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� An end-to-end system was created at Gen-
worth Financial to automate the underwrit-
ing of long-term care (LTC) and life insur-
ance applications. Relying heavily on
artificial intelligence techniques, the system
has been in production since December
2002 and in 2004 completely automates the
underwriting of 19 percent of the LTC appli-
cations. A fuzzy logic rules engine encodes
the underwriter guidelines and an evolu-
tionary algorithm optimizes the engine’s
performance. Finally, a natural language
parser is used to improve the coverage of the
underwriting system.

With more than 130 years of history,
15 million customers, $98 billion in
assets, and $11 billion in annual

sales, Genworth Financial (GNW) is one of the
world’s oldest and largest insurance providers.
GNW is committed to providing financial pro-
tection to its customers, their families, and
their businesses. This is accomplished through
a diverse set of products, including long-term
care, term life, dental, disability, and mortgage
insurance. Long-term care (LTC) insurance is
used to cover significant medical costs, such as
home nursing care, to protect the policyhold-
er’s assets through illness and old age. Term life
insurance provides benefits to the living upon
the death of the insured. This article focuses on
the automation of the LTC underwriting
process, but much of the material applies to
term life underwriting as well.

As GNW receives LTC insurance applica-
tions, an individual referred to as an under-

writer reviews each to determine whether the
applicant should be approved for coverage.
Based on the applicant’s medical history, the
underwriter assigns the applicant to a discrete
risk category or declines the applicant altogeth-
er. The risk category dictates the premium to be
paid for the insurance, making appropriate
placement critical. Underestimating the risk
would result in the applicant not paying
enough to cover the financial risk incurred
insuring that individual. Overestimating the
risk would result in GNW not being price com-
petitive and losing customers. Prior to this
automation effort, this crucial underwriting
process was entirely manual.

GNW chose to automate this process to
improve consistency and reduce the number of
defects. For legal reasons the decision-making
process had to remain transparent, constrain-
ing the technologies that were used.

The next section describes the manual
underwriting process. The new automated
process is then discussed. Next, the use of arti-
ficial intelligence (AI) technology and the sur-
rounding system are presented. Benefits of the
new system are provided, followed by details
on the system development, deployment, and
maintenance. Finally, some conclusions and
future work are presented.

Manual Underwriting Process
The LTC underwriting process begins when a
paper application (APP) is completed by hand,
faxed to GNW, and then scanned into an elec-
tronic data warehouse. Underwriters located
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Figure 1. Manual Underwriting Process.

throughout the country view these scanned
documents online, and then rate the risk of
insuring each person. If the underwriter has
any concerns, he can request additional infor-
mation from the applicant through a phone
health interview (PHI) or a face-to-face (F2F)
interview, resulting in the submission of addi-
tional paper forms. At any time, an underwriter
can also request an attending physician sum-
mary (APS)—a copy of the applicant’s medical
history from his or her primary physician.
Before the automation of the underwriting
process, volumes of these documents were
ordered extraneously, providing no value at a
great cost of time and money. One benefit of
automation was reducing this waste.

Underwriters can make a decision at any
point they feel they have sufficient informa-
tion. If they have any questions or concerns,
they can refer cases to a senior underwriter.
Once a decision is made, the applicant is noti-
fied by mail. To evaluate the quality of the deci-
sions produced, a percentage of the cases are
randomly audited on a monthly basis. Figure 1
shows the manual process.

Underwriters make decisions following
guidelines specified in an underwriter manual.
They also rely upon extensive medical knowl-

edge and personal experience when underwrit-
ing cases. The reliance upon their own experi-
ence and judgment causes inconsistency across
the underwriters, resulting in inaccurate rate
classifications. This use of personal knowledge
and experience to make decisions also made
this a difficult problem to automate.

Automated Underwriting Process
In automating the underwriting process, artifi-
cial intelligence techniques were used to codify
the underwriter rules. These rules were then
incorporated into a new, automated end-to-
end rule-based system (Chisholm 2004). A
fuzzy logic rules engine (FLRE) was designed
and developed to codify the underwriter rules
(Jang, Sun, and Mizutani 1997); this became
the “digital underwriter” in the new process.
This digital underwriter is able to determine
whether an application should be sent to a
human underwriter for review, allowing the
automated process to be deployed without
worrying about every possible case variation.
This enabled a staged rollout of functionality,
shortening the time that was needed for the
FLRE to provide value to GNW.
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Staged Deployment
Creating an AI system that can solve every
instance of a problem can be very difficult.
However, an AI system that can solve a subset
of the different variations of a problem can still
be valuable as long as it can correctly identify
which instances it is able to solve. For example,
any decision process that is currently being
done by humans can benefit from automating
the easiest instances of the problem and having
people continue to solve the hard instances.
The strategy of creating a decision engine to
automate a subset of all of the possible cases
and determine when this automation is possi-

ble can be a useful approach to fielding many
types of real-world AI applications. 

There are many advantages to this approach,
including, for example, (1) the AI system can
be fielded more quickly if it handles only a sub-
set of all possible instances; (2) the error rate
the AI system will have on the easy cases will
be lower than the error rate on all instances; (3)
the lower the error rate the more likely the sys-
tem will be used; (4) deployment issues (inte-
grating with other systems, obtaining user
feedback and acceptance) can be handled early
in the development. Failure to deal with these
issues early can cause an AI system to not be
successfully fielded. In addition, early deploy-
ment can produce an early return on invest-
ment. A system that is being used and provid-
ing value is more likely to obtain continued
support and interest.

This strategy is not new. The field of software
engineering has pointed out many benefits of
the cyclical method of software development
(Pressman 1987). The cyclical method has a
developer create a working system that has
only a limited set of features and then add fea-
tures in future releases. This is particularly use-
ful for unique, novel, or risky projects. Most AI
applications would be qualified as unique, nov-
el, or risky (and are often all three).

The AI system should be confident that an
instance of the problem is appropriate for it
before attempting to solve the instance. If this
is not possible, then the system should calcu-
late its confidence in its solution as part of its
output (Cheetham and Price 2004). We refer to
AI systems that can determine when they are
appropriate or provide an estimate of their con-
fidence after they have determined a solution
as “confident AI.”

The progression of the digital underwriting
system through three generations of develop-
ment and deployment from simple cases to
complex is described next.

First Generation
The first generation of the end-to-end system
focused on the simplest subset of cases—appli-
cations with no medical impairments. The new
process begins with a team of medical summa-
rizers digitizing the scanned APPs. The summa-
rizers view the scanned applications online and
fill in web-based forms to digitize them. A page
from the APP summarization form is shown in
figure 2. Next, the digital application is passed
through an instance of the FLRE (referred to as
the APP-FLRE). The APP-FLRE makes three deci-
sions. First, in what rate class to place the appli-
cant; second, whether or not to order addition-
al information; and third, whether or not to

Figure 2. Part One of the APP Summarization Form.
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Figure 3. The Automated Underwriting Process.

send the case to a human underwriter for
review (that is, reverting to the manual
process).

If additional information is requested from
the applicant (for example, a PHI or F2F), it is
also digitized on arrival. The new content is
then passed through separate instances of the
FLRE, using different rule sets but making the
same three decisions. This new decision
process is presented in figure 3.

With multiple decision engines, more than
one rate class decision may be made for a single
applicant. The lowest rate class (that is, the
highest premium) always takes precedence
across all of the engines that may be invoked.
For example, if an applicant has completed
both an APP and a PHI, the lower FLRE deci-
sion is used.

If any of the engines decide a case should be
sent to a human underwriter for review, that
decision will be honored. Cases can be diverted
back into the manual process any time an
engine is unable to make a definitive decision.
If an automated decision is made, a new noti-
fication system automatically mails a letter to
the applicant with the decision.

Second Generation
The second generation of the system covered
two major impairments. Statistics on the fre-
quency of impairments in applications from
the past seven years were obtained to drive the
specific impairment selection. Figure 4 shows
these relative frequencies.

The second generation of engines handled
APSs with two of the most common medical

impairments: hypertension (HTN) and diabetes
mellitus (DM). HTN was chosen because it is
the most common impairment seen on appli-
cations. DM was chosen because it is also quite
common and has one of the highest average
claims costs. The coverage of these impair-
ments required new web forms for the summa-
rizers to enter information about the impair-
ments, new rules to determine rate classes from
this information, and new rules to determine
when applications with these impairments
could be automated.

If an APS has been ordered, the medical sum-
marizers review it, determine the applicant’s
impairments, and then complete the appropri-
ate summarization forms. Separate FLRE
instances are invoked as needed.

Third Generation
The third generation focused on three areas:
increasing the set of impairments covered,
increasing the number of applications that can
be automated by adding natural language pro-
cessing, and assisting the underwriter when an
application cannot be fully automated. Two
additional impairments were covered by the
third generation of the system. Osteoarthritis
(OA), the second most frequent impairment,
was selected. Osteoporosis (OP) is closely relat-
ed to OA, so this impairment was also covered.

Natural Language Processing.
After generation two, a significant percentage
of the applications containing impairments
covered by the rules engines still could not be
automated. The primary reason for this was the
input from the summarizers occasionally con-
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Memory
Loss/Forget/Confusion

3.51%
Prostate Disorder

4.92%

Osteoporosis
5.07%

Arrythmia/Cardiac
Dysrhythmia

5.39%

Gastro-Intestinal Disorder
5.83%

Bone and Joint Disorder
6.02%

Depression
7.33%

Diabetes
8.26%

Osteoarthritis
17.70%

Hypertension
35.97%

Figure 4. The Relative Frequency of Impairments.

BenignText: BenignPhrase [Separator [BenignPhrase]]*
BenignPhrase: [Noise]* [Benign [Noise]* [Date [Noise]*]

Figure 5. Current Grammar for Benign Text.

Table 1: Natural Language Parser Accuracy.

Version
False

Benign
False
Assist

True
Benign

True
Assist

Basic grammar 1.15 62.54 37.46 98.85

Dates parsed 1.15 62.35 37.65 98.85

Improved lists 0.60 38.08 61.92 99.40

Remove in-phrase
characters

0.60 32.56 67.44 99.40

Match longest first 0.83 0.00 100 99.17

? not a separator 0.00 0.00 100 100

tained free text that required review by an
underwriter. Usually this free text did not affect
the rate class decision, so if text entries could
be interpreted and classified as benign, the lev-
el of automation could be increased.

Classifying critical text as benign (that is,
false positives) is not acceptable; however, it is
acceptable to have errors where benign text is
classified as needing review (that is, false nega-
tives). The latter type of errors result in under-
writers performing the same tasks they current-
ly do.

A natural language parser (Jurafsky and Mar-
tin 2000) was constructed to determine
whether the text entered by the summarizers
was benign. A grammar was constructed for
benign text and lists were created for noise
words and in-phrase characters (noise), phrase
separators (separator), benign words or syn-
onyms (benign), and dates in various formats
(date). The current grammar for benign text is
depicted in figure 5.

A training set was used with 160,408 entries,
70.4 percent of which were benign. A list of
every unique word in the text was created, and
each word was manually classified as benign or
not. The evolution of the grammar above is
shown in table 1. A basic grammar excluding
dates, noise words, and in-phrase characters
was developed first. The accuracy of this gram-
mar on the training set is shown in the first
row of table 1. The first column represents the
percent of text phrases that are not benign but
were labeled as benign. These are the most sig-
nificant classification errors. True benign is the
percent of benign phrases that are correctly
classified as benign. The larger the true benign,
the greater the benefit of the natural language
processing feature. A second version of the
grammar added parsing multiple date formats,
slightly increasing the true benign percentage,
as shown in the second row of table 1.

An expanded list of benign terms, which
included synonyms and phrases, was then cre-
ated. This greatly improved the true benign
and reduced the false benign rates, as shown in
the third row of table 1. To improve the results
further, characters such as the dash were treat-
ed specially. Next, the parser was modified so
that longer phrases had priority over shorter
phrases or single words. The true benign rate
greatly improved at the expense of a small
increase in the false benign rate, as shown in
row five of table 1. Finally, question marks were
being used as indicators of uncertainty by the
summarizers, instead of being at the end of
sentences that are questions. Not counting the
question mark as a separator produced the final
accuracy found in the last row of table 1.
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Figure 6a. Underwriter Assist Screen.
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After the parser was created, it was tested on
a sample population of 36,635 benign and
nonbenign phrases. The result from this test set
was also 0.00 percent false benign and 100 per-
cent true benign. One reason for these surpris-
ingly good results is the same summarizers
were used to produce the training and test data.
It is possible the accuracy would decrease if dif-
ferent people created the text phrases.

Some simple non-AI techniques were also
used to limit the FLRE cases sent to the under-
writer due to free text. This included summariz-
er training on how and when to enter free text
and modifying the entry forms so that com-
mon comments could be selected with drop
down lists, check boxes, or other nontext-
based methods. New rules were created for
these new data elements.

Underwriter Assist
The third focus of generation three was to
develop a way to help the underwriter when an
application could not be placed by the FLREs.
This occurred in about 80 percent of the appli-
cations. In the first two generations, if an appli-
cation was sent to an underwriter, he or she
had to start on the application from scratch
with no visibility into what the FLREs had sug-
gested. For example, if six FLREs had proposed
a rate class and one said the underwriter need-
ed to be involved, then the six rate class deci-
sions would all be ignored.

In general, confident AI systems should be
able both to automate a subset of the problem

instances and to assist the user in solving those
instances that cannot be fully automated.
Automating a problem clearly saves time for
the people who would otherwise need to per-
form the task. In addition, a confident AI sys-
tem can be of benefit to users even if it cannot
completely automate the task. The system
should always provide the most benefit possi-
ble for a given instance. The benefit can result
from many factors. For example, it can assist by
organizing information for the user. It can also
assist by identifying what part of the problem
it can solve. These items do not need to be
inspected by the user, minimizing the time
spent on the more mundane tasks. Finally, the
system can assist by identifying what keeps the
AI system from solving the problem, directing
users to those items that require their atten-
tion.

For our system, the underwriters’ productiv-
ity could be improved if the system could pro-
pose a rate class for each portion of the appli-
cation where it was confident in its decision. If
an FLRE was not confident, then it should
highlight the reason for its lack of confidence.
Figure 6 shows a prototype of an underwriter
assist screen. The top section has applicant
information such as name, age, height, and
weight. The next section has a summary of
each FLRE result, with one row for each engine.
In this example, only the application and the
OA-FLRE applied to the applicant, as he or she
did not have any other impairment. The
engine result summary has five columns: (1)

Figure 6b. Underwriter Assist Screen (Continued).
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the date and time the engine was run, (2) the
name of the specific engine, (3) the recom-
mended rate class, (4) where to route the appli-
cation (UW to send to underwriter), and (5)
requirements for additional tests needed.

The APP section gives details about the APP-
FLRE rules that caused the rate class recom-
mendation and routing. In this example, there
was an unknown reason for a doctor visit that
needed to be obtained. The underwriter can
click the PDF guideline for a complete descrip-
tion of the rule invoked. The original informa-
tion sent to the summarizer that applied to this
rule can be seen by clicking the pages listed in
the source column.

The OA-FLRE sent this application to the
underwriter because the applicant’s doctor dis-
cussed joint replacement surgery with the
applicant. The underwriter should therefore
investigate the severity of the need for surgery,
which would significantly affect the applicant’s
rate class. This interface provides the under-
writer with the ability to get an immediate
assessment of the applicant and focus atten-
tion on the problem areas instead of having to
review the entire application.

Use of AI Technology
Fuzzy logic rules are used to encode underwrit-
ing standards. Fuzzy logic is a superset of con-
ventional Boolean (true/false or 1/0) logic,
allowing truth values to be equal to any real
number in the interval [0,1], with intermediate
values denoting a “partial degree of satisfac-
tion” of some statement or condition (Zadeh
1965). Each rule represents fuzzy constraints at
the boundaries between different rate classes
for each input, such as cholesterol, blood pres-
sure, or body-mass index.

Evolutionary algorithms are also used in the
new system, to optimize the numerical parame-
ters in the fuzzy logic rules. The use of both fuzzy
logic and evolutionary algorithms is described
next. As discussed previously, natural language
processing techniques were also used to increase
the capacity of the automated system.

Fuzzy Logic Rules Engine
The fuzzy logic rules engine was designed to
handle discrete classification problems in
which the decision categories form an ordered
set (Bonissone, Subbu, and Aggour 2002). The
FLRE was implemented within a reusable, opti-
mizable architecture for decision systems
(ROADS), a generic framework designed to facil-
itate the implementation of intelligent decision
engines (Aggour and Pavese 2003). The engine
makes decisions through a three-step process.

First, rule evaluation through fuzzy member-
ship functions, second, aggregation evaluation
and threshold application, and third, assign-
ment of final decision (defuzzification).

A separate membership function is defined
for each input for each rate class, to specify dis-
tinct cutoffs for each. Cutoffs were initially
derived from knowledge engineering sessions
with expert underwriters, and later optimized
using an evolutionary algorithm.

When the FLRE makes a decision, the input
data is passed through each of the fuzzy mem-
bership functions and scores are generated.
After the rule scores have been generated, an
aggregation is performed for each rate class.
The scores are passed to each aggregation oper-
ation, which creates a single fuzzy score for
each rate class in [0,1].

For each of these rate class scores, a pass/fail
test is performed using a threshold value. Each
rate class may specify different criteria for
whether the tests pass or not. The rate classes
are tested in the order of best to worst. The first
rate class that passes all criteria becomes the
final decision of the engine.

The FLRE is extremely flexible. Different
membership functions can be defined for both
continuous and discrete inputs. For continuous
inputs, membership functions such as step
(Boolean), trapezoidal, and generalized bell can
be defined. For discrete inputs (such as binary),
a fuzzy score can be associated with each pos-
sible value. Various functions can be used for
the aggregation, including min, max, and aver-
age operations.

Figure 7 shows a representation of three rules
for one rate class, referred to as Rate Class A.
For this example, the membership functions
are trapezoidal and the aggregation is a min
operation. The final step is for the engine to
determine whether the score of 0.8 falls within
the threshold for rate class A. If it does, the
applicant is assigned to this rate class.

Evolutionary Algorithm Optimization
The FLRE uses an evolutionary algorithm (EA)
provided within ROADS for automated param-
eter tuning. Each chromosome in the EA con-
tains a vector of tunable FLRE parameters.
These elements typically represent member-
ship function parameters (core and support
values, for example), aggregation parameters,
and threshold values. It is up to the system
designer to specify what parameters to tune
and what values to keep static. Any subset of
the parameters may be tuned at the discretion
of the user—the ROADS EA generates the chro-
mosome structure based on values set in an
XML configuration file loaded at run time.
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Since a chromosome defines a complete con-
figuration of the FLRE, at each generation of
the EA every chromosome in the current pop-
ulation initializes a separate instance of the
FLRE, as shown in figure 8. The engine is run
against a set of test cases, each of which has a
benchmark decision associated with it. With
this information, we can create a confusion
matrix M that compares the FLRE decisions ver-
sus the benchmark decisions. In this matrix,
the ordered rate classes (left to right, and top to
bottom) correspond to increasing risk cate-
gories. The rows of this matrix correspond to
certified case decisions as determined by an
expert human underwriter, and the columns of
this matrix correspond to the FLRE decisions
for the cases in the certified case database.

The element M(i,j) represents the frequency
of applications belonging to rate class i, which
were placed by the system in rate class j. Ele-
ments on the main diagonal, M(i,i), show fre-
quencies of correct classifications. Elements
above the main diagonal show frequencies of
misclassifications in which the FLRE was too
strict and assigned the applications to a higher
than needed rate class. This situation leads to
noncompetitive pricing and a potential
decrease in the volume of placed policies. Ele-
ments below the main diagonal represent the
opposite situation, in which the FLRE was too
lenient and assigned applications to lower than
needed rate classes. This situation leads to the
acceptance of excessive risk without proper
premiums. We want to use a fitness function
that provides a balance between price compet-
itiveness and risk avoidance, considering the
asymmetry of their costs.

From actuarial studies we derived a cost
matrix P, such that element P(i,j) represents the
cost of misclassifying rate class i as j. This cost
is the loss of net present value (NPV)1 caused by
this error. By multiplying element-wise the
confusion matrix M with P, we obtain the
cumulative expected loss of net present value for
the classifier instantiated by each chromosome
and evaluated over the training set using a
leave-one-out technique. This fitness function
is used to rank the chromosomes in the popu-
lation, determining how likely each is to be
selected for crossover and mutation, as illus-
trated in figure 8. This computation, which
captures the tradeoff between price competi-
tiveness and risk avoidance, is fully described
by Bonissone, Subbu, and Aggour (2002) and
Yan and Bonissone (2006).

System Description
The automated underwriting system has a num-
ber of components, each executing on Microsoft
Windows 2000 operating systems. As the sum-
marizers digitize applications through their web
interface, the digitized information is stored in
an Oracle database for further processing. Every
15 minutes, a process is initiated that queries
this database for any new cases. If the summariz-
ers have entered a new case, it is extracted from
the database, the appropriate FLRE is instantiat-
ed and the case is evaluated. The output is then
stored in the same Oracle database.

The FLRE was implemented entirely in Java
1.3.1 so that it can run in both UNIX and
Microsoft-based environments without requir-
ing recoding. Once initialized, the engine takes
fractions of a second to execute each case. The
engine was designed and developed entirely in-
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Figure 7. Fuzzy Rule Evaluation.
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house. Third-party tools were reviewed, but at
the time none had the desired flexibility to rep-
resent underwriter knowledge in fuzzy rules
that could be aggregated and tested against a
threshold.

While multiple rules exist per rate class,
repeated rule chaining was not allowed out of
concerns for maintainability and readability. If
a rule’s result is an input to a second rule, then
the output of the second rule cannot be used as
input to any other rule.

Application Use and Payoff
Generation one was deployed in December
2002. It automated 12 percent of the LTC
underwriting volume. Generation two was
deployed in May 2004, increasing the percent-
age of automated applications to 19 percent.
All (100 percent) of the applications are now
digitized and sent to the APP-FLRE. In 2004,
the average weekly volume sent to the APP-
FLRE was 3,500 applications. Accuracy on the
automated applications is nearly a hundred
percent. Generation three has been coded, is
currently being tested, and is scheduled to go
into production shortly.

Before this system, 14 percent of all PHIs
ordered were never used. The underwriters are

now prevented from ordering PHIs, and the
engine orders only what is needed. Assuming
the underwriters had continued ordering at the
same error level, the savings on this aspect alone
calculate to approximately $500,000 per year.

Automating this process had a number of
other benefits, including improving decision
consistency and significantly reducing the
number of incorrect decisions. Reducing
defects allows GNW to remain price competi-
tive while effectively managing risk. And with
an efficient, automated process handling a por-
tion of the case volume, the capacity of the
underwriting organization has increased.

In May of 2004, Genworth Financial was
spun off from the General Electric Company.
At the time of the IPO, stock analysts cited this
advanced technology as one of the key advan-
tages GNW has over its competitors.

Application Development 
and Deployment

Much of the work in deploying an AI applica-
tion goes beyond the AI portion of the system
development. The four major portions of this
project were collecting, verifying, and standard-
izing the knowledge; digitizing the inputs and
outputs and integrating with existing systems
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Figure 8. FLRE Optimization Using an Evolutionary Algorithm.
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and processes; creating the AI system; and creat-
ing tools to monitor and maintain the system.

Each of these portions required a significant
effort to be completed successfully. The FLRE
was designed and developed by four engineers
over a period of six months. The underwriter
guidelines were collected initially from the
underwriter manual and then reviewed and
updated with a committee of two underwriters
and GNW’s medical expert, requiring roughly
three months of effort. The spiral development
model was followed for the design and devel-
opment of the FLRE and the implementation
of the underwriter rules in the engine. The
summarizer form creation and testing required
about two months of effort from one engineer,
two underwriters, and three representatives of
the summarization team. The prototyping
development model was followed for the
implementation of the summarizer forms, as
they required numerous iterations.

Data collection and validation took approx-
imately four months for two of GNW’s IT pro-
fessionals. By far the most difficult step in the
process was data collection and cleaning. His-
torical data was readily available to validate the
decision engine and test the end-to-end
process, but the quality of that data was less
than ideal. Some cases were incomplete, and
others did not have associated final decisions.
A key takeaway for the team was never to
underestimate the amount of time and effort
required for handling data issues.

A diverse group invested a significant
amount of time and effort to design, imple-
ment, and deploy the complete end-to-end sys-
tem. This included AI experts, IT professionals,
statisticians, underwriters, medical experts,
and summarizers. While the use of AI technol-
ogy was critical to the success of the project, it
was only a component of the new system. Over
$1 million was spent over the course of a year
and a half to develop and test the end-to-end
system. An additional four months was spent
deploying the system. Deployment required
multiple steps. A new process was developed to
allow medical summarizers to digitize the
paper applications. A Microsoft Windows 2000
machine was configured to run a web server
hosting the summarizer’s web interfaces,
which also required the integration of a new
Oracle database to store the digital under-
writer’s data records. A backup database was
also deployed to act as a failover, in case the
primary database failed. These two databases
were linked so that any changes in the primary
database were reflected in the backup.

A new program was written to query the
database automatically for new cases at a timed

interval and to instantiate appropriate
instances of the FLRE as required. This program
stores the results from the FLRE in the same
Oracle database. Before this system could be
used in production, a new process was also
defined to generate notification letters auto-
matically to the applicants when final deci-
sions were made.

During the four-month deployment period,
the entire new process was closely monitored
with particular attention paid to auditing the
engine’s decisions. Initially, 100 percent of the
engine’s decisions were reviewed. After roughly
a month’s worth of correct decisions were pro-
duced and the user’s confidence in the auto-
mated decisions grew, the auditing was reduced
to 25 percent of the cases. This continued for
another month, followed by a drop to 10 per-
cent and eventually 5 percent of cases being
audited, today’s approximate steady state.

The following process was followed for the
development and deployment of each genera-
tion: (1) knowledge acquisition from under-
writer manual and review of guidelines, (2)
transform guidelines into rules, (3) review rules
with experts and users, (4) code rules and sum-
marizer entry forms, (5) test on 100 examples,
(6) review results with experts (7) update rules
and forms, (8) work with IT to install new rules
and forms, (9) test on 400 more examples, (10)
update rules and forms, (11) write training
material, (12) release to pilot group, (13) review
results of pilot, (14) update rules and forms,
(15) finalize training material, (16) release to
production, (17) sample 5 percent of volume
processed, and (18) monthly review of sample.

This process ensures that rules are never
placed into production without a thorough
evaluation, and after release they are reviewed
to ensure they are performing as expected.

Sixteen patents have been submitted to the
U.S. Patent and Trademark office, covering
many aspects of the automated underwriting
process. These include “System for Summariz-
ing Information for Insurance Underwriting
Suitable for Use by an Automated System,”
“System for Rule-Based Insurance Underwrit-
ing Suitable for Use by an Automated System,”
“System for Optimization of Insurance Under-
writing Suitable for Use by an Automated Sys-
tem,” and “System for Determining a Confi-
dence Factor for Insurance Underwriting
Suitable for Use by an Automated System.”

Monitoring and Maintenance
A serious challenge to the successful deploy-
ment of intelligent systems is their ability to
remain valid and accurate over time, while
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compensating for drifts and accounting for
contextual changes that might otherwise ren-
der their knowledge bases stale or obsolete. This
issue has been a constant concern in deploying
AI expert systems and continues to be a critical
issue in deploying knowledge-based classifiers.
The maintenance of the classifier is essential to
its long-term usefulness since, over time, the
configuration of the engine may become sub-
optimal. Therefore, before deploying a model in
a production environment we must address the
model’s complete life cycle, from its design and
implementation to its validation, production
testing, use, monitoring and maintenance. By
maintenance we mean all of the steps required
to keep the model vital (that is, nonobsolete)
and adaptable.

Two reasons justify our emphasis on mainte-
nance. First, over the life of the model, mainte-
nance costs are the most expensive (as software
maintenance is the most expensive component
of the software life cycle). Second, when deal-
ing with mission-critical software we need to
guarantee continuous operations or at least fast
recovery from system failures to avoid lost rev-
enues and other business costs.

Taken from Patterson, Bonissone, and Pavese
(2005), figure 9 shows a model’s lifecycle with-
in a six sigma quality framework. The FLRE was
developed using a design for six sigma (DFSS)
approach including optimization based on
evolutionary algorithms. The model use, mon-
itoring, maintenance, and updates follow a
design, measure, analyze, improve, and control
(DMAIC) approach that shares the same evolu-
tionary algorithm for the improve and control
phases.

While the system is used in production, we
need to monitor it in real-time to generate
requirements for the next regular update and
to identify situations in which the engine may
require immediate updating before those situa-
tions turn into significant problems. Finally,

we need to update and maintain the model to
incorporate the change requirements generat-
ed during the monitoring phase.

Real-Time Monitoring
Before deployment, we performed a failure
mode and effects analysis (FMEA) to identify
the possible ways in which the system could
fail and the consequences of those failures (Pat-
terson, Bonissone, and Pavese 2005). These
modes were prioritized to identify the critical
few factors that were most important for mon-
itoring postdeployment. This exercise was
valuable because once a new AI system has
been deployed in production much of the real
work begins. This includes the traditional
maintenance performed by IT, including man-
aging and maintaining the web servers and
databases used. While necessary, this is not suf-
ficient. Regular underwriter auditing of the
FLRE is also critical to ensure that the engine is
correctly classifying policies over time. This
includes auditing both the coverage and accu-
racy of the engine. A decrease in coverage
would result in a reduction in productivity of
the underwriting team, since decisions that
cannot be automated must be resolved manu-
ally. The engine’s accuracy may be affected if
there is a shift in the applicant population
(such as age distribution), for example.

As previously mentioned, the underwriters
regularly audit roughly 5 percent of the
engine’s decisions. When we deployed the
FLRE for term life insurance underwriting, we
created an offline quality assurance (QA)
process to support the auditing process. The
QA process consisted of four independent clas-
sifiers based on neural networks, multivariate
regression splines, support vector machines,
and random forests. We leveraged the diversity
of these components and fused them to create
a highly reliable rate class decision, to test and
monitor the production FLRE that performed

Build Use and Monitor Maintain and Update Retire

DFSS D-M-A- I-C

Figure 9. Lifecycle of an Automated Decision Engine.
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the online rate classification. At periodic inter-
vals, we used this QA process to review the
decisions made by the FLRE over that period of
time. In addition, this fusion process identified
the best cases to be used for tuning the produc-
tion engine, as well as controversial or unusual
cases to be audited or reviewed by human
underwriters (Bonissone, Eklund, and Goebel
2005, Bonissone 2006).

Not only is it important to monitor the out-
put of the engine, but it is also valuable to
monitor its inputs, to verify the accuracy of the
data being sent to the engine, and to analyze
the distribution of cases being processed. This
real-time monitoring allows us to verify that
there are no repeating defects in the summa-
rization process and to understand the popula-
tion of cases being processed by the engine.
Significant changes in the population distribu-
tion would signal a potential need for updating
the rules or even creating new or modifying the
existing rate classes. To allow for this level of
detailed analysis, it is important that all data
throughout the decision process be stored and
monitored. This includes the data entered into
the engine, the individual rules that are fired
for each instance of the FLRE, and each FLRE
decision.

Maintenance
The system is maintained in three ways. First,
major updates are made with every generation
deployed. Second, minor updates are deployed
between major updates. Finally, parameter tun-
ing can be performed with the evolutionary
algorithm.

LTC underwriting rules do not change often.
Consequently, the majority of changes have
been included with the generation releases. If a
change is made to the underwriting guidelines,
the maintenance team can also deploy changes
to the FLRE between generations. However, the
primary reason for changing the underwriting
guidelines has been clarifications needed to
create rules from the guidelines in the first
place. These clarifications in the guidelines are
a side benefit of constructing the FLRE.
Between-generation changes go through the
thorough testing process described in the
application development and deployment sec-
tion.

Perhaps one of the most interesting aspects
of the FLRE design and maintenance was its
error-cost–based derivation. The FLRE’s param-
eters and decision thresholds were first initial-
ized by elicitation from expert underwriters
and then tuned using a mutation-based evolu-
tionary algorithm wrapped around the classifi-
er to achieve a specific trade-off between accu-

racy and coverage. The fitness function selec-
tively penalized different degrees of misclassifi-
cation according to their costs, expressed in net
present value, and served as a forcing function
to drive correct classifications and minimize
the costs of misclassifications.

Final Thoughts
The application of AI in this knowledge
domain has reinforced a key learning from pre-
vious applications. Namely, recognizing the
importance of breaking the ultimate goal into
a series of intermediate steps so that users can
build the necessary “comfort level” is critical
for success. New users of a technology want to
be able to slowly increase their comfort level
with the technology and learn how it works
and understand how it makes decisions. If the
technology is to help them, they want to see it
applied to simple cases and see in simple lan-
guage how it works. They want to verify that
the decisions agree with theirs and see how
they were arrived at. Most industrial users are
not familiar with AI technology, so they can’t
be expected to go from algebra to advanced cal-
culus in one step (to use an analogy)!

The process described for implementing the
generations toward the final goal was critical
from the whole team’s perspective. It also had
an additional benefit: as the decision complex-
ity increased, new capabilities of the FLRE had
to be added, and a deployment process created.
This provided a natural way for the transition
of knowledge from the research and develop-
ment environment to the business environ-
ment. After the project was complete, there
needed to be a familiarity and process for
changing existing and adding new capabilities
to the automated underwriting process resi-
dent within the business. The multigeneration
approach allowed for the responsible business
team to become experts in how to modify and
enhance their automated underwriting capa-
bilities.

Another important point in deploying such
applications and in choosing opportunities for
creating new applications is the necessity to
deliver applications that produce robust deci-
sions. Situations in which a small change in a
decision variable can cause a large change in
the decision are considered to be nonrobust (or
brittle). The system has to be rigorously tested
to ensure this behavior does not occur. The use
of fuzzy rules in the underwriting application
was an effective way to mitigate the potential
for brittleness in the automated underwriting
system. In fact, the underwriters felt that strict
Boolean rules produced decisions that they
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were not comfortable with, largely because of
this lack of “robust” behavior. As applications
with increasing decision complexity are tack-
led, this robustness issue will likely be of
increasing importance. Hence, it is probably
still a good topic for additional research, partic-
ularly with stochastic variables.

Conclusions
The automation of the underwriting of insur-
ance applications has been a success. The arti-
ficial intelligence components (fuzzy logic
rules engine, evolutionary algorithm, and nat-
ural language processing) enabled this success,
but they were just one portion of the changes
needed. This project required updating the
underwriting guidelines, changing the under-
writing process, switching the application
process from paper-based to digital, adding per-
sonnel to digitize the summaries, and automat-
ing the creation of notification letters. The AI
techniques were useful because they were a
part of a larger end-to-end system.

We established a reliable, repeatable process
to design and maintain the FLREs. In our
approach we designed the classifiers around a
set of standard reference decisions (SRD),
which embodied the results of the ideal behav-
ior that we wanted to achieve during develop-
ment and that we wanted to track during pro-
duction use.

During the life of the classifier we might
need to change the underwriting rules. These
modifications could be driven by new govern-
ment regulations, changes among data suppli-
ers, new medical findings, and so on. These
rule changes are used to update the SRD. The
updated SRD represents the new target that we
want our classifier to approximate. At this
point, we can use the same EA-based optimiza-
tion tools employed during the initial tuning
to find a parametric configuration that struc-
tures the FLRE to better approximate the new
SRD.

In the future, FLREs for other impairments
are planned in the order of the value of their
addition, where the value is the cost of the cur-
rent manual process minus the cost of creating,
maintaining, and utilizing the forms and rule
sets. Another group in GNW is creating a web-
based customer self-service application that
will use the FLREs to give immediate rate
quotes when all of the required data is avail-
able.
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Note
1. We define NPV = PR – PC, where PR is the present
revenue and PC is present cost. Cells above the main
diagonal (overestimated risks) have lower PR (since
higher, noncompetitive premiums will cause more
policy lapses) and the same PC across the row (since
they all have the same risk). Cells below the main
diagonal (underestimated risks) will have higher PC
(since higher risks will cause higher likelihood of
claims), while PR will not be large enough to com-
pensate for the increased risk. This explains the lack
of symmetry in the cost matrix P.
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