
� The Electrical Systems Division at the NASA
Kennedy Space Center has developed and de-
ployed an agent-based tool to monitor the space
shuttle’s ground processing telemetry stream. The
application, the NASA Engineering Shuttle Teleme-
try Agent (NESTA), increases situational awareness
for system and hardware engineers during ground
processing of the shuttle’s subsystems. The agent
provides autonomous monitoring of the telemetry
stream and automatically alerts system engineers
when predefined criteria have been met. Efficiency
and safety are improved through increased au-
tomation. 

Sandia National Labs’ Java Expert System Shell is
employed as the rule engine. The shell’s predicate
logic lends itself well to capturing the heuristics
and specifying the engineering rules of this space-
port domain. The declarative paradigm of the rule-
based agent yields a highly modular and scalable
design spanning multiple subsystems of the shut-
tle. Several hundred monitoring rules have been
written thus far with corresponding notifications
sent to shuttle engineers. This article discusses the
rule-based telemetry agent used for space shuttle
ground processing and explains the problem do-
main, development of the agent software, benefits
of AI technology, and deployment and sustaining
engineering of the product. 

NASA Kennedy Space Center (KSC) is re-
sponsible for prelaunch ground check-
out of the space shuttle. The Launch

Processing System (LPS) at KSC provides facili-
ties for NASA shuttle system engineers, con-

tractors, and test conductors to command, con-
trol, and monitor space vehicle systems from
the start of shuttle interface testing through
various phases including terminal countdown,
launch, abort, safing, and scrub turnaround. 

LPS continually monitors the shuttle and its
ground equipment including environmental
controls and hardware that loads propellants.
Consoles with vehicle responsibilities commu-
nicate information directly to and from the
shuttle computer systems. Consoles with
ground support equipment responsibility com-
municate information to and from the hard-
ware interface modules that are connected to
the numerous ground support systems (see fig-
ure 1). Each module is capable of interfacing to
approximately 240 sensors or controls. Overall,
some 50,000 temperatures, pressures, flow
rates, liquid levels, turbine speeds, voltages,
currents, valve positions, switch positions, and
many other parameters must be controlled and
monitored. 

Using LPS, NASA shuttle engineers and con-
tractors at KSC are responsible for certifying
that ground checkout of the space shuttle has
been performed according to program specifi-
cations. For more than 25 years, engineers have
used LPS to verify space shuttle flight readiness
and to control launch countdown. LPS has per-
formed superbly well. Recently, much of the
LPS hardware was upgraded assuring its con-
tinuance for many more years. However, the
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tors. An increased insight could help detect
anomalies that might otherwise go unnoticed,
whether by process error, software or hardware
failures in the monitoring equipment, or many
other possible causes. A tool was needed to
complement LPS that could autonomously and
continuously monitor shuttle telemetry data
and automatically alert NASA shuttle engineers
when predefined criteria have been met. In the
latter half of 2003, a software tool was pro-
posed to provide better insight into shuttle
ground processing and increase the level of sit-
uational awareness. This tool is known as the
NASA Engineering Shuttle Telemetry Agent
(NESTA). 

Objectives 
Data processed by LPS is distributed on a local
area network. As shown in figure 1, the distrib-
uted data is known as the shuttle data stream
(SDS) and contains real-time vehicle ground
processing data. It is used by monitor-only ap-
plications. The primary objective of NESTA is
to provide full-time autonomous monitoring
of the SDS and to automatically alert NASA en-
gineers in near real time when predefined cri-
teria have been met. Types of monitoring crite-
ria include expected operational events or
milestones (such as vehicle power up, start of
launch countdown test, and so on) as well as
unexpected events or failures (for example, a
large difference between redundant sensor val-
ues). NESTA allows shuttle engineers to work
on other tasks while minimizing the risk of los-
ing awareness of real-time shuttle processing
data and events. 

NESTA acts as a software agent for the NASA

system architecture was not changed, and the
software remains basically the same. As a result,
the level of situational awareness has not in-
creased proportionally to what would other-
wise be possible with more modern software
technologies. 

After the shuttle Columbia disaster on Febru-
ary 1, 2003, the Columbia Accident Investiga-
tion Board (Gehman et al. 2003) proposed rec-
ommendations to improve safety from both an
organizational and technical perspective. The
board indicated the need to adopt “and main-
tain a shuttle flight schedule that is consistent
with available resources.” Also, both manage-
ment and engineering support staff must main-
tain an awareness of anomalies and those must
not be lost “as engineering risk analyses [move]
through the process.” Given two tragic losses
of a crew and shuttle, today NASA engineers
have an even greater pressure to be more vigi-
lant in identifying problems. At KSC, ground
processing of the shuttle is performed by thou-
sands of employees, both contractors and civil
servants. Anomalies must be detected and re-
ported to prevent problems with shuttle sub-
systems, countdown, and launch. The aging
LPS hardware has limited resources and pre-
cludes the level of automation and notification
warranted by this domain. 

Contractors at KSC are responsible for the
day-to-day operations, checkout, and mainte-
nance of the shuttle. They are the primary users
of LPS. NASA shuttle engineers are civil service
employees who oversee the contractors. Given
the limitations and resource scarcity of LPS,
NASA shuttle engineers needed a tool to pro-
vide more insight and situational awareness
and oversee the work performed by contrac-
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engineer. For this discussion, an agent is defined
as rule-based, autonomous software that reacts
to its environment and communicates results to
a human, a NASA engineer in this usage. Agents
have been extensively researched (Wooldridge
2000; Russell and Norvig 2003). Agent stan-
dards1 and frameworks2 (Bölöni and Marinescu
2000) have also been developed. The five pri-
mary objectives for NESTA include, first, allow-
ing a NASA engineer to specify rules to be ap-
plied to measurements published in the SDS;
second, generating near real-time notifications
and alerts in the form of e-mails or wireless
pages (notifications may include a text message
and measurement values and may be sent to
multiple users when the rule’s premises are
satisfied); third, monitoring up to four separate
SDS sources, including four control rooms used
for checkout and launch of the shuttle and its
components; fourth, processing multiple types
and subtypes of measurements including dis-
cretes (Boolean measurements), analogs (float-
ing-point mea surements), and digital patterns
(integer measurements); and fifth, allowing al-
lowing users to create and modify multiple
monitoring requests without restarting NESTA. 

Why an AI Solution 
NESTA leverages various AI technologies with-
in a rule-based paradigm including forward
chaining, fast pattern matching by means of
the Rete algorithm, declarative programming,
predicate logic, and more. AI was a natural fit
for monitoring the SDS because pattern recog-
nition and analysis are the primary needs. Al-
though pattern identification could be
achieved by employing regular expression li-
braries within various procedural and object-
oriented languages, those paradigms are not
specifically intended for this type of applica-
tion and have less-efficient matching algo-
rithms. The pattern-matching algorithms of
rule-based expert system shells are highly spe-
cialized and tuned. Also, AI—particularly rule-
based languages— lends itself better to this do-
main because pattern recognition wrapped
within a premise-action construct closely mir-
rors the level of abstraction at which the do-
main experts work. 

The type of data signatures sought by shuttle
engineers requires the derivation of rules that
are of the same granularity as those typically
used in rule-based languages. Fortunately, shut-
tle engineers were already accustomed to rep-
resenting knowledge at a fine-grained level.
The engineers are adept at either constructing

the rules themselves or expressing the knowl-
edge in pseudocode that lends itself well for
translation directly into declarative rules. Many
of the rules are either stand-alone or work in
conjunction with several other rules, thus sug-
gesting a highly modular system with a rule be-
ing a suitably sized working block. 

Other Attempted Solutions 
NESTA is a peripheral advisory tool to the real-
time control system within LPS. There were
three previous projects that attempted to up-
grade LPS in the last 15 years. Although those
efforts had significantly greater objectives that
spanned well beyond just advisory applica-
tions, they were advertised to include many of
the capabilities that NESTA provides and much
more. Approximately half a billion dollars was
spent on those efforts and upwards of 600 peo-
ple worked on the most recent of those upgrade
attempts. There were various technical and po-
litical hurdles that initially impeded and then
ultimately doomed those full-scale replace-
ments of LPS. 

NESTA’s infusion of state-of-the-art AI tech-
nologies and engineering within the legacy
launch system, LPS, is particularly notable giv-
en the number and size of the preceding at-
tempts to modernize the ground control sys-
tem at KSC. Those fallen projects, despite
having much grander objectives, had little to
no spinoffs within the LPS community. In con-
trast, NESTA is becoming accepted and inter-
nalized by members of the launch team and ap-
pears to be on its way as a widely used tool.
From a business vantage point, NESTA’s great-
est asset is its development and marketing as a
value-added product. That is helping pave its
path to acceptance. 

System Components 
and How They Interact 

Figure 2 shows the context diagram for NESTA.
The agent process is represented in the middle
circle. It communicates with various sources
and data stores. A measurement database is
used to decode the SDS into usable measure-
ments. The SDS source broadcasts measure-
ments as data packets over local area networks.
NESTA monitors this stream for data patterns
specified by the shuttle engineers. If a pattern is
matched, a notification is sent in the form of
an e-mail or wireless page. The Rules data store
represents the Jess scripts and knowledge base
that defines the rules for the monitoring crite-
ria. All messages and relevant agent activities
are also locally logged.
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line that are very conducive for prototyping
and testing. 

Jess is written entirely in Java and has access
to the full Java application programming inter-
face from the scripting language. It provides
standard control-flow constructs and supports
variables, strings, objects, and function calls.
Jess automatically converts between its own
types and Java types insulating the developer
from manually performing the conversions. Its
use as a Java library made Jess’s selection more
appealing since Java supports multiple plat-
forms with its “write once, run anywhere” par-
adigm. Beyond that, the need for NESTA to
support web-enabled clients also made Java a
natural fit given its origins and strong support
for developing Internet based applications. 

Design 
Java classes were developed to parse and de-
code the data stream and represent measure-
ments as facts in Jess’s working memory. To in-
terface Jess’s rule engine with the SDS, each
data measurement is modeled and implement-
ed as a Java bean.3 Java beans provide a com-
ponent architecture to enable easier integration
of applications. A property change notification
mechanism is supported that allows one object
to become a registered listener of another ob-
ject. The listener object will then automatical-
ly receive changes from the source object. This

Languages and AI Tools Used 
The Java Expert System Shell (Jess) (Friedman-
Hill 2003) was selected as the rule engine. Jess
was developed and supported by another gov-
ernment agency, Sandia National Labs. As
such, our development team and customer
have full usage of the tool through government
licensing without any fees. This includes access
to all the Jess source code. 

Jess’s forward-chaining reasoning system was
modeled after production systems such as
OPS5 (Brownston et al. 1986) and CLIPS
(Wygant 1989). It contains a highly efficient
and sophisticated pattern matching based on
the Rete algorithm (Forgy 1982), which enables
its inference engine to process many rules and
data rapidly. The engine repeatedly processes
through a match-select-act cycle. As a produc-
tion system, its consequents can be actions. A
conflict-resolution strategy determines the
precedence of rule firings. 

Several hundred monitoring rules have been
written thus far for monitoring shuttle ground
telemetry. Jess’s predicate logic lends itself to
capturing and specifying the heuristics and en-
gineering rules of this spaceport domain. The
declarative paradigm of this rule-based agent
application also makes it highly modular and
scalable to span multiple subsystems of the
shuttle. Jess also includes a fourth-generation
scripting language and interactive command
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is also known as a publish-subscribe or observ-
er pattern (Gamma et al. 1995). Within Jess,
each Java bean corresponds to what is known
as a shadow fact. A Jess shadow fact is a mirror
image of a Java bean, such as a pressure mea-
surement, within Jess’s working memory. All
shadow facts are registered listeners of their Ja-
va bean counterparts. Thus, whenever a mea-
surement changes in the data stream, a proper-
ty change event is automatically generated for
the given measurement, and its sibling shadow
fact is updated in Jess’s working memory. Fig-
ure 3 illustrates this path. 

After a shadow fact is updated, the Jess pat-
tern matcher will determine if the premises of
any rules match the new or modified facts.
Rules are compared to working memory to
identify premises that are matched by the da-
ta in working memory. For NESTA, this data
represents measurements from the SDS and
rules represent data monitoring criteria sub-
mitted by NASA shuttle and system engineers.
Rules with matching premises are activated
and placed onto an agenda. Next, the agenda
is ordered according to Jess’s default conflict-
resolution strategy. The highest-priority rule is
then fired and executed. This match-select-act
cycle repeats until no more rules are available
to fire. An action handler class was developed
and is used to build and send the notification
message to the shuttle engineer whenever a
rule fires. 

Knowledge Capture 
and Representation 

Figure 4 shows the knowledge-acquisition
workflow for creating or modifying a rule to
monitor specific measurements on the shuttle

data stream. The shuttle engineer must specify
who is responsible for the rule, the contents of
the e-mail notifications, the rule’s firing condi-
tions (that is, antecedent, left side), and rearm-
ing conditions. That is, some rules may need to
have a “one shot” behavior and fire only once
when activated the first time. Other rules may
need to be rearmed after a given time period or
when certain types of conditions are met. 

The current version of NESTA does not have
a graphical user interface capturing this
workflow, but all of the steps are effectively
provided within script files. Those files are ed-
itable with a plain text editor by the end users.
Hundreds of rules have been produced by the
customer. 

As the rule database grew, patterns of rules
began to emerge. Patterns in software design
and modeling have been extensively investi-
gated and reported (Gamma et al. 1995). Anal-
ogous to those design patterns, the develop-
ment team and customer began recognizing
knowledge patterns for this domain and devel-
oped rules following these structures. Some
patterns include the following: 

One shot: The rule fires once regardless of
how many times facts cause the premise to re-
activate. 

Recurring: The rule fires each time the
premise reactivates. 

Timed: The rule fires every x minutes as the
premise remains true. 

Queued: Multiple rules will fire, but notifica-
tions are sent to a queue that gets flushed based
on a user-configurable amount of time or max-
imum number of firings. One composite notifi-
cation is sent when the queue is flushed. That
composite notification contains what would
have otherwise been multiple e-mails or wire-
less pages. 
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Notify shuttle engineer every 60 minutes with
current values of Flight Control launch countdown
measurement list when measurement NMA-
JORTEST equals 7. This rule indicates that
launch countdown test is occurring. While in
launch countdown test, send a current value e-
mail containing a list of flight-control mea-
surements every hour. 

Notify shuttle engineer when FD N79IV019D
Bit masked 0x0001 equals 1. This rule indicates
that an LPS command and control program has
stopped due to a failure and is waiting on the
operator for action. 

Figure 5 depicts an actual NESTA rule written
in the Jess scripting language. 

For the rule in figure 5, if all three analog bus
voltage measurements, V76V0100A1, V76V0
200A1, and V76V0300A1, concurrently exceed
26 volts, the shuttle orbiter is considered to be
powered on. Another indicator, SOIADATAV, is
used to assure the validity of the incoming da-
ta. Data validity is discussed later in this article.
Finally, another measurement, NORBTAILNO,
is located on the rule’s left side. In our termi-
nology, we call this an informational measure-
ment as its specific value has no bearing on
whether the rule fires, but it is necessary to in-
clude it on the rule’s left side so that it becomes
part of Jess’s activation object and then its val-
ue is included in the notification. The action
handler parses the fields in the activation ob-
ject and builds an e-mail with all of the mea-
surements’ values that were listed on the left
side of the rule. The notifyActionHandler call
has two arguments that allow for the notifica-
tion to be queued. This particular example does
not use queuing and simply passes nil argu-
ments in the call. Queuing is also discussed lat-
er in the article. 

Figure 6 shows an e-mail that was generated
for the rule in figure 5. As illustrated, the exact
values of all three bus voltages are listed along
with the informational measurement showing
which of the three Orbiters was powered up. In
this case, 103 refers to Discovery. The informa-
tional measurement proves useful not only in
allowing the orbiter reference to be included in
the e-mail, but also in not binding the rule to a
particular orbiter. That is, NASA shuttle engi-
neers are interested in any orbiter that may be-
come powered up. The rule’s pattern matching
provides that level of genericity in a very
straightforward representation. Of course, the
engineer may be interested in being notified
only about a specific orbiter. This would require
a simple modification to the rule. One addi-
tional slot would be referenced in the Digital-
PatternFd template narrowing the focus to a
particular orbiter. Thus, minor modifications to

Some sample rules in English prose include
the following: 

Notify shuttle engineer when measurement
V79S4126E1 or V79S4132E1 or V79S4138E1 or
V79S4143E1 equal ON. This rule indicates that
Flight Control Power (ASA 1-4) has been acti-
vated. 

Notify shuttle engineer when measurement
V90Q8001C1 equals 801. This rule indicates
that a shuttle is in orbit and is preparing to ini-
tiate the on-orbit flight-control checkout activ-
ity. 
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the rule demonstrate the rich behavior avail-
able to the shuttle engineer and show the se-
mantic power of pattern matching. 

The NESTA Hardware and 
Software Environment 

The NESTA application resides on a Dell 1.7
GHz Pentium server. The server includes the
necessary user and support files such as the
facts scripts, rules scripts, measurement data-
base, logs, and more. Currently, the server exe-
cutes on a Microsoft Windows 2000 operating
system. However, since Java was used exclu-
sively along with its virtual machine, the abili-
ty to execute software on other types of servers
is readily available. Again, not being bound to
a particular hardware platform or operating
system was a primary driver in the selection of
Java and Jess. Customers receive notification
on standard e-mail clients including Windows
workstations, wireless pagers, personal digital
assistants, cell phones, and more. 

Performance Characteristics 
of the Shuttle Data Stream 
At application startup, NESTA connects to a
datastream selected by the user. The datastream
includes all measurements at their respective
change rates. No data changes will be missing
from this stream. 

The datastream averages 5 to 10 packets per
second and peaks around 50 packets per second
at launch. Each SDS data packet can hold up to
360 measurement changes before rolling over
to another packet. This calculates to an average
of 1,800 changes per second nominally, and
18,000 changes per second peak at launch. Dur-
ing peak data loads, the SDS is throttled at the
source and does not maintain true real-time up-
dates. It may lag up to 1 minute or so, but all
measurement changes are buffered and none is
ever dropped from the data stream. Throttling
of the data typically begins at T + 1 second, that
is, just after launch. Even though it is the hy-
pothetical peak limit, 18,000 changes per sec-
ond is the performance load that NESTA is ex-
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(defrule vehicle-pwr-on-rule
“Orbiter electrical power is up.”

(recipient-list (recipient-list-name vehicle-pwr-on-rule))

?notPowered <-(vehicle-not-powered)

(DigitalPatternFd (fdName “NORBTAILNO”) )

(AnalogFd (fdName “V76V0100A1”) (valid TRUE) (value ?val1))
(AnalogFd (fdName “V76V0200A1”) (valid TRUE) (value ?val2))
(AnalogFd (fdName “V76V0300A1”) (valid TRUE) (value ?val3))
(test

(and
(> ?val1 26.0)
(> ?val2 26.0)
(> ?val3 26.0)

)
)

=>

(retract ?notPowered)
(assert (vehicle-powered))
(notifyActionHandler nil nil)

)

Figure 5. An Actual NESTA Rule Written in the Jess Scripting Language. 



processed by the SDS reader class, including
various types of measurements such as dis-
cretes and analogs. Twelve thousand analog da-
ta changes per second were being processed in-
to current values and updated in Jess’s working
memory by a property change event handler. 

Rules were written for 6 of the high speed
analog measurements. The other 6 measure-
ments were still relevant to stress the SDS read-
er class and updating of facts. Five of the 6 rules
fired once every minute. The sixth rule fired
once for every single measurement change
(1,000 per second) for two full seconds sus-
tained out of every minute. Thus, a total of
2,005 rules fired every minute, with 2,000 of
them firing within a two-second period. Analog
measurements have considerably more process-
ing overhead than the discrete measurements,
so it was not possible to sustain thousands of
rules containing analogs to fire every second
without causing CPU starvation. However, the
“fair test” was considered to have only a very
small percentage of the measurements that are
in the stream actually causing rules to fire. It
was considered fair to have short bursts of high-
rate rule firings but not long-term sustained
high-rate rule firings. NESTA is not intended for
users to write rules to notify them by e-mail
hundreds or thousands of times each second for
a long and sustained period of time. 

pected to meet to avoid missing a measurement
change (referring strictly to updating 18,000
facts per second and not indicating how many
rules might fire). In fact, only a small percent-
age of those facts is expected to result in a small
percentage of the total rules firing at any given
time, even during the peak launch data rates. 

The measurement data in the stream is re-
freshed every three minutes regardless of
whether or not it has changed. Since the stream
is based on user datagram protocol (UDP), an
unreliable datagram packet service is the result.
When a packet is dropped on the network, all
measurements are marked invalid and the mea-
surements change back to valid one by one as
refresh data is received until the completion of
a three-minute refresh cycle. 

Performance Testing
Performance testing occurred on an Intel Pen-
tium 4, 1.7 GHz desktop workstation with 768
MB of RAM running Microsoft Windows XP
Professional. The SDS reader class in NESTA
parses the data stream and updates facts in
Jess’s working memory. To test the reader class,
12 high-speed analog measurements were se-
lected and instantiated as shadow facts. In the
range of 18,000 (nominal) to 36,000 (peak at
launch) data changes occurred every second in
the test-enhanced data stream and were
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To summarize, NESTA sustained the above
scenario for many cycles on the test-enhanced
playback file without CPU starvation and with-
out reporting any packet losses. The CPU uti-
lization on the development workstation was
about 90 percent prior to launch and higher
than that after T – 0. It was heavily loaded, but
NESTA maintained the pace. NESTA performed
well considering that the data stream was
stuffed with between one and two times the
hypothetical peak load of measurement
changes for the performance test. The “long
pole” in the process appeared to be the number
of rules that actually fired every second sus-
tained. However, even under launch condi-
tions when a heavy data change load exists,
there are not expected to be many thousands of
rules firing every second. Even several hundred
rules firing per minute is considered unrealisti-
cally high, but this performace test suggests
NESTA could readily handle that load. 

Development and Deployment 
At the time of this writing, the customer had
used NESTA for more than a year. Hundreds of
rules have been written. Along with that, hun-
dreds of NESTA notifications have been gener-
ated for multiple NASA engineers. These users
have received both e-mails and wireless pages
at KSC and other remote sites. Since the cus-
tomer is a NASA engineer responsible for over-
sight of contractors, the notifications act as an
extra set of eyes that further assure the quality
of government oversight. 

To better understand NESTA’s payoff, the re-
sponsibilities of NASA shuttle engineers must
be examined. They include understanding
their system and supporting equipment, know-
ing how their systems are tested and processed,
being aware of when their systems are activat-
ed, tested, or in use, analyzing performance
and data retrievals from any use of a system,
and being ready to answer questions about
their systems, such as: When was it tested?
How did testing proceed? How did the data
look? Is it ready to fly? 

NESTA has helped shuttle engineers meet
these responsibilities in varying degrees. In one
recent usage, a shuttle avionics system was
powered up over a weekend. The NASA shuttle
engineer, being responsible for that system,
would not have been aware that the system was
powered up except for receiving a NESTA
notification. In this case, the avionics user was
not part of the shuttle engineer’s immediate or-
ganization. Thus, the shuttle engineer did not
receive any communiqués regarding the sys-
tem’s weekend usage. Due to NESTA, the shut-

tle engineer was better prepared to address
questions about his system’s usage were they to
arise. This has not been an uncommon occur-
rence. Shuttle engineers utilizing NESTA began
realizing that some of their systems were being
utilized much more than previously thought.
Situational awareness increased markedly. 

Aside from increased awareness, NESTA in-
creases efficiency. Some ground operations
span 24 hours and include dozens of asynchro-
nous events that are broadcast on the data
stream. For example, checkout of flight control
hardware in the Orbiter Processing Facility oc-
curred four to six times within the last year.
The checkout included long hydraulic opera-
tions, powering up different parts of avionics,
pressurizing/depressurizing the orbiter, and
other work. During a recent flow, the NESTA
notifications gave exact times of events of in-
terest to the shuttle engineer. That allowed the
shuttle engineer to quickly identify timelines
of these lengthy operations. Effectively, a vir-
tual roadmap identifying significant events was
automatically generated, and that saved an
hour of labor. More-efficient data retrievals re-
sulted. 

Phased Approach to 
Implementation and Delivery 
Multiple releases of NESTA have been delivered
to the customer. The development team has
four members each working approximately 50
percent of the time on the project. The team
works very closely with the customer. General-
ly, the team meets with the customer at least
once per week and has multiple other corre-
spondences by e-mail and phone. 

The initial NESTA release required six
months. Thereafter, a release occurred approxi-
mately every other month. Prior to adopting Ja-
va and Jess, some preliminary performance test-
ing was completed to verify that the Java
language and Jess rule engine were fast enough
to handle the shuttle data stream rates. Concur-
rent with that coarse performance testing, the
initial set of requirements was being developed. 

Development Tools 
In addition to Java and Jess, other tools were al-
so used. Eclipse was used as an integrated devel-
opment environment. Visio 2000 was used to de-
velop Unified Modeling Language models. CVS
was employed for configuration management.
Ant was used for automating builds. JUnit was
used for automated Java unit testing. Emma was
used for Java code coverage including measure-
ments and reporting. Finally, OptimizeIt by Bor-
land was employed for profiling performance
and detecting and isolating problems.
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ample, four flight-control avionics boxes are of-
ten powered up in a short time period. Rather
than a user receiving four separate flight-control
e-mails that may be interrelated, it was neces-
sary to provide a queuing mechanism that al-
lows a user to tie related e-mails to the same
queue and receive one bulk e-mail that was a
compilation of what would otherwise be multi-
ple e-mails. Both the queue time and queue
length are configurable by the end user. 

Maintenance 
New releases are delivered approximately every
two months by the development team. Those
releases may include bug fixes for problems re-
ported in the former release. However, new re-
leases are generally driven by new functionali-
ty as opposed to being driven by software
errors. 

The design of NESTA is conducive for updat-
ing by the end user. That is, the application us-
es a data-driven approach for the user files. All
of the rules and facts are stored in Jess scripts.
When rules have to be created or modified, the
user has access to several text-based files. A
facts file allows a user to add measurements
that should be monitored. A rules file allows
the entry of new rules. Since these are text-
based script files, no compilation is required by
the end user. The files are parsed at application
startup. This data-driven approach is powerful
in that it enables the end users to maintain
their own files and not be at the mercy of the
development team to add new support for new
facts and rules. 

Conclusion and Future Work 
NESTA has increased situational awareness of
ground processing at NASA KSC. More and
more shuttle engineers are relying on NESTA
each month and are creating additional rules
for monitoring the data stream. The infusion of
AI technologies, particularly the Jess rule-based
library, has proved very fruitful. Interfacing
and integrating these modern AI tools with a
legacy launch system demonstrates the scala-
bility and applicability of the tools and para-
digm. 

The knowledge patterns that are evolving
within NESTA will make it easier to train new
users. More significantly, these patterns are in-
fluencing the design of a web-based, graphical
user interface for creating and updating the
rules. JavaServer Faces (Geary and Horstmann
2004), a web application framework, is being
used to design and implement the web pages.
JSF was chosen as it provides a standard com-

Data Validity
As we indicated earlier in the article, the data
stream is based on UDP. As such, the connec-
tion is not always reliable, and packets may get
dropped, which poses problems when rules are
waiting for data to arrive. Data health and va-
lidity become questionable. If the data stream
connection is lost entirely or data becomes
stale (that is, not updated), false positives or
false negatives may result. That is, notifications
of hardware events may never be sent or be
sent in error. 

To partially address this data validity issue,
additional measurements are included in the
rules to check for the validity of the stream.
Measurements are now marked invalid for a
dropped packet or packets or when the source
of the measurement becomes bad. There is still
a larger problem of false negatives and never re-
ceiving an e-mail if the data stream drops pack-
ets while a monitored event occurred. Aside
from notifying the shuttle engineer of a data
loss when it happens, we have not yet iden-
tified a mechanism that guarantees all notifica-
tions since the data stream is unreliable. 

Measurement Databases Changes
Multiple data streams and control rooms exist.
Often, the measurement database, which is
used to decode the SDS, dynamically changes
on the stream as a result of operations. When
that happens, decoding measurements be-
comes impossible and facts can no longer be
updated in Jess’s working memory. A short-
term fix to this problem was to simply notify
the NESTA system administrator when the
stream changes. A measurement database Java
bean was added and is used within a user rule
as a fact. When the measurement database
changes, the administrator automatically gets
an e-mail and may restart NESTA accordingly.
Longer term, automatic restarts of the agent
will be provided. 

Flood of E-mails
If an end user incorrectly writes a rule, a possi-
bility existed of flooding the network and
servers with hundreds or even thousands of
notifications. To prevent that, multiple safe-
guards, such as user-defined limits, were pro-
vided to filter e-mails after a given number
have been generated for a particular e-mail ac-
count. 

Beyond the possibility of user error, there was
a separate need to queue e-mails that may be re-
lated to some sequence. Queuing provides a
mechanism where multiple messages expected
to occur within a short time period are grouped
together before being e-mailed in bulk. For ex-
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ponent application programming in-
terface and targets the separation of
presentation from business logic. An
open source database management
system, MySQL (DuBois 2005), is also
being employed to create the database
for storing the rules. MySQL supports
modern database semantics including
stored procedures, triggers, and for-
eign key relationships. 

We are investigating agents that
possess the ability to revise previously
concluded assertions based on what
may now be false or retracted data. Be-
lief revision (de Kleer 1986), also
known as truth maintenance, is par-
ticularly important when deep reason-
ing of long inferences is necessary. Jess
currently has a very simple form of
truth maintenance that we are looking
to extend with a full-blown truth-
maintenance system. 

Notes
1. The 2002 foundation for intelligent
physical agents (FIPA) abstract architecture
specification can be found at www.fipa.org.

2. For the Java agent development frame-
work (JADE), see jade.tilab.com.

3. For the Java bean specification from Sun
Microsystems, see java.sun.com.
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