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■ I consider how to represent and reason with
users’ preferences. While areas of economics like
social choice and game theory have traditional-
ly considered such topics, I will argue that com-
puter science and artificial intelligence bring
some fresh perspectives to the study of repre-
senting and reasoning with preferences. For
instance, I consider how we can elicit prefer-
ences efficiently and effectively. 

Preferences are a central aspect of decision
making for single or multiple agents.
With one agent, the agent’s desired goal

may not be feasible. The agent wants a cheap,
low-mileage Ferrari, but no such car exists. We
may therefore look for the most preferred out-
come among those that are feasible. With mul-
tiple agents, their goals may be conflicting.
One agent may want a Prius, but another wants
a Hummer. We may therefore look for the out-
come that is most preferred by the agents. Pref-
erences are thus useful in many areas of artifi-
cial intelligence including planning, sche d-
 uling, multiagent systems, combinatorial auc-
tions, and game playing.

Artificial intelligence is not the only disci-
pline in which preferences are of interest. For
instance, economists have also studied prefer-
ences in several contexts including social
choice, decision theory, and game theory. In
this article, I will focus on the connections
between the study of preferences in artificial
intelligence and in social choice. Social choice
is the theory of how individual preferences are
aggregated to form a collective decision. For
example, one person prefers Gore to Nader to
Bush, another prefers Bush to Gore to Nader,
and a third prefers Nader to Bush to Gore. Who

should be elected? There are many useful ideas
about preferences that have been imported
from social choice into artificial intelligence.
For example, as I will discuss later in this arti-
cle, voting procedures have been proposed as a
general mechanism to combine agents’ prefer-
ences. As a second example, ideas from game
theory like Nash equilibrium have proven very
influential in multiagent decision making.

In the reverse direction, artificial intelligence
brings a fresh perspective to some of the ques-
tions addressed by social choice. These new
perspectives are both computational and rep-
resentational. From a computational perspec-
tive, we can look at how computationally we
reason with preferences. As we shall see later in
this article, computational intractability may
actually be advantageous in this setting. For
example, we can show that for a number of dif-
ferent voting rules manipulating the result of
an election is possible in theory, but computa-
tionally difficult to perform in practice. From a
representational perspective, we can look at
how we represent preferences, especially when
the number of outcomes is combinatorially
large. We shall see situations where we have a
few agents but very large domains over which
they are choosing.

Another new perspective, both computa-
tional and representational, is how we repre-
sent and reason about uncertainty surrounding
preferences. As we shall see, uncertainty can
arise in many contexts. For example, when
eliciting an agent’s preferences, we will have
uncertainty about some of their preferences. As
a second example, when trying to manipulate
an election, we may have uncertainty about
the other agents’ votes. As a third example,
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there may be uncertainty in how the chair will
perform the election. For instance, in what
order will the chair compare candidates? Such
uncertainty brings fresh computational chal-
lenges. For example, how do we compute
whether we have already elicited enough pref-
erences to declare the winner?

Representing Preferences
As with other types of knowledge, many differ-
ent formalisms have been proposed and stud-
ied to represent preferences. One broad dis-
tinction is between cardinal and relational
preference representations. In a cardinal repre-
sentation, a numerical evaluation is given to
each outcome. Such an evaluation is often
called a utility. In a relational representation,
on the other hand, a ranking of outcomes is
given by means of a binary preference relation.
For example, we might simply have that the
agent prefers a “hybrid car” to a “diesel car”
without assigning any weights to this. In the
rest of the article, I shall restrict much of my
attention to this latter type of relational repre-
sentation. It is perhaps easier to elicit relation-
al preferences: the agent simply needs to be
able to rank outcomes. In addition, it is per-
haps easier to express conditional choices
using a relational formalism. For example, if
the car is new, the agent might prefer a “hybrid
car” to a “diesel car,” but if the car is second-
hand, the agent is concerned about battery
replacement and so prefers a “diesel car” to a
“hybrid car.” Such a conditional preference is
difficult to express using utilities but, as we
shall see, is straightforward with certain rela-
tional formalisms. Nevertheless, utilities have
an important role to play in representing
agents’ preferences.

A binary preference relation is generally
assumed to be transitive. That is, if the agent
prefers a “hybrid car” to a “diesel car,” and a
“diesel car” to a “petrol car” then the agent also
prefers a “hybrid car” to a “petrol car.” There
are three other important properties to consid-
er: indifference, incompleteness, and incompa-
rability. It is important to make a distinction
between these three “I”s. Indifference repre-
sents that the agent likes two outcomes equal-
ly. For instance, the agent might have an equal
(dis)like for sports utilities and minivans.
Incompleteness, on the other hand, represents
a gap in our knowledge about the agent’s pref-
erences. For instance, when eliciting prefer-
ences, we may not have queried the agent yet
about its preference between an “electric car”
and a “hybrid car.” We may wish to represent
that the preference relation is currently incom-

plete and that at some later point the precise
relationship may become known. Finally,
incomparability represents that two outcomes
cannot in some fundamental sense be com-
pared with each other. For example, an agent
might prefer a “hybrid car” to a “diesel car”
and a “cheap car” to an “expensive car.” But
the agent might not want to compare an
“expensive hybrid” with a “cheap diesel.” A
cheap diesel has one feature that is better (the
price) but one feature that is worse (the
engine). The agent might want both choices to
be returned, as both are Pareto optimal (that is,
there is no car that is more preferred). Such
incomparability is likely to arise when out-
comes combine together multiple features.
However, it also arises when we are comparing
outcomes that are essentially very different (for
example, a car and a bicycle).

Another important aspect of representing
preferences is dealing with the combinatorial
nature of many domains. Returning to the car
domain, we have the engine type, the number
of seats, the manufacturer, the age, as well as
the price and other features like the fuel con-
sumption, the color, the trim, and so on. A
number of formalisms have been proposed to
represent preferences over such large combina-
torial domains. For example, CP-nets decom-
pose a complex preference relation into condi-
tionally independent parts (Boutilier et al.
1999). CP-nets exploit the ceteris paribus (“all
else being equal”) assumption under which the
preference relation depends only on features
that change. This formalism lets us represent
preferences over a complex feature space using
a small number of possibly conditional prefer-
ence statements (see figure 1). CP-nets exploit
conditional independence within the prefer-
ence relation in much the same way as a Bayes
network tries to compactly represent a complex
probability distribution function.

A number of extensions of CP-nets have
been proposed including TCP-nets to represent
trade-off (for example, “price” is more impor-
tant to me than “engine type”) (Brafman and
Domshlak 2002) and mCP-nets to represent
the preferences of multiple agents (each agent
has its own CP-net and these are combined
using voting rules) (Rossi, Venable, and Walsh
2004). However, there are several outstanding
issues concerning CP-nets including their deci-
siveness and their complexity. CP-nets induce
in general only a partial order over outcomes
(such as the “expensive hybrid” versus “cheap
diesel” example). A CP-net may not therefore
order enough outcomes to be useful in prac-
tice. In addition, reasoning with CP-nets is in
general computationally hard. For example,
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determining whether one outcome is more pre-
ferred than another is PSPACE-hard (Gold-
smith et al. 2005). To reduce this complexity,
various approximations have been proposed
(Domshlak et al. 2003, 2006). In addition,
restricted forms of CP-nets have been identi-
fied (for example, those where the dependency
between features is acyclic) where reasoning is
more tractable (Boutilier et al. 1999). However,
more work needs to be done if CP-nets are to
find application in practical systems.

Another way to represent an agent’s prefer-
ences is by means of the agent’s ideal and non-
ideal outcomes. For instance, an agent might
like two cars on display (say, a Volvo and a
Jaguar) but not the third car (say, a Lada). The
agent might therefore specify “I would like
something like the Volvo or the Jaguar but not
the Lada.” Hebrard, O’Sullivan, and Walsh
(2007) proposed a method to reason about
such logical combinations of ideal and nonide-
al outcomes (see figure 2 for some more
details). This approach has a flavor of qualita-
tive methods, in allowing logical combinations
of ideals and nonideals, and quantitative meth-
ods, in measuring distance from such ideals
and nonideals. The propagators developed to
reason about such distance constraints are, it
turns out, closely related to those that can
return a diverse set of solutions (“show me five
different cars that satisfy my constraints”) and
those that return a similar set of solutions
(“show me some similar cars to this one that
also satisfy my constraints”) (Hebrard et al.
2005). An attractive feature of representing
preferences through ideal and nonideal out-
comes is that preference elicitation may be
quick and easy. Agents need answer only a few
questions about their preferences. On the
downside, it is difficult to express the sort of
complex conditional preferences that are easy
to represent with formalisms like CP-nets. An
interesting research direction would be to learn
(conditional) preference statements like those
used in CP-nets given some ideal and nonideal
outcomes.

Preference Aggregation
In multiagent systems, we may need to com-
bine the preferences of several agents. For
instance, each member of a family might have
preferences about what car to buy. A common
mechanism for aggregating together prefer-
ences is to apply a voting rule. Each agent
expresses a preference ordering over the set of
outcomes, and an election is held to compute
the winner. When there are only two possible
outcomes, it is easy to run a “fair” election. We
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Suppose an agent declares unconditionally that a 
hybrid is better than a diesel. We write this: 

 hybrid > diesel 

With a hybrid, the agent declares: 

 saloon > station wagon 

But with a diesel, the agent declares: 

 station wagon > saloon 

Then a hybrid saloon is more preferred to a hybrid 
station wagon since ceteris paribus we keep the 
engine type constant but move from the more 
preferred saloon to the less preferred station wagon 
according to the first conditional preference 
statement: with a hybrid then saloon > station wagon. 

A hybrid station wagon itself is more preferred to a 
diesel station wagon since we move from the more 
preferred hybrid to the less preferred diesel 
according to the first (unconditional) preference 
statement: hybrid > diesel. 

Finally a diesel station wagon is more preferred 
to a diesel saloon since we keep the engine type 
constant but move from the more preferred station 
wagon to the less preferred saloon according to the 
second conditional preference statement: 
with a diesel then station wagon > saloon. 

Thus, we have: 
hybrid saloon > hybrid station wagon > 
diesel station wagon > diesel saloon. 

Figure 1. An Example CP-Net.



apply the majority rule and select the outcome
with the most votes. However, elections are
more probematic when there are more than
two possible outcomes.

Going back to at least the Marquis de Con-
dorcet in 1785, and continuing with Arrow,
Sen, Gibbard, Satterthwaite, and others from
the 1950s onwards, social choice theory has
identified fundamental issues that arise in run-
ning elections with more than two outcomes
(see figure 3 for an illustrative example). For
instance, Arrow’s famous impossibility theo-
rem shows that there is no “fair” method to
run an election if we have more than two out-
comes. Fairness is defined in an axiomatic way
by means of some simple but desirable proper-
ties like the absence of a dictator (that is, an
agent whose vote is the result) (Arrow 1970). A
closely related result, the Gibbard-Satterth-
waite theorem shows that all “reasonable” vot-
ing rules are manipulable (Gibbard 1973; Sat-
terthwaite 1975). The assumptions of this
theorem are again not very strong. For exam-
ple, we have three or more outcomes, and there
is some way for every candidate to win (for
example, the election cannot be rigged so Gore
can never win). Manipulation here means that
an agent may get a result it prefers by voting
tactically (that is, declaring preferences differ-
ent to those the agent has). Consider, for
instance, the plurality rule under which the
outcome with the most votes wins. Suppose
you prefer a hybrid car over a diesel car, and a
diesel car over a petrol car. If you know that no
one else likes hybrid cars, you might vote
strategically for a diesel car, as your first choice
has no hope.

Strategic voting is generally considered
undesirable. There are many reasons for this,
including the result is not transparent to the
electorate, agents need to be sophisticated and
informed to get a particular result, and fraud
may be difficult to detect if the result is hard to
predict. To discuss manipulability results in
more detail, we need to introduce several dif-
ferent voting rules. A vote is one agent’s rank-
ing of the outcomes. For simplicity, we will
assume this is a total order, but as we observed
earlier, it may be desirable in some situations
to consider partial orders. A voting rule is then
simply a function mapping a set of votes onto
one outcome,1 the winner. We shall normally
assume that any rule takes polynomial time to
apply. However, there are some voting rules
where it is NP-hard to compute the winner
(Bartholdi, Tovey, and Trick 1989b). Finally, we
will also consider weighted votes. Weights will
be integers so a weighted vote can be seen sim-
ply as a number of agents voting identically.
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We suppose the user expresses her preferences in 
terms of ideal or nonideal (partial) solutions. Partiality 
is important so we can ignore irrelevant attributes. For 
example, we might not care whether our ideal car has 
run-flat tires or not. 

One of the fundamental decision problems underlying 
this approach is that a solution is at a given distance d 
to (resp. from) an ideal (resp. nonideal) solution. These 
are called dCLOSE and dDISTANT respectively. 

We can specify more complex preferences by using 
negation, conjunction, and disjunction. 

      dDISTANT(a) ↔ ¬dCLOSE(a) 
dDISTANT(a ∨ b) ↔ dDISTANT(a) ∨ dDISTANT(b) 
                           ↔  ¬dCLOSE(a ∧ b) 
dDISTANT(a ∧ b) ↔  dDISTANT(a) ∧  dDISTANT(b) 
                              ↔   ¬dCLOSE(a ∨ b) 

These can be represented graphically: a and b are 
solutions, sol(P) is the set of solutions within the 
distance d, and the shaded region represents the 
solutions that satisfy the constraints. 
 

a

sol(P)

(a) dCLOSE(a)

a

sol(P)

(b) dDISTANT(a) 

a b

sol(P)

(c) dCLOSE(a ∨ b)

aa bb

sol(P)

(d) dDISTANT(a ∧ b)

a b

sol(P)

(e) dCLOSE(a ∧ b)

a b

sol(P)

(f) dCLOSE(a) ∧ dDISTANT(b)

Figure 2. Representing Preferences through Ideal and Nonideal Outcomes
(Hebrard, O’Sullivan, and Walsh 2007).



Weighted voting systems are used in a number
of real-world settings like shareholder meetings
and elected assemblies. Weights are useful in
multiagent systems that have different types of
agents. Weights are also interesting from a
computational perspective. For example,
adding weights to the votes may introduce
computational complexity. For instance,
manipulation can become NP-hard when
weights are added (Conitzer and Sandholm
2002). As a second example, as I discuss later in
the article, the weighted case informs us about
the unweighted case when there is uncertainty
about the votes. I now define several voting
rules that will be discussed later in this article.

Scoring Rules
Scoring rules are defined by a vector of weights,
(w1, …, wm). The ith outcome in a total order
scores wi, and the winner is the outcome with
the highest total score. The plurality rule has
the weight vector (1, 0, …, 0). In other words,
each highest ranked outcome scores one point.
When there are just two outcomes, this degen-
erates to the majority rule. The veto rule has
the weight vector (1, 1, …, 1, 0). The winner is
the outcome with the fewest “vetoes” (zero
scores). Finally, the Borda rule has the weight
vector (m – 1, m – 2, …, 0). This attempts to
give the agent’s second and lower choices some
weight.

Cup (or Knockout) Rule
The winner is the result of a series of pairwise
majority elections between outcomes. This
exploits the fact that when there are only two
outcomes, the majority rule is a fair means to
pick a winner. We therefore divide the problem
into a series of pairwise contests. The agenda is
the schedule of pairwise contests. If each out-
come must win the same number of majority
contests to win overall, then we say that the
tournament is balanced.

Single Transferable Vote (STV) Rule
The single transferable vote rule requires a
number of rounds. In each round, the outcome
with the least number of agents ranking them
first is eliminated until one of the remaining
outcomes has a majority.

We will also consider one other common
preference aggregation rule in which voters do
not provide a total ordering over outcomes, but
simply a set of preferred outcomes.

Approval Rule
The agents approve of as many outcomes as
they wish. The outcome with the most
approvals wins.
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Consider an election in which Alice votes:

 Prius > Civic Hybrid > Tesla 

Bob votes: 

 Tesla > Prius > Civic Hybrid 

And Carol votes: 

 Civic Hybrid > Tesla > Prius 

Then we arrive in the “paradoxical” situation where 
two thirds prefer a Prius to a Civic Hybrid, two thirds 
prefer a Tesla to a Prius, but two thirds prefer a 
Civic Hybrid to a Tesla. The collective preferences 
are cyclic. 

There is no fair and deterministic resolution to this 
example since the votes are symmetric. With majority 
voting, each car would receive one vote. If we break 
the three-way tie, this will inevitably be “unfair,” 
favoring one agent’s preference ranking over 
another’s. 

Figure 3. Condorcet’s Paradox.



Manipulation
Gibbard-Satterthwaite’s theorem proves that all
“reasonable” voting rules are manipulable once
we have more than two outcomes (Gibbard
1973, Satterthwaite 1975). That is, voters may
need to vote strategically to get their desired
result. Researchers have, however, started to
consider computational issues surrounding
strategic voting and such manipulation of elec-
tions. One way around Gibbard-Satterthwaite’s
theorem may be to exploit computationally
complexity. In particular, we might look for
voting rules that are manipulable but where
the manipulation is computationally difficult
to find (Bartholdi, Tovey, and Trick 1989a). As
with cryptography, computational complexity
is now wanted and is not a curse. For example,
it has been proven that it is NP-hard to com-
pute how to manipulate the STV rule to get a
particular result if the number of outcomes and
agents is unbounded (Bartholdi and Orlin
1991).

One criticism made of such results by
researchers from social choice theory is that,
while elections may have a lot of agents voting,
elections often only choose between a small
number of outcomes. However, as argued
before, in artificial intelligence, we can have
combinatorially large domains. In addition, it
was subsequently shown that STV is NP-hard
to manipulate even if the number of outcomes
is bounded, provided the votes are weighted
(Conitzer and Sandholm 2002). Manipulation
now is no longer by one strategic agent but by
a coalition of agents. This may itself be a more
useful definition of manipulation. A single
agent can rarely change the outcome of many
elections. It may therefore be more meaningful
to consider how a coalition might try to vote
strategically.

Many other types of manipulations have
been considered. One major distinction is
between destructive and constructive manipu-
lation. In constructive manipulation, we are
trying to ensure a particular outcome wins. In
destructive manipulation, we are trying to
ensure a particular outcome does not win.
Destructive manipulation is at worse a polyno-
mial cost more difficult than constructive
manipulation provided we have at most a poly-
nomial number of outcomes. We can destruc-
tively manipulate the election if and only if we
can constructively manipulate some other out-
come. In fact, destructive manipulation can
sometimes be computationally easier. For
instance, the veto rule is NP-hard to manipu-
late constructively but polynomial to manipu-
late destructively (Conitzer, Sandholm, and
Lang 2007). This result may chime with per-

sonal experiences on hiring committees: it is
often easier to ensure someone is not hired
than to ensure someone else is!

Another form of manipulation is of individ-
ual preferences. We might, for example, be able
to manipulate certain agents to put Boris in
front of Nick, but Ken’s position on the ballot
will remain last.2 Surprisingly, manipulation of
individual preferences is more computational-
ly difficult than manipulation of the whole bal-
lot. For instance, for the cup rule, manipulating
by a coalition of agents is polynomial (Con -
itzer, Sandholm, and Lang 2007), but manipu-
lation of individual preferences of those agents
is NP-hard (Walsh 2007a).

Another form of manipulation is of the vot-
ing rule itself. Consider again the cup rule. This
rule requires an agenda, the tree of pairwise
majority comparisons. The chair may try to
manipulate the result by choosing an agenda
that gives a desired result. If the tournament is
unbalanced, then it is polynomial for the chair
to manipulate the election. However, we con-
jecture that it is NP-hard to manipulate the cup
rule if the tournament is required to be bal-
anced (Lang et al. 2007). Many other types of
manipulations have also been considered. For
example, the chair may try to manipulate the
election by adding or deleting outcomes,
adding or deleting agents, partitioning the can-
didates into two and running an election in the
two halves, and so on.

Uncertainty
One important consideration is the impact of
uncertainty on voting. One source of uncer-
tainty is in the votes. For example, during pref-
erence elicitation, not all agents may have
expressed their preferences. Even if all agents
have expressed their preferences, a new out-
come might be introduced. To deal with such
situations, Konczak and Lang (2005) have con-
sidered how to reason about voting when pref-
erences are incompletely specified. For
instance, how do we compute whether a cer-
tain outcome can still win? Can we compute
when to stop eliciting preferences? Konczak
and Lang introduced the concept of possible
winners, those outcomes that win in some
transitive completion of the votes, and neces-
sary winner, that outcome that wins in all tran-
sitive completions of the votes. Preference elic-
itation can stop when the set of possible
winners equals the necessary winner. Unfortu-
nately, computing the possible and necessary
winners is NP-hard in general (Pini et al. 2007).
In fact, it is even NP-hard to compute these sets
approximately (that is, to within a constant
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factor in size) (Pini et al. 2007). However, there
are a wide range of voting rules, where possible
and necessary winners are polynomial to com-
pute. For example, possible and necessary win-
ners are polynomial to compute for any scor-
ing rule (Konczak and Lang 2005).

Another source of uncertainty is in the vot-
ing rule itself. For example, uncertainty may be
deliberately introduced into the voting rule to
make manipulation computationally difficult
(Conitzer and Sandholm 2002). For instance, if
we randomize the agenda used in the cup rule,
the cup rule goes from being polynomial to
manipulate to NP-hard. There are other forms
of uncertainty that I shall not consider here.
For example, preferences may be certain, but
the state of the world uncertain (Gajdos et al.
2006). As a second example, we may have a
probabilistic model of the user’s preference that
is used to direct preference elicitation (Boutili-
er 2002).

Weighted Votes
An important connection is between weighted
votes and uncertainty. Weights permit manip-
ulation to be computationally hard even when
the number of outcomes is bounded. If votes
are unweighted and the number of outcomes is
bounded, then there is only a polynomial
number of different votes. Therefore to manip-
ulate the election, we can try out all possible
manipulations in polynomial time. We can
make manipulation computationally in -
tractable by permitting the votes to have
weights (Conitzer and Sandholm 2002; Coni -
tzer, Lang, and Sandholm 2003). As I men-
tioned, certain elections met in practice have
weights. However, weights are also interesting
as they inform the case where we have uncer-
tainty about how the other agents will vote. In
particular, Conitzer and Sandholm proved that
if manipulation with weighted votes is NP-hard
then manipulation with unweighted votes but
a probability distribution over the other agents’
votes is also NP-hard (Conitzer and Sandholm
2002).

Preference Elicitation
One interesting application for computing the
set of possible and necessary winners is for
preference elicitation. The basic idea is simple.
Preference elicitation can focus on resolving
the relationship between possible winners. For
instance, which of these two possible winners
is more preferred? Pini et al. (2007) gives a sim-
ple algorithm for preference elicitation that
focuses elicitation queries on just those out-

comes that are possible winners. In fact, under
some simple assumptions on the voting rule,
the winner can be determined with a number
of preference queries that is polynomial in the
worst case in the number of agents and out-
comes. In practice, we hope it may even be less.

Preference elicitation is closely related to
manipulation. Suppose we are eliciting prefer-
ences from a set of agents. Since preference
elicitation can be time-consuming and costly,
we might want to stop eliciting preferences as
soon as we can declare the winner. This might
be before all votes had been collected. How do
we compute when we can stop? If we can still
manipulate the election, then the winner is not
fixed. However, if we can no longer manipulate
the election, the winner is fixed and elicitation
can be terminated. It thus follows that manip-
ulation and deciding whether preference elici-
tation can be terminated are closely related
problems. Indeed, if manipulation is NP-hard
then deciding whether we can terminate elici-
tation is also (Konczak and Lang 2005).

Complexity considerations can be used to
motivate the choice of a preference elicitation
strategy. Suppose that we are combining pref-
erences using the cup rule. Consider two dif-
ferent preference elicitation strategies. In the
first, we ask each agent in turn for the agent’s
vote (that is, we elicit whole votes). In the sec-
ond, we pick a pair of outcomes and ask all
agents to order them (that is, we elicit individ-
ual preferences). Then it is polynomial to
decide whether we can terminate elicitation
using the first strategy, but NP-hard using the
second (Walsh 2007a). Thus, there is reason to
prefer the first strategy in which we ask each
agent in turn for the agent’s vote. In fact, many
of the manipulation results cited in this paper
can be transformed into a similar result about
preference elicitation.

Single-Peaked Preferences
One of the concerns with results like those
mentioned so far is that NP-hardness is only a
worst-case analysis. Are the votes met in prac-
tice easier to reason about? For instance, votes
met in practice are often single peaked. That is,
outcomes can be placed in a left to right order,
and an agent’s preference for an outcome
decreases with distance from the agent’s peak.
For instance, an agent might have a preferred
cost, and the preference decreases with dis-
tance from this cost. Single-peaked preferences
are interesting from several other perspectives.
First, single-peaked preferences are easy to elic-
it. For instance, we might simply ask you for
your optimal house price. Conitzer has given a
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simple strategy for eliciting a complete prefer-
ence ordering with a linear number of pairwise
ranking questions under the assumption that
preferences are single peaked (Conitzer 2007).
Second, single-peaked preferences are easy to
aggregate. In particular, there is a fair way to
aggregate single-peaked preferences. We simply
select the median outcome; this is a Condorcet
winner, beating all others in pairwise compar-
isons (Black 1948). Third, with single-peaked
preferences, preference aggregation is strategy
proof. There is no incentive to misreport pref-
erences.

Suppose we assume that agents’ preferences
will be single peaked. Does this make it easier
to decide whether elicitation can be terminat-
ed? We might, for example, stop eliciting pref-
erences if an outcome is already guaranteed to
be the Condorcet winner. We suppose we know
in advance the ordering of the outcomes that
make agents’ preferences single peaked. For
instance, if the feature is price in dollars, we
might expect preferences to be single peaked
over the standard ordering of integers. Howev-
er, an interesting extension is when this order-
ing is not known. If votes are single peaked and
the voting rule elects the Condorcet winner,
deciding whether we can terminate elicitation,
along with related questions like manipula-
tion, is polynomial (Walsh 2007b).

However, there are several reasons why we
might not want to select the Condorcet winner
when aggregating single-peaked preferences.
For example, the Condorcet winner does not
consider the agents’ intensity of preferences.
We might want to take into account the agents’
lower ranked outcomes using a method like
Borda. There are also certain situations where
we cannot identify the Condorcet winner. For
instance, we may not know each agent’s most
preferred outcome. Many web search mecha-
nisms permit users to specify just an approved
range of prices (for example, upper and lower
bound on price). In such a situation, it might
be more appropriate to use approval voting
(which may not select the Condorcet winner)
to aggregate preferences. Finally, we might not
be able to select the Condorcet winner even if
we can identify it. For example, we might have
hard constraints as well as preferences. As a
result, the Condorcet winner might be infeasi-
ble. We might therefore consider a voting sys-
tem which that returns not just a single winner
but a total ranking over the outcomes3 so that
we can return those feasible outcomes which
that are not less preferred than other feasible
outcomes (so so-called “undominated feasible
outcomes”). However, using other voting rules
requires care. For instance, manipulation is NP-

hard when preferences are single peaked for a
number of common voting rules including STV
(Walsh 2007b).

Some Negative 
(Positive?) Results

Various researchers have started to address con-
cerns that NP-hardness is only a worst-case
analysis, and votes met in practice might be
easier to reason about. For instance, even
though it may be NP-hard to compute how to
manipulate the STV rule in theory, it might be
easy for the sort of elections met in practice.
Results so far have been largely negative. That
is, manipulation stops being computationally
hard. However, in this case, preference elicita-
tion becomes polynomial so these results
might also be seen in a positive light! For
instance, Conitzer and Sandholm have proven
that, with any weakly monotone voting rule,4

a manipulation can be found in polynomial
time if the election is such that the manipula-
tor can make either of exactly two outcomes
win (Conitzer and Sandholm 2006). As a sec-
ond example, Procaccia and Rosenschein have
shown that for any scoring rule, you are likely
to find a destructive manipulation in polyno-
mial time for a wide class of probability distri-
bution of preferences (Procaccia and Rosen-
schein 2007). This average case includes
preferences that are drawn uniformly at ran-
dom.

It is perhaps too early to draw a definite con-
clusion yet about this line of research. A gener-
al impression is that while voting rules with a
single round may be easy on average, rules
with multiple rounds (like STV or the cup rule)
introduce a difficult balancing problem. If we
are to find a manipulation, we may need to
make an outcome good enough to get through
to the final round but bad enough to lose the
final contest. This may make manipulation
computationally difficult in practice and not
just in the worst case.

Hybrid Voting Rules
To demonstrate that rules with multiple rounds
may be more difficult to manipulate, we con-
sider some recent results on constructing
hybrid voting rules. In such rules, we perform
some number of rounds of one voting rule (for
example, one round of the cup rule or one
round of STV) and then finish the election
with some other rule (for example, we then
complete the election by applying the plurali-
ty rule to the remaining outcomes). Consider,
for instance, the plurality rule. Like all scoring
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rules, this is polynomial to manipulate
(Conitzer and Sandholm 2002). However, the
hybrid rule where we apply one round of the
cup rule and then the plurality rule to the
remaining outcomes is NP-hard to manipulate
(Conitzer and Sandholm 2003). As a second
example, the hybrid rule, which has some fixed
number of rounds of STV then completes the
election with the plurality rule (or the Borda or
cup rules), is NP-hard to manipulate (Elkind
and Lipmaa 2005). Hybridization does not,
however, always ensure computational com-
plexity. For example, the hybrid rule, which
has some fixed number of rounds of plurality
(in each we eliminate the lowest scoring out-
come) and then completes the election with
the Borda (or cup) rule, is polynomial to
manipulate (Elkind and Lipmaa 2005). Never-
theless, introducing some qualifying rounds to
a voting rule seems a good route to some addi-
tional complexity, making it computationally
difficult to predict the winner or to manipulate
the result. It is interesting to wonder if FIFA
and other sporting bodies take this into
account when deciding the format of major
sporting events like the World Cup.

Preferences and Constraints
So far, we have largely ignored the fact that
there may be hard constraints preventing us
from having the most preferred outcome. For
example, we might prefer a cheap car to an
expensive car, and a Tesla to a Prius. However,
there are no cheap Teslas for us to purchase, at
least for the near future. Combining (relation-
al) preferences and constraints in this way
throws up a number of interesting computa-
tional challenges. One possibility is simply to
use the preferences to guide search for a feasi-
ble outcome by enumerating outcomes in the
constraint solver in preference order (Boutilier
et al. 1999). Another possibility is to turn qual-
itative preferences into soft constraints
(Domshlak et al. 2003, 2006). We can then
apply any standard (soft) constraint solver.
Prestwich et al. (2005), we give a third possibil-
ity, a general algorithm for finding the feasible
Pareto optimal5 outcomes, that combines both
constraint solving and preference reasoning.
The algorithm works with any preference for-
malism that generates a preorder over the out-
comes (for example, it works with CP-nets).
Briefly, we first find all outcomes that are feasi-
ble and optimal in the preference order. If all
the optimals in the preference order are feasible
then there are no other feasible Pareto opti-
mals, and we can stop. Otherwise, we must
compare these with the other feasible out-

comes in case some of these are also feasible
Pareto optimals. These three examples illus-
trate some of the different methods proposed
to reason with both constraints and prefer-
ences. However, much remains to be investi-
gated.

Multiple Elections
Another interesting topic is that agents may be
expressing preferences over several related
issues. This can lead to paradoxical results
where multiple elections result in the least
favorite combination of issues being decided
(Brams, Kilgour, and Zwicker 1998; Lacy and
Niou 2000; Xia, Lang, and Ying 2007). For
example, suppose agents are deciding their
position with respect to three topical issues. For
simplicity, I will consider three agents and
three binary issues. The issues are: is global
warming happening, does this have cata-
strophic consequences, and should we act now.
A position on the three issues can be expressed
as a triple. For instance, “N Y Y” represents that
global warming is not happening, global
warming would have catastrophic conse-
quences, and that we do need to act now. The
agents’ preferences over the three issues are
shown in figure 4.

All agents believe that if global warming is
happening and this is causing catastrophic
consequences, we must act now. Therefore
they all place “Y Y N” last in their preference
rankings. As there are an exponential number
of outcomes in general, it may be unrealistic
for agents to provide a complete ranking when
voting. One possibility is for the agents just to
declare their most preferred outcomes. As
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 Agent1 Agent2 Agent3 

1 Y Y Y Y N N N Y N 

2 Y N N Y Y Y N Y Y 

3 N Y N N N N N N N 

4 N N N N N Y N Y N 

5 Y N Y Y N Y Y N Y 

6 N Y Y N Y Y Y Y Y 

7 N N Y N N Y Y N N 

8 Y Y N Y Y N Y Y N 

 

Figure 4. Agents’ Preferences over the Three Issues.



identify in which 2008 election agents
might be voting for Boris, Nick, or Ken.

3. A voting system that returns a total rank-
ing over the outcomes is called a social wel-
fare function.

4. See Conitzer and Sandholm (2006) for
the formal definition of weak monotonici-
ty. Informally, monotonicity is the proper-
ty that improving the vote for an outcome
can only help the outcome win.

5. The feasible Pareto optimal outcomes are
those outcomes that are feasible and more
preferred than any other feasible outcome.
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whether voters have separable or
inseparable preferences. However, this
may not be a computationally feasible
solution since it requires reasoning
about exponentially large rankings.
Another way around this problem is a
domain restriction. For instance, Lacy
and Niou prove that if agents’ prefer-
ences are separable, then sequential
majority voting is not manipulable,
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2000).

Conclusion
This survey has argued that there are
many interesting issues concerning
the representation of and the reason-
ing about preferences. Whilst
researchers in areas like social choice
have studied preferences, artificial
intelligence brings some fresh perspec-
tives. These perspectives include both
computational questions like the com-
plexity of eliciting preferences and
representational questions like dealing
with uncertainty. This remains a very
active research area. At AAAI-07, there
was an invited talk, several technical
talks, a tutorial, and a workshop on
preferences. It is sure therefore that
there will be continuing progress in
understanding how we represent and
reason with preferences.
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Notes
1. In addition to voting rules that return a
single winner, it is interesting to consider
extensions such as rules that select multi-
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member committee) and social welfare
functions that return a total ranking over
the outcomes.

2. The interested reader is challenged to
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