
Protecting national infrastructure such as airports, historical
landmarks, or a location of political or economic importance is
a challenging task for police and security agencies around the
world, a challenge that is exacerbated by the threat of terrorism.
Such protection of important locations includes tasks such as
monitoring all entrances or inbound roads and checking
inbound traffic. However, limited resources imply that it is typ-
ically impossible to provide full security cover age at all times.
Furthermore, adversaries can observe se curity arrangements
over time and exploit any predictable patterns to their advan-
tage. Randomizing schedules for pa trolling, checking, or moni-
toring is thus an important tool in the police arsenal to avoid
the vulnerability that comes with predictability. Even beyond
protecting infrastructure, ran domized patrolling is important in
tasks ranging from secu rity on university campuses to normal
police beats to border or maritime security (Billante 2003,
Paruchuri et al. 2007, Ruan et al. 2005). 

This article focuses on a deployed software assistant agent
that can aid police or other security agencies in randomizing
their security schedules. We face at least three key chal lenges in
building such a software assistant. First, the as sistant must pro-
vide quality guarantees in randomization by appropriately
weighing the costs and benefits of the different options avail-
able. For example, if an attack on one part of an infrastructure
will cause economic damage while an at tack on another could
potentially cost human lives, we must weigh the two options
differently—giving higher weight (probability) to guarding the
latter. Second, the assistant must address the uncertainty in
information that security forces have about the adversary.
Third, the assistant must en able a mixed-initiative interaction
with potential users rather than dictate a schedule; the assistant
may be unaware of users’ real-world constraints, and hence
users must be able to shape the schedule development. 

We have addressed these challenges in a software assis tant
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n Security at major locations of economic or
political impor tance is a key concern around
the world, particularly given the threat of ter-
rorism. Limited security resources prevent full
security coverage at all times, which allows
adversaries to observe and exploit patterns in
selective patrolling or mon itoring; for exam-
ple, they can plan an attack avoiding existing
pa trols. Hence, randomized patrolling or
monitoring is impor tant, but randomization
must provide distinct weights to dif ferent
actions based on their complex costs and
benefits. To this end, this article describes a
promising transition of the lat est in multia-
gent algorithms into a deployed application.
In particular, it describes a software assistant
agent called AR MOR (assistant for random-
ized monitoring over routes) that casts this
patrolling and monitoring problem as a
Bayesian Stackelberg game, allowing the
agent to appropriately weigh the different
actions in randomization, as well as uncer-
tainty over adversary types. ARMOR com-
bines two key features. It uses the fastest
known solver for Bayesian Stackelberg games
called DOBSS, where the dominant mixed
strategies enable randomization; and its
mixed-initiative-based interface allows users
occasionally to adjust or override the auto-
mated schedule based on their local con-
straints. ARMOR has been successfully
deployed since August 2007 at the Los Ange-
les International Airport (LAX) to randomize
checkpoints on the roadways entering the air-
port and canine patrol routes within the air-
port terminals. This article examines the
information, design choices, challenges, and
evaluation that went into de signing ARMOR. 



agent called ARMOR (assistant for randomized
mon itoring over routes). Based on game-theoretic
principles, ARMOR combines three key features to
address each of the challenges outlined above.
Game theory is a well-established foundational
principle within multiagent sys tems to reason
about multiple agents, each pursuing its own inter-
ests (Fudenberg and Tirole 1991). We build on
these game-theoretic foundations to reason about
two agents—the police force and its adversary—in
providing a method of randomization. In particu-
lar, the main contri bution of our article is mapping
the problem of security scheduling as a Bayesian
Stackelberg game (Conitzer and Sandholm 2006)
and solving it through the fastest optimal al go-
rithm for such games (Paruchuri et al. 2008),
address ing the first two challenges. The algorithm
used builds on several years of research regarding
multiagent systems and security (Paruchuri et al.
2005, 2006, 2007). In particular, ARMOR relies on
an optimal algorithm called DOBSS (de composed
optimal Bayesian Stackelberg solver) (Paruchuri et
al. 2008). 

While a Bayesian game allows us to address
uncertainty over adversary types, by optimally
solving such Bayesian Stackelberg games (which
yield optimal randomized strate gies as solutions),
ARMOR provides quality guarantees on the sched-
ules generated. These quality guarantees obviously
do not imply that ARMOR provides perfect securi-
ty; in stead, ARMOR guarantees optimality in the
utilization of fixed security resources (number of
police or canine units) assuming the rewards are
accurately modeled. In other words, given a
specific number of security resources and ar eas to
protect, ARMOR creates a schedule that random-
izes over the possible deployment of those
resources in a fashion that optimizes the expected
reward obtained in protecting LAX. 

The third challenge is addressed by ARMOR’s use
of a mixed-initiative-based interface, where users
are allowed to graphically enter different con-
straints to shape the schedule generated. ARMOR is
thus a collaborative assistant that it erates over gen-
erated schedules rather than a rigid one-shot
scheduler. ARMOR also alerts users in case over-
rides may potentially deteriorate schedule quality. 

ARMOR thus represents a very promising transi-
tion of multiagent research into a deployed appli-
cation. ARMOR has been successfully deployed
since August 2007 at the Los Angeles Internation-
al Airport (LAX) to assist the Los An geles World
Airport (LAWA) police in randomized schedul ing
of checkpoints and since November 2007 for gen-
erating randomized patrolling schedules for canine
units. In particu lar, it assists police in determining
where to randomly set up checkpoints and where
to randomly allocate canines to ter minals. Indeed,
February 2008 marked the successful end of the

six-month trial period of ARMOR deployment at
LAX. The feedback from police at the end of this
six-month pe riod was extremely positive; ARMOR
will continue to be deployed at LAX and expand to
other police activities at LAX. 

Security Domain Description 
We will now describe the specific challenges in the
security problems faced by the LAWA police. LAX1

is the fifth bus iest airport in the United States and
the largest destination airport in the United States,
serving 60–70 million passen gers per year (Stevens
et al. 2006). LAX is unfortunately also suspected to
be a prime terrorist target on the West Coast of the
United States, with multiple arrests of plotters
attempting to attack LAX (Stevens et al. 2006). To
protect LAX, LAWA police have designed a securi-
ty sys tem that utilizes multiple rings of protection.
As is evident to anyone traveling through an air-
port, these rings include such things as vehicular
checkpoints, police units patrolling the roads to
the terminals and inside the terminals (with dogs),
and security screening and bag checks for passen-
gers. There are unfortunately not enough resources
(police offi cers) to monitor every single event at
the airport; given its size and the number of pas-
sengers served, such a level of screen ing would
require considerably more personnel and cause
greater delays to travelers. Thus, assuming that all
check points and terminals are not being moni-
tored at all times, setting up available checkpoints,
canine units, or other pa trols on deterministic
schedules allows adversaries to learn the schedules
and plot an attack that avoids the police check-
points and patrols, which makes deterministic
schedules in effective. 

Randomization offers a solution here. In partic-
ular, from among all the security measures to
which randomization could be applied, LAWA
police have so far posed two cru cial problems to
us. First, given that there are many roads leading
into LAX, they want to know where and when
they should set up check points to check cars driv-
ing into LAX. For example, figure 1 shows a vehic-
ular checkpoint set up on a road inbound towards
LAX. Police officers examine cars that drive by,
and if any car appears suspicious, they do a more
detailed inspec tion of that car. LAWA police
wished to obtain a randomized schedule for such
checkpoints for a particular time frame. For exam-
ple, if we are to set up two checkpoints, and the
timeframe of interest is 8 AM to 11 AM, then a can-
didate schedule may suggest to the police that on
Monday, check points should be placed on route 1
and route 2, whereas on Tuesday during the same
time slot, they should be on route 1 and 3, and so
on. Second, LAWA police wished to obtain an
assignment of canines to patrol routes through the
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termi nals inside LAX. For example, if there are
three canine units available, a possible assignment
may be to place canines on terminals 1, 3, and 6
on the first day, but on terminals 2, 4, and 6 on
another day, and so on based on the available in -
formation. Figure 2 illustrates a canine unit on
patrol at LAX. 

Given these problems, our analysis revealed
three key challenges: first, potential attackers can
observe secu rity forces’ schedules over time and
then choose their attack strategy—this fact makes
deterministic schedules highly susceptible to
attack; second, there is unknown and uncertain in -
formation regarding the types of adversary we may
face; and third, although randomization helps
eliminate deterministic pat terns, it must also
account for the different costs and benefits associ-
ated with particular targets. 

In summarizing the domain requirements, we
emphasize the following key points. First, it is
LAWA police, as do main experts, who expressed a
requirement for randomiza tion, leading us to
design ARMOR. Second, there exist dif ferent rings
of security (including canines and checkpoints
that ARMOR schedules), which are not static and
therefore may change independently of the other
rings different times. The end result of such shift-
ing randomized security rings is that adversary
costs and uncertainty increase, particularly for
well-planned attacks, which in turn may help deter
and prevent attacks. 

Approach 
We modeled the decisions of setting checkpoints
or canine patrol routes at the LAX airport as
Bayesian Stackelberg games. These games allow us
to accomplish three impor tant tasks: they model
the fact that an adversary acts with knowledge of
security forces’ schedules, and thus random ize
schedules appropriately; they allow us to define
mul tiple adversary types, meeting the challenge of
our uncer tain information about our adversaries;
and they enable us to weigh the significance of dif-
ferent targets differently. Since Bayesian Stackel-
berg games address the challenges posed by our
domain, they are at the heart of generating mean-
ing fully randomized schedules. From this point we
will explain what a Bayesian Stackelberg game con-
sists of, how an LAX security problem can be
mapped onto Bayesian Stackelberg games, some of
the previous methods for solving Bayesian Stackel-
berg games, and how we use DOBSS to optimally
solve the problem at hand. 

Bayesian Stackelberg Games 
In a Stackelberg game, a leader commits to a strat-
egy first, and then a follower selfishly optimizes its
reward, consider ing the action chosen by the

leader. For example, given our security domain, the
police force (leader) must first commit to a mixed
strategy for placing checkpoints on roads in or der
to be unpredictable to the adversaries (followers),
where a mixed strategy implies a probability distri-
bution over the actions of setting checkpoints. The
adversaries, after observ ing check - points over
time, can then choose their own strat egy of attack-
ing a specific road. To see the advantage of be ing
the leader in a Stackelberg game, consider a simple
game with the payoff table as shown in figure 3.
The leader is the row player and the follower is the
column player. Given a si multaneous move game,
that is, the leader and follower now act at the same
time, the only pure-strategy Nash equilibrium for
this game is when the leader plays a and the fol-
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Figure 1. LAX Checkpoint.

Figure 2. LAX Canine Patrol.



lower plays c, which gives the leader a payoff of 2.
However, if the leader commits to a uniform mixed
strategy of playing a and b with equal (0.5) proba-
bility, then the follower will play d in order to max-
imize its payoff, leading to a payoff for the leader
of 3.5. Thus, by committing to a mixed strategy
first, the leader is able to obtain a higher payoff
than could be obtained in a simultaneous move
situation. 

The Bayesian form of such a game, then, implies
that each agent must be of a given set of types. For
our security do main, we have two agents, the
police force and the adver sary. While there is only
one police force type, there are many different
adversary types, such as serious terrorists, drug
smugglers, and petty criminals, denoted by L. Dur-
ing the game, the adversary knows its type, but the
police do not know the adversary’s type; this is an
incomplete in formation game. For each agent (the
police force and the adversary) i, there is a set of
strategies σi and a utility func tion ui : L � σ1 × σ2
→ �. Figure 4 shows a Bayesian Stackelberg game
with two follower types. Notice that fol lower type
2 changes the payoff of both the leader and the fol-

lower. We also assume knowing a priori probabili-
ty pl, where l represents the type of adversary (1, 2,
and so on), of the different follower types (that is l
∈ L). Our goal is to find the optimal mixed strate-
gy for the leader to commit to, given that the fol-
lower may know the leader’s mixed strategy when
choosing its strategy and that the leader will not
know the follower’s type in advance. 

Techniques for Solving 
Stackelberg Games 
In previous work it has been shown that finding an
optimal solution to a Bayesian Stackelberg game
with multiple fol lower types is NP-hard (Conitzer
and Sandholm 2006). Re searchers in the past have
identified an approach, which we will refer to as
the multiple-LPs method, to solve Stackel berg
games (Conitzer and Sandholm 2006), and this can
be used to solve Bayesian Stackelberg games. This
approach, however, requires transforming a
Bayesian game into a nor mal form game using the
Harsanyi transformation (Harsanyi and Selten
1972). Similarly one may apply efficient algo-
rithms for finding Nash equilibria (Sandholm,
Gilpin, and Conitzer 2005), but they require the
same Harsanyi trans formation. Since our research
crucially differs in its nonuse of the Harsanyi trans-
formation, it is important to understand this trans-
formation and its impact. 

Harsanyi Transformation. The first step in solv-
ing Bayesian games for previous methods is to
apply the Harsanyi transformation (Harsanyi and
Selten 1972) that con verts the incomplete infor-
mation game into a normal form game. Given that
the Harsanyi transformation is a stan dard concept
in game theory, we explain it briefly through a
simple example without introducing the mathe-
matical for mulations. Consider the case of the two
follower types 1 and 2 as shown in figure 4. Fol-
lower type 1 will be ac tive with probability α, and
follower type 2 will be active with probability 1 –
α. Performing the Harsanyi transfor mation in -
volves introducing a chance node that determines
the follower’s type, thus transforming the leader’s
incom plete information regarding the follower
into an imperfect information game. The trans-
formed, normal form game is shown in figure 5. In
the transformed game, the leader still has two
strategies while there is a single follower type with
four (2 * 2) strategies. For example, consider the sit-
uation in the transformed game where the leader
takes action a and the follower takes action cc�. The
leader’s payoff in the new game is calculated as a
weighted sum of its payoffs from the two tables in
figure 4, that is, α times payoff of leader when fol-
lower type 1 takes action c plus 1 – α times payoff
of leader when follower type 2 takes action c�. All
the other entries in the new table, both for the
leader and the follower, are derived in a similar
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c d

a 2, 1 4,0

b 1,0 3,2

Figure 3. Payoff Table for 
Example Normal Form Game. 

                    Follower Type 1 

c d

a 2, 1 4,0

b 1,0 3,2

                   Follower Type 2 

c' d'

a 1, 1 2,0

b 1,0 3,2

Figure 4. Security Agent Versus Followers 1 and 2.



fashion. In general, for n follower types with k
strategies per follower type, the transformation
results in a game with kn strategies for the follow-
er, thus causing an exponential blowup losing
compactness.  

Methods such as those described in Conitzer
and Sandholm (2006) and Sandholm, Gilpin, and
Conitzer (2005) must use this Harsanyi transfor -
mation, which implies the game loses its compact
structure. Nonetheless, the solutions their meth-
ods obtain can be trans formed back into the origi-
nal game. 

DOBSS 
One key advantage of the DOBSS approach is that
it op erates directly on the Bayesian representation,
without re quiring the Harsanyi transformation. In
particular, DOBSS obtains a decomposition scheme
by exploiting the property that follower types are
independent of each other. The key to the DOBSS
decomposition is the observation that evaluat ing
the leader strategy against a Harsanyi-transformed
game matrix is equivalent to evaluating against
each of the game matrices for the individual fol-
lower types. 

We first present DOBSS in its most intuitive form
as a mixed-integer quadratic program (MIQP); we
then illus trate how it may be transformed into a
linearized equivalent mixed-integer linear program
(MILP). While a more de tailed discussion of the
MILP is available in Paruchuri et al. (2008), the cur-
rent section may at least serve to explain at a high
level the key idea of the decomposition used in this
MILP. 

The model we propose explicitly represents the
actions by the leader and the optimal actions for
the follower types in the problem solved by the
agent. We denote by x the leader’s policy (mixed
strategy), which consists of a vector of prob ability
distributions over the leader’s pure strategies.
Hence, the value xi is the proportion of times in
which pure strategy i is used in the policy. We
denote by ql the vector of strate gies of follower type
l ∈ L. We also denote by X and Q the index sets of
leader and follower l’s pure strategies, respec tively.
We also index the payoff matrices of the leader and
each of the follower types l by the matrices Rl and
Cl. Let M be a large positive number. Given a priori

probabilities pl, with l ∈ L, of facing each follower
type, the leader solves problem 1. 

Here for a set of leader’s actions x and actions for
each follower ql, the objective represents the
expected reward for the agent considering the a
priori distribution over different follower types pl.
Constraints with free indices mean they are repeat-
ed for all values of the index. For example, the
fourth constraint means xi ∈ [0 ... 1] for all i ∈ X.
The first and the fourth constraints define the set
of feasible solu tions x as a probability distribution
over the set of actions X. The second and fifth con-
straints limit the vector of actions of follower type
l, ql to be a pure distribution over the set Q (that is
each ql has exactly one coordinate equal to one
and the rest equal to zero). Note that we need to
consider only the reward-maximizing pure strate-
gies of the follower types, since for a given fixed
mixed strategy x of the leader, each follower type
faces a problem with fixed linear rewards. If a
mixed strategy is optimal for the follower, then so
are all the pure strategies in support of that mixed
strategy. 

The two inequalities in the third constraint
ensure that q1

j = 1 only for a strategy j that is opti-
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mal for follower type l. Indeed this is a linearized
form of the optimality conditions for the linear pro-
gramming problem solved by each follower type.
We explain these constraints as follows: note that
the leftmost inequality ensures that for all j ∈ Q,

.

This means that given the leader’s vector x, al is an
upper bound on follower type l’s reward for any
action. The rightmost inequality is inactive for
every action where q1

j = 0, since M is a large positive
quantity. For the action that has q1

j = 1 this inequal-
ity states that the adversary’s payoff for this action
must be ≥ al, which combined with the previous
inequality shows that this action must be optimal
for follower type l. Notice that problem one is a
decomposed MIQP in the sense that it does not uti-
lize a full-blown Harsanyi transformation; instead
it solves mul tiple smaller problems using individ-
ual adversaries’ payoffs (indexed by l). Further-
more, this decomposition does not cause any sub-
optimality (Paruchuri et al. 2008). 

We can linearize the quadratic programming
problem 1 through the change of variables zl

ij =
xiq

l
j. The substitution of this one variable allows us

to create an MILP. The details of this transforma-
tion and its equivalence to problem 1 are present-
ed in Paruchuri et al. (2008). DOBSS refers to this
equivalent mixed-integer linear program, which
can be solved with efficient integer programming
packages. Although DOBSS still remains as an
exponential solution to solving Bayesian Stackel-
berg games, by avoiding the Harsanyi transforma-
tion it obtains significant speedups over the previ-
ous approaches as shown in the experimental
results and proofs in Paruchuri et al. (2008). 

Bayesian Stackelberg Game for the Los
Angeles International Airport 
We now illustrate how the security problems set
forth by LAWA police can be cast in terms of a
Bayesian Stackel berg game. We focus on the check-
point problem for illustra tion, but the case of the
canine problem is similar. Given the checkpoint
problem, our game consists of two players, the
LAWA police (the leader) and the adversary (the
follower), in a situation consisting of a specific
number of inbound roads on which to set up
checkpoints, say roads 1 through k. LAWA police’s
set of pure strategies consists of a partic ular subset
of those roads to place checkpoints on prior to
adversaries selecting which roads to attack. LAWA
police can choose a mixed strategy so that the
adversary will be unsure of exactly where the
checkpoints may be set up, but the adversary will
know the mixed strategy LAWA police have cho-
sen. We assume that there are m different types of
adversaries, each with different attack capabilities,
planning constraints, and financial ability. Each

a C xl
i X ij

l
i≥ ∈∑

adversary type ob serves the LAWA police check-
point policy and then decides where to attack.
Since adversaries can observe the LAWA police pol-
icy before deciding their actions, this can be mod-
eled through a Stackelberg game with the police as
the leader. 

In this setting, the set X of possible actions for
LAWA po lice is the set of possible checkpoint com-
binations. If, for instance, LAWA police were set-
ting up one checkpoint then X = {1, ..., k}. If LAWA
police were setting up a combi nation of two check-
points, then X = {(1, 2), (1, 3)...(k − 1, k)}, that is, all
combinations of two checkpoints. Each adver sary
type l ∈ L = {1, ..., m} can decide to attack one of the
k roads or maybe not attack at all (none), so its set
of ac tions is Q = {1, …, k, none}. If LAWA police
select road i to place a checkpoint on and adver-
sary type l ∈ L selects road j to attack then the
police receive a reward Rl

ij and the adversary
receives a reward Cl

ij. These reward values vary
based on three considerations: the chance that the
LAWA police checkpoint will catch the adversary
on a particular inbound road; the damage the
adversary will cause if it attacks by means of a par-
ticular inbound road; and the type of adversary,
that is, adversary capability. If LAWA police catch
the adver sary when i = j, we make Rl

ij a large posi-
tive value and Cl

ij a large negative value. However,
the probability of catching the adversary at a
checkpoint is based on the volume of traf fic
through the checkpoint (significant traffic will
increase the difficulty of catching the adversary),
which is an input to the system. If the LAWA police
are unable to catch the ad versary, then the adver-
sary may succeed; that is, we make Rl

ij a large nega-
tive value and Cl

ij a large positive value. Cer tainly,
if the adversary attacks from an inbound road
where no checkpoint was set up, there is no chance
that the po lice will catch the adversary. The mag-
nitude of Rl

ij and Cl
ij vary based on the adversary’s

potential target, given the road from which the
adversary attacks. Some roads lead to higher val-
ued targets for the adversary than others. The game
is not a zero sum game, however, as even if the
adversary is caught, the adversary may benefit due
to publicity. 

The reason we consider a Bayesian Stackelberg
game is because LAWA police face multiple adver-
sary types. Thus, differing values of the reward
matrices across the different adversary types  l ∈ L
represent the different objectives and valuations of
the different attackers (for example, smugglers,
crimi nals, terrorists). For example, a hard-core,
well-financed ad versary could inflict significant
damage on LAX; thus, the negative rewards to the
LAWA police are much higher in magnitude than
an amateur attacker who may not have suffi cient
resources to carry out a large-scale attack. If these
are the only two types of adversaries faced, then a
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20-80 split of probability implies that while there
is a 20 percent chance that the LAWA police face
the former type of adversary, there is an 80 percent
chance that they face an amateur attacker. Our ex -
perimental data provides initial results about the
sensitivity of our algorithms to the probability dis-
tributions over these two different adversary types.
While the number of adver sary types has varied
based on inputs from LAWA police, for any one
adversary type the largest game that has been con-
structed, which was done for canine deployment,
consisted of 784 actions for the LAWA police
(when multiple canine units were active) for the
eight possible terminals within the airport and 8
actions per adversary type (one for a possible attack
on each terminal). 

System Architecture 
There are two separate versions of ARMOR,
ARMOR-checkpoint and ARMOR-canine. While in
the following we focus on ARMOR-checkpoint for
illustration, both these versions use the same
underlying architecture with different inputs. As
shown in figure 6, this architecture consists of a
front end and a back end, integrating four key
components: a front-end interface for user interac-
tion; a method for creating Bayesian Stackelberg
game matrices; an im plementation of DOBSS; and
a method for producing sug gested schedules for
the user. They also contain two major forms of
external input. First, they allow for direct user
input into the system through the interface. Sec-
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Figure 6. ARMOR System Flow Diagram.



ond, they allow for file input of relevant informa-
tion for checkpoints or canines, such as traffic/pas-
senger volume by time of day, which can greatly
affect the security measures taken and the values
of certain actions. At this point we will discuss in
detail what each component consists of and how
they interact with each other. 

Interface 
The ARMOR interface, seen in figure 7, consists of
a file menu, options for local constraints, options
to alter the ac tion space, a monthly calendar and a
main spreadsheet to view any day(s) from the cal-
endar. Together these compo nents create a work-
ing interface that meets all the key re quirements
set forth by LAWA officers for checkpoint and
canine deployment at LAX. 

The base of the interface is designed around six
possi ble adjustable options; three of them alter the
action space and three impose local constraints.
The three options to al ter the action space are the
number of check points allowed during a particular
time slot; the time inter val of each time slot; and
the number of days to schedule over. For each giv-
en time slot, the system constructs a new game.  

As discussed previously, the total num ber of

inbound roads and the number of checkpoints al -
lowed during that time slot determines the avail-
able actions for the LAWA police, whereas the
action space of the adver sary is determined by the
number of inbound roads. Thus, the system can set
up the foun dation for the Bayesian Stackelberg
game by providing all the actions possible in the
game. Once the action space has been generated, it
can be sent to the back end to be set up as a
Bayesian Stackelberg game, solved, and returned as
a suggested schedule, which is displayed to the
user by means of a spreadsheet. 

There are three options that serve to restrict cer-
tain ac tions in the generated schedule: forced
checkpoint; forbidden checkpoint; at least one
checkpoint. These constraints are intended to be
used sparingly to accommo date situations where a
user, faced with exceptional circum stances and
extra knowledge, wishes to modify the output of
the game. The user may impose these restrictions
by forcing specific actions in the schedule. In par-
ticular, the forced checkpoint option schedules a
checkpoint at a specific time on a specific day. The
forbidden checkpoint option des ignates a specific
time on a specific day when a checkpoint should
not be scheduled. Finally, the at least one check-

Articles

50 AI MAGAZINE

Figure 7. ARMOR Interface.



point option designates a set of time slots and
ensures that a checkpoint is scheduled in at least
one of the slots. 

The spreadsheet in the interface serves as the
main mech anism for viewing, altering, and con-
straining schedules. The columns correspond to
the possible checkpoints, and the rows correspond
to the time frames in which to schedule them. Up
to a full week can be viewed at a single time as seen
in figure 7. Once a particular day is in view, the
user can assign to that day any desired constraints.
Each constraint is represented by a specific color
within the spreadsheet, namely green, red, and yel-
low for the forced, for bidden, and at least con-
straints, respectively.  

Matrix Generation and DOBSS 
Given the submitted user information, the system
must cre ate a meaningful Bayesian Stackelberg
game matrix. Pre viously we illustrated the genera-
tion of the action space in this game. Based on the
prespecified rewards as discussed earlier, we can
provide the rewards for the LAWA police and the
adversaries to generate a game matrix for each
adversary type. After the final game matrices are
constructed for each adversary type, they are sent
to the DOBSS implementation, which calculates
the optimal mixed strategy over the current action
space. 

To demonstrate the process, assume there are
three pos sible checkpoint locations (A, B, C), one
possible time slot to schedule over, and two check-
points available for schedul ing. Given this sce-
nario, the unique combinations possible include
scheduling checkpoints A and B, A and C, and B
and C, over the given time frame. We will assume
that check points A and B are highly valuable while
C, although not completely devoid of value, has a
very low value. Based on this information, a likely
mixed strategy generated by DOBSS would be to
assign a high probability to choosing action A and
B, say 70 percent, and a low probability to both the
other actions, say 15 percent each. Whatever the
mixed strategy actually comes out to be, it is the
optimal strategy a user could take to maximize
security based on the given information. This
mixed strategy is then stored and used for the actu-
al schedule generation. 

Mixed Strategy and Schedule Generation 
Once an optimal mixed strategy has been chosen
by DOBSS and stored within the system, a particu-
lar combination of ac tions must be chosen to be
displayed to the user. Consider our example from
the previous section involving three pos sibilities
(checkpoints A and B, A and C, B and C) and their
probabilities of 70 percent, 15 percent, and 15 per-
cent. Knowing this prob ability distribution, the
system can formulate a method to randomly select

between the combinations with the given proba-
bilities. Each time a selection is made, that combi-
na tion is sent to the user interface to be reviewed
by the user as necessary. So if, for instance, combi-
nation one was chosen, the user would see check-
point A and B as scheduled for the given time slot. 

In rare cases, as mentioned previously, a user
may have forbidden a checkpoint or required a
checkpoint. ARMOR accommodates such user
directives when creating its sched ule; for example,
if checkpoint C is forbidden, then all the probabil -
ity in our example shifts to the combination A and
B. Un fortunately, by constraining the schedule fre-
quently, a user can completely alter the mixed
strategy produced as the out put of DOBSS, defeat-
ing DOBSS’s guarantee of optimality. To avoid such
a possibility, ARMOR incorporates certain alerts
(warnings) to encourage noninterference in its
sched ule generation. For example, if a combina-
tion has zero or very low probability of being cho-
sen and the user has forced that checkpoint com-
bination to occur, ARMOR will alert the user.
Similarly, if a combination has a very high likeli-
hood and the user has forbidden that event,
ARMOR will again alert the user. However, ARMOR
only alerts the user; it does not autonomously
remove the user’s constraints. Re solving more sub-
tle interactions between the user’s imposed con-
straints and DOBSS’s output strategy remains an
issue for future work. 

When a schedule is presented to the user with
alerts, the user may alter the schedule by altering
the forbidden or required checkpoints, or possibly
by directly altering the schedule. Both possibilities
are accommodated in ARMOR. If the user simply
adds or removes constraints, ARMOR can create a
new schedule. Once the schedule is finalized, it can
be saved for actual use, thus completing the system
cycle. This full process was designed specifically to
meet the re quirements at LAX for checkpoint and
canine allocation. 

Design Challenges 
Designing and deploying the ARMOR software on
a trial ba sis at LAX posed numerous challenges and
problems to our research group. Some key lessons
learned during the design and deployment of
ARMOR include the importance of tools for ran-
domization, the importance of manual schedule
overrides, and the importance of providing police
officers with operational flexibility.

Importance of Tools for Randomization
There is a crit ical need for randomization in secu-
rity operations. Se curity officials are aware that
requiring humans to gen erate randomized sched-
ules is unsatisfactory because, as psychological
studies have often shown (Wagenaar 1972),
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humans have difficulty randomizing. Instead,
mathemati cal randomization that appropriately
weighs the costs and benefits of different actions
and randomizes accordingly leads to improved
results. Security officials were hence extremely
enthusiastic in their reception of our research and
eager to apply it to their domain. In addition, these
officials have indicated that obtaining schedules
automat ically reduces their burden of having to
construct such schedules manually taking all the
relevant factors into ac count. 

Importance of 
Manual Schedule Overrides
While AR MOR incorporates all the knowledge that
we could obtain from LAWA police and provides the
best output possi ble, it may not be aware of dynam-
ic developments on the ground. For example, police
officers may have very spe cific intelligence for
requiring a checkpoint on a particu lar inbound road.
Hence, it was crucial to allow LAWA police officers
(in rare instances when it is necessary) to manually
selectively override the schedule provided. 

Importance of Providing Police Officers
with Operational Flexibility
When initially generating schedules for ca nine
patrols, the system created a very detailed sched-
ule, micromanaging the patrols. This did not get as
positive a reception from the officers. Instead, an
abstract sched ule that afforded the officers some
flexibility to respond to dynamic situations on the
ground was better received. 

Experimental Results 
Our experimental results explore the run-time effi-
ciency of DOBSS and evaluate the solution quality
and implementa tion of the ARMOR system. 

Run-Time Analysis 
It has been shown in Paruchuri et al. (2008) that
DOBSS sig nificantly outperforms its competitors,
which include MIP-Nash (Sandholm, Gilpin, and
Conitzer 2005) and multiple LPs (Conitzer and
Sandholm 2006) in an experimental do main that
involves a security agent patrolling a world con sist-
ing of m houses, 1 … m and a robber trying to rob
these houses. These results show that even for a
world as small as three houses, MIP-Nash and mul-
tiple LPs are unable to con verge on a solution with-
in the allowed time of 30 minutes when there are 8
or more adversary types. DOBSS, how ever, is able to
achieve a solution in less than 10 seconds for up to
14 adversary types. Also, as the number of houses
increases up to five, Paruchuri and colleagues find
that MIP-Nash and multiple LPs are unable to con-
verge on a solution within 30 minutes for even low
numbers of adversary types (Paruchuri et al. 2008). 

Our run-time analysis adds to the above results,
focusing specifically on the current security
domain for which this work has been applied. For
this reason we compare the run-time results of
DOBSS versus multiple LPs, described pre viously,
given the specific domain used for canine deploy-
ment at LAX. MIP-Nash (Sandholm, Gilpin, and
Conitzer 2005) has not been included in this
analysis of run times as it only provides the best
Bayes-Nash equilibrium as opposed to the optimal
mixed strategies provided by the multiple-LPs
method and the DOBSS method. The aim of this
analysis is to show that DOBSS is indeed the most
suitable procedure for application to real domains
such as the LAX canine and checkpoint allocation.
To that end, we used the data from a full week of
canine deployment to analyze the time nec essary
to generate a schedule given the DOBSS method
and the multiple-LPs method. For completeness we
show the results given one to four adversary types
where four adver sary types is the minimum
amount LAWA has set forth as necessary. 

In figure 8 we summarize the run-time results for
our Bayesian games using DOBSS and multiple LPs.
We tested our results on the Bayesian games pro-
vided from the canine domain with number of
adversary types varying between one to four. Each
game between LAWA and one adversary type is
modeled as a normal form game. Thus, there are
four normal form games designed for the game
between LAWA and the various adversary types for
the base case. The size of each of these normal
form games is (784, 8), corresponding to 784
strategies for LAWA and 8 for the adversary. We
then used the seven generated instances, taken
from an arbitrary week of canine deployment, of
this base case to obtain averaged results. 

The x-axis in figure 8 shows the number of fol-
lower types the leader faces starting, and the y-axis
of the graph shows the run time in seconds. All the
experiments that were not concluded in 20 min-
utes (1,200 seconds) were cut off. From the graph
we summarize that DOBSS outperforms the multi-
ple-LPs method by a significant margin given our
real canine domain. In the graph, while multiple
LPs could solve the problem only for up to two
adversary types, DOBSS could solve for all four
adversary types within 80 seconds. 

Hence we see that the DOBSS method is faster
than the multiple-LPs method. Consequently, we
conclude that DOBSS is the algorithm of choice for
Bayesian Stackelberg games (Paruchuri et al. 2008),
especially given the partic ular games created by
real security domains such as the ca nine patrolling
problem presented in this article. 

Evaluation of ARMOR 
We now evaluate the solution quality obtained
when DOBSS is applied to the LAX security
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domain. We offer three types of evaluation. While
our first evaluation is in the lab, AR MOR is a
deployed assistant, and hence our remaining two
evaluations are of its deployment in the field. With
respect to our first evaluation, we conducted four
experiments. The first three compared ARMOR’s
randomization with a uni form randomization
technique that does not use ARMOR’s weights in
randomization. 

The results of the first experiment are shown in
figures 9a, 9b, and 9c. The x-axis represents the
probabilities of occurrence of the two adversary
types we chose to fo cus on. Since the actual num-
ber of adversary types used for LAX is secure infor-
mation, we use two adversary types for simplicity
in this analysis. The x-axis shows the probability p
of adversary type 2 (the probability of adversary
type 1 is then obtained on 1 – p). The y-axis repre-
sents the reward obtained by LAWA. This reward
represents the expected re ward LAWA would
obtain given the optimal adversary re sponse to the
strategy adopted by LAWA. Figure 9a shows the
comparison when one checkpoint is placed. For
exam ple, when adversary of type 1 occurs with a
probability of 0.1 and type 2 occurs with a proba-
bility of 0.9, the reward obtained by the DOBSS
strategy is −1.72 whereas the re ward obtained by a
uniform random strategy is −2.112. It is important
to note that the reward of the DOBSS strategy is
strictly greater than the reward of the uniform ran-
dom strat egy for all probabilities of occurrence of
the adversary types. 

Figure 9b also has the probability distribution on
the x-axis and the reward obtained on the y-axis. It
shows the difference in the obtained reward when

two checkpoints are placed. Here also the reward
in the case of the DOBSS strategy is greater than
the reward of the uniform random strategy. When
we have two checkpoints, the type 2 adversary
chooses the action none (to not attack). This leads
to the observation that the reward of the DOBSS
strategy and the reward of the uniform strategy are
the same when only the type 2 adversary is pres-
ent. Figure 9c presents the case of three check-
points. Here the reward values obtained by DOBSS
are always positive—this is because the chances of
catching the adversary of type 1 improve signifi-
cantly with three check points. This also leads to
the reward of DOBSS decreasing with the decrease
in the probability of occurrence of the ad versary of
type 1. Note that the type 2 adversary, as with the
case of two checkpoints, decides none and hence
the reward of the DOBSS strategy and the uni-
formly random strategy are the same when only
type 2 adversary is present. 

The three experiments reported allow us to con-
clude that DOBSS weighted randomization pro-
vides signifi cant improvements over uniform ran-
domization in the same domain, thus illustrating
the utility of our algorithms. We continue these
results in the following fourth experiment, focus-
ing now on canine units. Figure 9d shows the com-
parison of the reward obtained between schedul-
ing canine units with DOBSS and scheduling them
with a uniform ran dom strategy (denoted URS). In
the uniform random strat egy, canines are random-
ly assigned to terminals with equal probability. The
x-axis represents the weekday and the y-axis repre-
sents the reward obtained. We can see that DOBSS
performs better even with three canine units as
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compared to six canine units being scheduled
using the uniform random strategy. For example,
on Friday, the reward of a uniformly random strat-
egy with six canine units is −1.47, whereas the
reward of three, five, and six canine units with
DOBSS is 1.37, 3.50, and 4.50 respectively. These
results show that DOBSS weighted randomization
with even three canine units provides better results
against uniform randomization in the same
domain with six canine units. Thus our algorithm
provides better rewards and can help in reducing
the cost of resources needed. 

In the next evaluation, we examine ARMOR’s
setting of checkpoints at LAX. The first experiment
examines the change in checkpoint deployment
during a fixed shift (that is, keeping the time fixed)
over two weeks. The results are shown in table 1.

The numbers 1 to 5 in the table denote the check-
point number (we have assigned arbitrary identi -
fication numbers to all checkpoints for the purpose
of this experiment) and the values of the table
show the percentage of times this checkpoint was
used. For example, in week 1, checkpoint 2 was
used just less than 5 percent of times, while check-
point 2 was used about 25 percent of the times in
week 2. We can make two observations from these
two weeks: First, we do not appear to have uniform
use of these checkpoints; that is, there is great vari-
ance in the percentage of times check points are
deployed. Second, the checkpoint deployment
varies from week to week; for example, checkpoint
4 was not used in week 1, but it was used 15 per-
cent of the times in week 2. 

The goal of the next experiment was to provide
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results on the sensitivity analysis, specifically, how
the probabilities of different actions will change if
we change the proportion of adversary types. Fig-
ure 10 shows the variation in strategy for placing
two checkpoints together when the probability of
occurrence of the adversary changes. The x-axis
shows the variation in the probability of occur-
rence of the adversary types, whereas the y-axis
shows the variation in the probabil ities in the
DOBSS strategy. For example, when adversary of
type 1 occurs with a probability of 1, the probabil-
ity of plac ing both checkpoints 1 and 4 is 0.353;
when adversaries 1 and 2 occur with probabilities
0.4 and 0.6, respectively, then the probability of
placing checkpoints 3 and 4 is 0.127. We can
observe that there is no variation in the probabili-
ties in the DOBSS strategies when the probabilities
of occurrence of the two adversary types vary from
.1 to .9. This indicates that our results are not par-
ticularly sensitive to variations in probabilities of
opponents except at the extremes. 

Our final evaluation is a more informal evalua-
tion based on feedback from the LAWA police. First,
they have pro vided very positive feedback about
the deployment. They suggest that the technique
they had previously used was not one of random-
ization, but one of alternating checkpoints; such a
routine can bring about determinism in the sched-
ul ing, which we have avoided. Second, ARMOR has
reduced routine work in scheduling, which allows
LAWA police to focus on more important tasks.
Third, several arrests have been made at check-
points scheduled by ARMOR. Typically these
involved cars attempting to carry weapons into
LAX. Finally, Director James Butts of LAX police has
commented that the new random placement
“makes travelers safer” and even gives them “a
greater feeling of police presence” by making the
police appear more numerous (Murr 2007). Also
Chief Erroll Southers in testimony to a congres-
sional com mittee has commented, “LAX is safer
today than it was 18 months ago,” citing ARMOR
as one of the key factors.2 This does not necessarily
suggest that ARMOR’s schedule was responsible
because this is not a controlled experiment per se.
Nonetheless, it illustrates that the first line of
defense at the outer airport perimeter is help ing
alleviate the threat of violence at the airport. 

Related Work and Summary 
The patrolling problem itself has received signifi-
cant atten tion in multiagent literature due to its
wide variety of ap plications ranging from robot
patrol to border patrolling of large areas (Ruan et
al. 2005, Billante 2003). The key idea behind the
policies provided by these techniques is random -
ization, which decreases the amount of informa-
tion given to an adversary. However, no specific
algorithm/procedure has been provided for the
generation of randomized poli cies; hence, they can
lead to highly suboptimal policies. Two exceptions
are Praveen Paruchuri and colleagues and their ear-
ly work (Paruchuri et al. 2006), which provides
algorithms for an alyzing randomization-reward
trade-offs, and Noa Agmon and colleagues and
their recent work (Agmon, Kraus, and Kamink
2008), which provides algorithms for reducing the
probability of penetration. However, unlike our
work, neither model any adversaries or adversary
types. 

Finally, the sequence from Koller and Pfeffer
(1997) pro vides an alternative compact representa-
tion to normal form representation. However, rep-
resenting commitment to a mixed strategy, as
required in our Stackelberg games, is dif ficult in
this representation, making its use difficult. Fur-
thermore, Koller and Pfeffer (1997) have not
focused on com puting optimal response in Stack-
elberg games, but rather in only finding equilibria. 

While ARMOR is a game-theoretic security
scheduler, there are many other competing non-
game-theoretic tools in use for related applications.
For example, the “Hypercube Queuing Model”
(Larson 1974) based on queuing theory depicts the
detailed spatial operation of urban police depart-
ments and emergency medical services and has
found ap plication in police beat design, allocation
of patrolling time, and so on. However, this mod-
el does not take specific adversary models into
account; ARMOR, on the other hand, tailors poli-
cies to combat various potential adversaries. 

Two different approaches have been presented
previously to find solutions to Bayesian Stackel-
berg games efficiently. One of the approaches,
named ASAP (Paruchuri et al. 2007), is able to
operate on the Bayesian form of Stackelberg
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Checkpoint Number 1 2 3 4 5 

Week 1 33.33 4.76 33.33 0 28.57 

Week 2 19.04 23.80 23.80 14.28 19.05 

Table 1. Variation in Usage Percentage. 



games, but it provides an approximate solution.
The sec ond approach, the multiple-LPs method,
requires a Bayesian game to be transformed into a
normal form game using the Harsanyi transfor-
mation (Harsanyi and Selten 1972). DOBSS is
superior to ASAP in that it provides exact solu-
tions, and as shown, it also outperforms the mul-
tiple-LPs method for our domain of interest. 

In summary, establishing security around infra-
structure of economic or political importance is a
challenge that is faced today by police forces
around the world. While randomized monitoring
is important—as adversaries can observe and
exploit any predictability—randomization must
use dif ferent weighing functions to reflect the
complex costs and benefits of different police
actions. This article describes a deployed agent
assistant called ARMOR that casts the monitoring
problem as a Bayesian Stackelberg game, where
randomized schedule generation can appropriate-
ly weigh the costs and benefits as well as uncer-
tainty over adver sary types. ARMOR combines
two key features: first, it uses the fastest known
solver for Bayesian Stackelberg games called DOB-
SS, where the dominant mixed strategies pro vide
schedule randomization; and second, its mixed-
initiative-based interface allows users to occa-
sionally adjust or override the automated sched-
ule based on their local constraints. AR MOR has
been successfully deployed at the Los Angeles In -
ternational Airport, randomizing allocation of
checkpoints since August 2007 and canine
deployment since Novem ber 2007. ARMOR thus
represents a successful transition of multiagent
algorithmic advances (Paruchuri et al. 2006, 2007,

2008) for the past two years into the real world. 
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