vS (r) = 1 as the body and the first 
ranking condition of r are satisfied.

The satisfaction degrees are ordered in a preorder ≥ where 
values I and 1 are equally good but better than all other 
degrees i for which i  ≥ i  + 1 hold. For a set of preference rules 
{r1, ..., rn}, an outcome S induces a satisfaction vector (vS(r1), ..., 
vS(rn)) where vS(ri) is the satisfaction degree of ri in S. 
Outcomes are ordered as follows: S1 ≥ S2 if vS1

(ri) ≥ vS2
(ri), for 

each i ∈ {1, ..., n} and S1 > S2 if S1 ≥ S2 and for some i ∈ {1, ..., 
n}, vS1

(ri) > vS2
(ri). An outcome S is optimal if there is no 

outcome S′ such that S′ > S.

Figure 9. Ordering of Outcomes Based on Preference Rules.



assign a quality measure to each outcome (a satis-
faction vector), and outcomes are ordered by com-
paring their quality measures by one of several
methods developed in the literature.

Finally, we note that it is possible to integrate
ideas behind ASO programs and CP-nets. An
approach to extending ASO programs with CP-net
type comparison of outcomes is developed in
Brewka, Niemelä, and Truszczyn ́ski (2005).
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Notes
1. By a belief set we mean a set of formulas describing a
state of affairs the agent considers possible. In classical
logic, belief sets correspond to the formulas true in a
model. Nonmonotonic logics, such as default logic and
autoepistemic logic, generate belief sets (called exten-
sions, expansions, and the like) that are not necessarily
complete. In any case, the fewer belief sets, the more cer-
tain is the agent about the state of affairs.

2. We thank Jérôme Lang for pointing out the need to
emphasize the distinction and suggesting the example
we used.

3. See, for instance, Gebser et al. (2007) for a report on the
First Answer Set Programming System Competition in
which 10 systems participated, as well as successful appli-
cations in planning, configuration, query answering,
bioinformatics and space shuttle control (we refer to
Leone et al. [2006] for a discussion of some of these appli-
cations, as addressed by the DLV system, one of the most
advanced implementations of ELP).
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Answer Set Optimization. In Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
2003, 867–872. San Francisco: Morgan Kaufmann Pub-
lishers.

Brewka, G.; Niemelä, I.; and Truszczyński, M. 2005. Pri-
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